Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (464)

Search Parameters:
Keywords = directional curvature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1868 KiB  
Communication
Research on the Temperature Dependence of Deformation and Residual Stress via Image Relative Method
by Haiyan Li, Lei Zhang, Yudi Mao, Jinlun Zhang, Detian Wan and Yiwang Bao
Coatings 2025, 15(8), 913; https://doi.org/10.3390/coatings15080913 (registering DOI) - 5 Aug 2025
Abstract
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion [...] Read more.
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion coefficient between the coating and substrate, residual stresses were produced, which caused the bending deformation of the single-side coated specimens. Moreover, coating thickness significantly influences the deformation behavior of specimens. Within the elastic deformation regime, the single-side coated specimens would exhibit alternating bending and flattening deformations in response to the fluctuations of temperature. The higher ratio of the coating thickness to the substrate thickness is, the smaller bending curvature of specimens becomes, and the lower residual compressive stresses in the coating are. For the specimens undergoing elastic deformation, residual stresses can be effectively calculated through the Stoney’s formula. However, as the thickness of coating is close to that of substrate (the corresponding specimens would be regarded as the laminated composites), plastic deformation occurs. And the residual stresses in those specimens vary along the direction of the thickness and the length. In addition, the residual stress decreased with increasing temperature because of the stress relaxation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

10 pages, 1425 KiB  
Article
Reconstructing the Gait Pattern of a Korean Cadaver with Bilateral Lower Limb Asymmetry Using a Virtual Humanoid Modeling Program
by Min Woo Seo, Changmin Lee and Hyun Jin Park
Diagnostics 2025, 15(15), 1943; https://doi.org/10.3390/diagnostics15151943 - 2 Aug 2025
Viewed by 200
Abstract
Background and Objective: This study presents a combined osteometric and biomechanical analysis of a Korean female cadaver exhibiting bilateral lower limb bone asymmetry with abnormal curvature and callus formation on the left femoral midshaft. Methods: To investigate bilateral bone length differences, [...] Read more.
Background and Objective: This study presents a combined osteometric and biomechanical analysis of a Korean female cadaver exhibiting bilateral lower limb bone asymmetry with abnormal curvature and callus formation on the left femoral midshaft. Methods: To investigate bilateral bone length differences, osteometric measurements were conducted at standardized landmarks. Additionally, we developed three gait models using Meta Motivo, an open-source reinforcement learning platform, to analyze how skeletal asymmetry influences stride dynamics and directional control. Results: Detailed measurements revealed that the left lower limb bones were consistently shorter and narrower than their right counterparts. The calculated lower limb lengths showed a bilateral discrepancy ranging from 39 mm to 42 mm—specifically a 6 mm difference in the femur, 33 mm in the tibia, and 36 mm in the fibula. In the gait pattern analysis, the normal model exhibited a straight-line gait without lateral deviation. In contrast, the unbalanced, non-learned model demonstrated compensatory overuse and increased stride length of the left lower limb and a tendency to veer leftward. The unbalanced, learned model showed partial gait normalization, characterized by reduced limb dominance and improved right stride, although directional control remained compromised. Conclusions: This integrative approach highlights the biomechanical consequences of lower limb bone discrepancy and demonstrates the utility of virtual agent-based modeling in elucidating compensatory gait adaptations. Full article
(This article belongs to the Special Issue Clinical Anatomy and Diagnosis in 2025)
Show Figures

Figure 1

10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 (registering DOI) - 1 Aug 2025
Viewed by 126
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

28 pages, 3834 KiB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 - 1 Aug 2025
Viewed by 121
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

19 pages, 26478 KiB  
Article
Three-Dimensional Numerical Simulation of Flow Around a Spur Dike in a Meandering Channel Bend
by Yan Xing, Congfang Ai, Hailong Cui and Zhangling Xiao
Fluids 2025, 10(8), 198; https://doi.org/10.3390/fluids10080198 - 29 Jul 2025
Viewed by 219
Abstract
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an [...] Read more.
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an explicit projection method. The 3D grid system is built from a two-dimensional grid by adding dozens of horizontal layers in the vertical direction. Numerical simulations consider four test cases with different spur dike locations in the same meandering channel bend with the same Froude numbers as 0.22. Four turbulence models, the standard k-ε model, the k-ω model, the RNG k-ε model and a nonlinear k-ε model, are implemented in our three-dimensional free surface model. The performance of these turbulence models within the RANS framework is assessed. Comparisons between the model results and experimental data show that the nonlinear k-ε model behaves better than the three other models in general. Based on the results obtained by the nonlinear k-ε model, the highly 3D flow field downstream of the spur dike was revealed by presenting velocity vectors at representative cross-sections and streamlines at the surface and bottom layers. Meanwhile, the 3D characteristics of the downstream separation zone were also investigated. In addition, to highlight the advantage of the nonlinear turbulence model, comparisons of velocity vectors at representative cross-sections between the results obtained by the linear and nonlinear k-ε models are also presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

