Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = digestive peptidases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1309 KiB  
Review
Microbial Peptidases: Key Players in Reducing Gluten Immunogenicity Through Peptide Degradation
by Africa Sanchiz, M. Isabel San-Martín, N. Navasa, Honorina Martínez-Blanco, Miguel Ángel Ferrero, Leandro Benito Rodríguez-Aparicio and Alejandro Chamizo-Ampudia
Appl. Sci. 2025, 15(14), 8111; https://doi.org/10.3390/app15148111 - 21 Jul 2025
Viewed by 271
Abstract
Gluten-related disorders, including celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), are triggered by the immune response to gluten peptides that resist complete digestion by human gastrointestinal enzymes. Microbial peptidases have emerged as promising biocatalysts capable of degrading these immunogenic peptides, offering potential [...] Read more.
Gluten-related disorders, including celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), are triggered by the immune response to gluten peptides that resist complete digestion by human gastrointestinal enzymes. Microbial peptidases have emerged as promising biocatalysts capable of degrading these immunogenic peptides, offering potential therapeutic and industrial applications. This review explores the role of microbial peptidases in gluten degradation, highlighting key enzyme families, their mechanisms of action, and their effectiveness in reducing gluten immunogenicity. Additionally, we discuss advances in enzymatic therapy, food processing applications, and the challenges associated with optimizing microbial enzymes for safe and efficient gluten detoxification. Understanding the potential of microbial peptidases in mitigating gluten-related disorders paves the way for novel dietary and therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 671 KiB  
Article
The Hypoglycaemic Effects of the New Zealand Pine Bark Extract on Sucrose Uptake and Glycaemic Responses in Healthy Adults—A Single-Blind, Randomised, Placebo-Controlled, Crossover Trial
by Wen Xin Janice Lim, Rachel A. Page, Cheryl S. Gammon and Paul J. Moughan
Nutrients 2025, 17(14), 2277; https://doi.org/10.3390/nu17142277 - 9 Jul 2025
Viewed by 321
Abstract
Background: The New Zealand pine bark has been demonstrated in vitro to inhibit digestive enzymes involved in carbohydrate digestion (alpha-amylase, alpha-glucosidase, and dipeptidyl-peptidase 4 (DPP-4)). Objective: This study aims to investigate the inhibitory effects of the New Zealand pine bark on sucrose uptake [...] Read more.
Background: The New Zealand pine bark has been demonstrated in vitro to inhibit digestive enzymes involved in carbohydrate digestion (alpha-amylase, alpha-glucosidase, and dipeptidyl-peptidase 4 (DPP-4)). Objective: This study aims to investigate the inhibitory effects of the New Zealand pine bark on sucrose uptake and glycaemic responses in humans. Methods: A single-blind, randomised, placebo-controlled, crossover trial was carried out involving healthy adults (n = 40 (M: 12, F: 28), 30.1 ± 1.3 years, BMI 23.4 ± 0.5 kg/m2, HbA1c 32.5 ± 0.6 mmol/mol, FBG 4.7 ± 0.1 mmol/L). A control (75 g of sucrose powder only), and two doses of the pine bark extract (50 and 400 mg) were provided on separate occasions, with 75 g of sucrose mixed in 250 mL of water. Blood samples were collected at −10, 0, 15, 30, 45, 60, 90, and 120 min via a finger prick test. A linear mixed model for repeated measures (SPSS v30, IBM) was applied, and data presented as model-adjusted mean ± SEM. Results: Compared to control (247.5 ± 14.0 mmol/L⋅min), the iAUCglucose was significantly reduced with the 400 mg dose (211.8 ± 13.9 mmol/L⋅min, 14.4% reduction, and p = 0.037), but not with 50 mg dose (220.8 ± 14.2 mmol/L⋅min, 10.8% reduction, and p = 0.184). Compared to control (9.1 ± 0.2 mmol/L), glucose peak value was significantly reduced with the 50 mg dose (8.6 ± 0.2 mmol/L, 5.5% reduction, and p = 0.016) but not with the 400 mg dose (8.7 ± 0.2 mmol/L, 4.4% reduction, and p = 0.093). There were no statistically significant changes in postprandial insulin levels with the pine bark extract compared to control. Conclusions: The New Zealand pine bark extract attenuated sucrose uptake with improved glycaemic responses, and may therefore be useful as a hypoglycaemic adjunct to the diet. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