18 pages, 4253 KiB  
Article
Testing Using the DCP Probe of a Subgrade Modeled from Difficult-to-Compact Sand in a Calibration Chamber
by Dariusz Tymosiak, Maria Jolanta Sulewska, Wanda Kokoszka, Marta Słowik, Ewa Błazik-Borowa, Dominik Ożóg and Monika Puchlik
Materials 2025, 18(15), 3548; https://doi.org/10.3390/ma18153548 (registering DOI) - 29 Jul 2025
Viewed by 225
Abstract
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative [...] Read more.
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative tests of non-cohesive soil used for the construction of embankments were carried out using the DCP test and direct tests of the degree of compaction IS in a calibration chamber with the following dimensions: height 1.10 m and diameter 0.75 m. The subsoil was prepared from difficult-to-compact sand (Sa) with a uniformity coefficient of CU = 3.10 and curvature coefficient of CC = 0.99. The soil in the laboratory in the calibration chamber was compacted in layers using a vibratory plate compactor. A database for statistical analysis was obtained, n = 68 cases described by seven variables: z, ρ, w, ρd, IS, PI, N10(DCP). It was found that the DCP probe can be used to assess the degree of compaction of embankments made of non-cohesive soil, using the developed relationship IS = f(z, N10(DCP)). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

32 pages, 2851 KiB  
Article
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
by Roberto Luraschi, Claudia Muñoz-Villagrán, Fabián A. Cornejo, Benoit Pugin, Fernanda Contreras Tobar, Juan Marcelo Sandoval, Jaime Andrés Rivas-Pardo, Carlos Vera and Felipe Arenas
Int. J. Mol. Sci. 2025, 26(15), 7287; https://doi.org/10.3390/ijms26157287 - 28 Jul 2025
Viewed by 258
Abstract
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular [...] Read more.
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 1646 KiB  
Article
Morphological and Morphometric Assessment of Adolescent Idiopathic Scoliosis According to Pelvic Axial Rotation—A Retrospective Cohort Study with 397 Patients
by Nevzat Gönder, Cansu Öztürk, Rabia Taşdemir, Zeynep Şencan, Cağrı Karabulut, Ömer Faruk Cihan and Musa Alperen Bilgin
Children 2025, 12(8), 991; https://doi.org/10.3390/children12080991 - 28 Jul 2025
Viewed by 266
Abstract
Background: A precise radiographic evaluation of adolescent idiopathic scoliosis (AIS) is essential for effective treatment planning and follow-up. The pelvic axial rotation (PAR) and horizontal balance of the pelvis are critical factors to consider throughout the treatment and monitoring of AIS. While some [...] Read more.
Background: A precise radiographic evaluation of adolescent idiopathic scoliosis (AIS) is essential for effective treatment planning and follow-up. The pelvic axial rotation (PAR) and horizontal balance of the pelvis are critical factors to consider throughout the treatment and monitoring of AIS. While some previous studies have examined spinal curvature in relation to PAR direction and the direction of the major curve (DMC) in AIS patients, this study aims to explore the relationship between scoliosis morphology, pelvic axial rotation (PAR), and the direction of the major curve in patients with adolescent idiopathic scoliosis. Methods: Radiographic images of 397 patients diagnosed with AIS between 2023 and 2024 at a Tertiary Referral Hospital were retrospectively evaluated. Morphological and morphometric measurements, including sex, Lenke and Risser classifications, lower leg discrepancy, Cobb angle, PAR direction, and major curvature direction, were performed. Results: The mean age of the 397 patients (246 female, 151 male) was 14.47 ± 2.29. There is no significant correlation between PAR and DMC (p = 0.919). No significant differences were found in terms of sex (p = 0.603). Regardless of the PAR direction, major curvature was more common on the left side (57.7%). Furthermore, a positive correlation was noted between the Cobb angle and LLD. Conclusions: Our study contributes to a growing body of literature questioning the deterministic role of PAR in AIS. While previous reports have emphasized the directional correlation between the pelvis and spinal curvature, our findings suggest that pelvic rotation may not be a reliable indicator of curve direction in all patients. This highlights the complexity of AIS biomechanics and underscores the need for individualized radiographic and clinical evaluation rather than a reliance on generalized compensatory models. Full article
Show Figures

Figure 1

17 pages, 8151 KiB  
Article
FEA-Based Vibration Modal Analysis and CFD Assessment of Flow Patterns in a Concentric Double-Flange Butterfly Valve Across Multiple Opening Angles
by Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Vibration 2025, 8(3), 42; https://doi.org/10.3390/vibration8030042 - 23 Jul 2025
Viewed by 580
Abstract
A concentric double-flange butterfly valve (DN-500, PN-10) was analyzed to examine its dynamic behavior and internal fluid flow across multiple opening angles. Finite Element Analysis (FEA) was employed to determine natural frequencies, mode shapes, and effective mass participation factors (EMPFs) for valve positions [...] Read more.
A concentric double-flange butterfly valve (DN-500, PN-10) was analyzed to examine its dynamic behavior and internal fluid flow across multiple opening angles. Finite Element Analysis (FEA) was employed to determine natural frequencies, mode shapes, and effective mass participation factors (EMPFs) for valve positions at 30°, 60°, and 90°. The valve geometry was discretized using a curvature-based mesh with linear elastic isotropic properties for 1023 carbon steel. Lower-order vibration modes produced global deformations primarily along the valve disk, while higher-order modes showed localized displacement near the shaft–bearing interface, indicating coupled torsional and translational dynamics. The highest EMPF in the X-direction occurred at 1153.1 Hz with 0.2631 kg, while the Y-direction showed moderate contributions peaking at 0.1239 kg at 392.06 Hz. The Z-direction demonstrated lower influence, with a maximum EMPF of 0.1218 kg. Modes 3 and 4 were critical for potential resonance zones due to significant mass contributions and directional sensitivity. Computational Fluid Dynamics (CFD) simulation analyzed flow behavior, pressure drops, and turbulence under varying valve openings. At a lower opening angle, significant flow separation, recirculation zones, and high turbulence were observed. At 90°, the flow became more streamlined, resulting in a reduction in pressure losses and stabilizing velocity profiles. Full article
Show Figures

Figure 1

20 pages, 18416 KiB  
Article
Swin-FSNet: A Frequency-Aware and Spatially Enhanced Network for Unpaved Road Extraction from UAV Remote Sensing Imagery
by Jiwu Guan, Qingzhan Zhao, Wenzhong Tian, Xinxin Yao, Jingyang Li and Wei Li
Remote Sens. 2025, 17(14), 2520; https://doi.org/10.3390/rs17142520 - 20 Jul 2025
Viewed by 401
Abstract
The efficient recognition of unpaved roads from remote sensing (RS) images holds significant value for tasks such as emergency response and route planning in outdoor environments. However, unpaved roads often face challenges such as blurred boundaries, low contrast, complex shapes, and a lack [...] Read more.
The efficient recognition of unpaved roads from remote sensing (RS) images holds significant value for tasks such as emergency response and route planning in outdoor environments. However, unpaved roads often face challenges such as blurred boundaries, low contrast, complex shapes, and a lack of publicly available datasets. To address these issues, this paper proposes a novel architecture, Swin-FSNet, which combines frequency analysis and spatial enhancement techniques to optimize feature extraction. The architecture consists of two core modules: the Wavelet-Based Feature Decomposer (WBFD) module and the Hybrid Dynamic Snake Block (HyDS-B) module. The WBFD module enhances boundary detection by capturing directional gradient changes at the road edges and extracting high-frequency features, effectively addressing boundary blurring and low contrast. The HyDS-B module, by adaptively adjusting the receptive field, performs spatial modeling for complex-shaped roads, significantly improving adaptability to narrow road curvatures. In this study, the southern mountainous area of Shihezi, Xinjiang, was selected as the study area, and the unpaved road dataset was constructed using high-resolution UAV images. Experimental results on the SHZ unpaved road dataset and the widely used DeepGlobe dataset show that Swin-FSNet performs well in segmentation accuracy and road structure preservation, with an IoUroad of 81.76% and 71.97%, respectively. The experiments validate the excellent performance and robustness of Swin-FSNet in extracting unpaved roads from high-resolution RS images. Full article
Show Figures