14 pages, 4690 KiB  
Article
A Novel Camel Milk-Derived Peptide LLPK Improves Glucose-Lipid Metabolism in db/db Mice via PPAR Signaling Pathway
by Binsong Han, Yuhui Ye, Cunzheng Zhang, Lina Zhang and Peng Zhou
Nutrients 2025, 17(10), 1693; https://doi.org/10.3390/nu17101693 - 16 May 2025
Viewed by 682
Abstract
Background: Camel milk is considered to be an important source of bioactive peptides with potential anti-diabetic effects. However, the mechanism by which these active peptides exert their anti-diabetic effects is not clear. The aim of this study was to systematically evaluate the [...] Read more.
Background: Camel milk is considered to be an important source of bioactive peptides with potential anti-diabetic effects. However, the mechanism by which these active peptides exert their anti-diabetic effects is not clear. The aim of this study was to systematically evaluate the in vivo anti-diabetic effects of Leucine-Leucine-Proline-Lysine (LLPK), a novel dipeptidyl peptidase-4 (DPP-4) inhibitory peptide identified from the in vitro gastrointestinal digestion product of camel milk. Methods: A db/db diabetic mouse model was used, and LLPK was administered to mice at doses of 50 mg/kg BW and 100 mg/kg BW as a daily oral gavage for 30 days. The effects of LLPK on fasting blood glucose (FBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and serum lipid levels were monitored, and possible mechanisms of action were elucidated using proteomics. Results: The results demonstrated that LLPK significantly improved diabetic symptoms, including FBG, OGTT, ITT, and serum lipid levels in db/db diabetic mice. Furthermore, significantly increased levels of serum glucagon-like peptide 1 (GLP-1) and reduced serum DPP-4 activity were observed in the LLPK-treated group compared to the control group. Hepatic proteomics indicated that LLPK improved glucose and lipid metabolism via the PPAR signaling pathway, where the key targets were Scd1, Acox1, Acaa1b, Slc27a1, Acsl1, and Ehhadh. Conclusions: In summary, this study provided new insights into the anti-diabetic mechanisms of camel milk and supported the development of camel milk-based anti-diabetic functional foods or nutraceuticals. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

23 pages, 3871 KiB  
Article
Proteomics of Bacterial and Mouse Extracellular Vesicles Released in the Gastrointestinal Tracts of Nutrient-Stressed Animals Reveals an Interplay Between Microbial Serine Proteases and Mammalian Serine Protease Inhibitors
by Régis Stentz, Emily Jones, Lejla Gul, Dimitrios Latousakis, Aimee Parker, Arlaine Brion, Andrew J. Goldson, Kathryn Gotts and Simon R. Carding
Int. J. Mol. Sci. 2025, 26(9), 4080; https://doi.org/10.3390/ijms26094080 - 25 Apr 2025
Viewed by 761
Abstract
Bacterial extracellular vesicles (BEVs) produced by members of the intestinal microbiota can not only contribute to digestion but also mediate microbe–host cell communication via the transfer of functional biomolecules to mammalian host cells. An unresolved question is which host factors and conditions influence [...] Read more.
Bacterial extracellular vesicles (BEVs) produced by members of the intestinal microbiota can not only contribute to digestion but also mediate microbe–host cell communication via the transfer of functional biomolecules to mammalian host cells. An unresolved question is which host factors and conditions influence BEV cargo and how they impact host cell function. To address this question, we analysed and compared the proteomes of BEVs released by the major human gastrointestinal tract (GIT) symbiont Bacteroides thetaiotaomicron (Bt) in vivo in fed versus fasted animals using nano-liquid chromatography with tandem mass spectrometry (LC-MSMS). Among the proteins whose abundance was negatively affected by fasting, nine of ten proteins of the serine protease family, including the regulatory protein dipeptidyl peptidase-4 (DPP-4), were significantly decreased in BEVs produced in the GITs of fasted animals. Strikingly, in extracellular vesicles produced by the intestinal epithelia of the same fasted mice, the proteins with the most increased abundance were serine protease inhibitors (serpins). Together, these findings suggest a dynamic interaction between GI bacteria and the host. Additionally, they indicate a regulatory role for the host in determining the balance between bacterial serine proteases and host serpins exported in bacterial and host extracellular vesicles. Full article
Show Figures