Figure 1

16 pages, 3348 KiB  
Article
Response and Failure Behavior of Square Tubes with Varying Outer Side Lengths Under Cyclic Bending in Different Directions
by Chin-Mu Lin, Min-Cheng Yu and Wen-Fung Pan
Metals 2025, 15(7), 792; https://doi.org/10.3390/met15070792 - 13 Jul 2025
Viewed by 189
Abstract
This paper primarily investigates the response and failure behavior of 6063-T5 aluminum alloy square tubes with varying outer side lengths under symmetric curvature-controlled cyclic bending in different bending directions. The response is characterized by the moment–curvature relationship and the variation in the outer [...] Read more.
This paper primarily investigates the response and failure behavior of 6063-T5 aluminum alloy square tubes with varying outer side lengths under symmetric curvature-controlled cyclic bending in different bending directions. The response is characterized by the moment–curvature relationship and the variation in the outer side length with respect to curvature, whereas failure is characterized by the relationship between the controlled curvature and the number of cycles required to initiate buckling. The outer side lengths studied are 20 mm, 30 mm, 40 mm, and 50 mm, and the bending directions considered are 0°, 22.5°, and 45°. The moment–curvature curves exhibited cyclic hardening, and stable loops were formed for all outer side lengths and bending directions. An increase in the outer side length resulted in a higher peak bending moment, while a greater bending direction led to a slight increase in the peak bending moment. For a fixed bending direction, the curves representing the variation of the outer side length (defined as the change in length divided by the original length) with respect to curvature displayed symmetry, serrated features, and an overall increasing trend as the number of cycles increased, irrespective of the specific outer side length. In addition, increasing either the outer side length or altering the bending direction led to a larger variation in the outer side length. As for the relationship between curvature and the number of cycles required to initiate buckling, the data for each bending direction and each of the four outer side lengths formed distinct straight lines on a double-logarithmic plot. Based on the experimental observations, empirical equations were developed to characterize these relationships. These equations were then used to predict the experimental data and showed excellent agreement with the measured results. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Figure 1

17 pages, 4939 KiB  
Article
Wood Loss in the Felling and Cross-Cutting of Trees from Spruce Stands Affected by Windthrow in the Curvature Carpathians
by Mihai Ciocirlan and Vasile Răzvan Câmpu
Forests 2025, 16(7), 1102; https://doi.org/10.3390/f16071102 - 3 Jul 2025
Viewed by 274
Abstract
Windthrow determines major changes in tree stand evolution due to the felling or breaking of either isolated trees or entire stands. It has a major ecological, social and economic impact. Wood loss resulting from tree felling and cross-cutting operations is a less-studied aspect [...] Read more.
Windthrow determines major changes in tree stand evolution due to the felling or breaking of either isolated trees or entire stands. It has a major ecological, social and economic impact. Wood loss resulting from tree felling and cross-cutting operations is a less-studied aspect related to windthrow. Wood loss is represented by high stumps, broken or split stems, wood lost in the felling of trees that remain standing, wood lost in felling cuts that attempt to remove the stem from the root plate of partially or totally uprooted trees and wood lost as a result of stem cross-cutting. The study focused on estimating losses and their indices in a spruce tree stand located in the Curvature Carpathians. Windthrow took place in this tree stand in February 2020. The results showed that the total wood loss index is 7.747%. The main losses are represented by wood losses in high stumps (5.319%). The amount of wood loss depends on the proportion of uprooted or standing trees, ground inclination and the uprooting direction of trees as opposed to ground inclination, as well as on tree dimension. Tree volume significantly influences wood loss in high stumps (p < 0.001). The closer the uprooting direction is to the highest slope, the higher the tree stump becomes. Wood loss caused by stem breaking and splitting represents 2.280%, tree felling cuttings and stem removal from the root plate in uprooted trees account for 0.138% while loss resulting from stem cross-cutting represents 0.10%. Full article
(This article belongs to the Special Issue Sustainable Forest Operations Planning and Management)
Show Figures

Figure 1

22 pages, 3237 KiB  
Article
Local Polar Coordinate Feature Representation and Heterogeneous Fusion Framework for Accurate Leaf Image Retrieval
by Mengjie Ye, Yong Cheng, Yongqi Yuan, De Yu and Ge Jin
Symmetry 2025, 17(7), 1049; https://doi.org/10.3390/sym17071049 - 3 Jul 2025
Viewed by 234
Abstract
Leaf shape is a crucial visual cue for plant recognition. However, distinguishing among plants with high inter-class shape similarity remains a significant challenge, especially among cultivars within the same species where shape differences can be extremely subtle. To address this issue, we propose [...] Read more.
Leaf shape is a crucial visual cue for plant recognition. However, distinguishing among plants with high inter-class shape similarity remains a significant challenge, especially among cultivars within the same species where shape differences can be extremely subtle. To address this issue, we propose a novel shape representation and an advanced heterogeneous fusion framework for accurate leaf image retrieval. Specifically, based on the local polar coordinate system, multiscale analysis, and statistical histograms, we first propose local polar coordinate feature representation (LPCFR), which captures spatial distribution from two orthogonal directions while encoding local curvature characteristics. Next, we present heterogeneous feature fusion with exponential weighting and Ranking (HFER), which enhances the compatibility and robustness of fused features by applying exponential weighted normalization and ranking-based encoding within neighborhood distance measures. Extensive experiments on both species-level and cultivar-level leaf datasets demonstrate that the proposed representation effectively captures shape features, and the fusion framework successfully integrates heterogeneous features, outperforming state-of-the-art (SOTA) methods. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 4260 KiB  
Article
An Optimally Oriented Coherence Attribute Method and Its Application to Faults and Fracture Sets Detection in Carbonate Reservoirs
by Shuai Chen, Shengjun Li, Qi Ma, Lu Qin and Sanyi Yuan
Appl. Sci. 2025, 15(13), 7393; https://doi.org/10.3390/app15137393 - 1 Jul 2025
Viewed by 231
Abstract
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute [...] Read more.
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute (OOCA) method that integrates geological guidance with multi-frequency structural analysis to achieve enhanced sensitivity to faults and fractures across multiple scales. The method is guided by depositional and tectonic principles, constructing model traces along directions with maximal structural variation to amplify responses at geological boundaries. A distance-weighted computation and extended directional model trace strategy are adopted to further enhance the detection of fine-scale discontinuities, overcoming the limitations of traditional attributes in resolving subtle structural features. A Gabor-based multi-frequency fusion framework is employed to simultaneously preserve large-scale continuity and fine-scale detail. Validation using physical modeling and field seismic data confirms the method’s ability to enhance weak fault imaging. Compared to traditional attributes such as C3 coherence, curvature, and instantaneous phase, OOCA delivers significantly improved spatial resolution. In zones with documented lost circulation, the identified structural features align well with drilling observations, demonstrating strong geological adaptability and engineering relevance. Overall, the OOCA method offers a geologically consistent and computationally efficient solution for high-resolution fault interpretation and drilling risk prediction in structurally complex carbonate reservoirs. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

31 pages, 8397 KiB  
Article
Research on APF-Dijkstra Path Planning Fusion Algorithm Based on Steering Model and Volume Constraints
by Xizheng Wang, Gang Li and Zijian Bian
Algorithms 2025, 18(7), 403; https://doi.org/10.3390/a18070403 - 1 Jul 2025
Viewed by 370
Abstract
For the local oscillation phenomenon of the APF algorithm in the face of static U-shaped obstacles, the path cusp phenomenon caused by the vehicle corner and path curvature constraints is not taken into account, as well as the low path safety caused by [...] Read more.
For the local oscillation phenomenon of the APF algorithm in the face of static U-shaped obstacles, the path cusp phenomenon caused by the vehicle corner and path curvature constraints is not taken into account, as well as the low path safety caused by ignoring the vehicle volume constraints. Therefore, an APF-Dijkstra path planning fusion algorithm based on steering model and volume constraints is proposed to improve it. First, perform an expansion treatment on the obstacles in the map, optimize the search direction of the Dijkstra algorithm and its planned global path, ensuring that the distance between the path and the expanded grid is no less than 1 m, and use the path points as temporary target points for the APF algorithm. Secondly, a Gaussian function is introduced to optimize the potential energy function of the APF algorithm, and the U-shaped obstacle is ellipticized, and a virtual target point is used to provide the gravitational force. Again, the three-point arc method based on the steering model is used to determine the location of the predicted points and to smooth the paths in real time while constraining the steering angle. Finally, a 4.5 m × 2.5 m vehicle rectangle is used instead of the traditional mass points to make the algorithm volumetrically constrained. Meanwhile, a model for detecting vehicle collisions is established to cover the rectangle boundary with 14 envelope circles, and the combined force of the computed mass points is transformed into the combined force of the computed envelope circles to further improve path safety. The algorithm is validated by simulation experiments, and the results show that the fusion algorithm can avoid static U-shaped obstacles and dynamic obstacles well; the curvature change rate of the obstacle avoidance path is 0.248, 0.162, and 0.169, and the curvature standard deviation is 0.16, which verifies the smoothness of the fusion algorithm. Meanwhile, the distances between the obstacles and the center of the rear axle of the vehicle are all higher than 1.60 m, which verifies the safety of the fusion algorithm. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

Back to TopTop