Graphical abstract

30 pages, 1003 KiB  
Review
Preparation and Encapsulation of DPP-IV Inhibitory Peptides: Challenges and Strategies for Functional Food Development
by Rui Zhao, Ye Zhou, Huifang Shen, Lijun Guan, Yao Wang, Xinting Shen, Fei Wang and Xinmiao Yao
Foods 2025, 14(9), 1479; https://doi.org/10.3390/foods14091479 - 24 Apr 2025
Viewed by 946
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides have emerged as promising functional ingredients for managing type 2 diabetes due to their ability to enhance insulin secretion and improve glycemic control. This review provides a concise overview of current strategies for the preparation and encapsulation [...] Read more.
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides have emerged as promising functional ingredients for managing type 2 diabetes due to their ability to enhance insulin secretion and improve glycemic control. This review provides a concise overview of current strategies for the preparation and encapsulation of DPP-IV inhibitory peptides, with a focus on food industry application, evaluating bioinformatics for substrate selection, and methods like mild enzymatic hydrolysis, cost-effective fermentation, and high-purity chemical synthesis for peptide production. Challenges associated with incorporating these peptides into food products are addressed, including impacts on sensory properties, stability during processing and digestion, and the need for effective delivery systems to enhance bioavailability. Potential solutions to improve peptide stability and targeted release, such as emulsions, liposomes, and nanoparticles, are explored. Future research directions are outlined, emphasizing the necessity for scalable production methods, co-encapsulation strategies, and consumer acceptance studies to facilitate the commercialization of DPP-IV inhibitory peptides as functional food ingredients. By addressing these key areas, this review aims to provide a theoretical foundation and practical guidance for the development of DPP-IV inhibitory peptides, paving the way for their broader application in the prevention and management of type 2 diabetes. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

16 pages, 2620 KiB  
Article
Bioactive Peptides in Greek Goat Colostrum: Relevance to Human Metabolism
by Maria Louiza Petre, Anna Nefeli Kontouli Pertesi, Olympia Eirini Boulioglou, Eleana Sarantidi, Artemis G. Korovesi, Athina Kozei, Angeliki I. Katsafadou, George T. Tsangaris, Antonia Trichopoulou and Athanasios K. Anagnostopoulos
Foods 2024, 13(23), 3949; https://doi.org/10.3390/foods13233949 - 6 Dec 2024
Cited by 3 | Viewed by 1481
Abstract
Colostrum is essential for the survival and development of newborn mammals. This primary source of nourishment during the first days of infant life is rich in functional components conductive to the enhancement of neonate immunity and growth. Compared with mature milk, a higher [...] Read more.
Colostrum is essential for the survival and development of newborn mammals. This primary source of nourishment during the first days of infant life is rich in functional components conductive to the enhancement of neonate immunity and growth. Compared with mature milk, a higher protein and peptide content is observed in colostrum, whilst it is low in fat and carbohydrates. The functional properties of colostrum are closely linked to the release of bioactive peptides during the gastrointestinal digestion of colostrum proteins. Our study aimed to comprehensively analyze the whey proteome of colostrum from indigenous Greek goats and to examine the influence of bioactive peptides released during digestion on human metabolism. Colostrum and mature milk samples from healthy ewes were subjected to nanoLC-MS/MS analysis, revealing differentially expressed proteins. These proteins were functionally characterized and subjected to in silico digestion. Using machine learning models, we classified the peptide functional groups, while molecular docking assessed the binding affinity of the proposed angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPPIV)-inhibitory peptides to their target molecules. A total of 898 proteins were identified in colostrum, 40 of which were overexpressed compared with mature milk. The enzymatic cleavage of upregulated proteins by key gastrointestinal tract proteases and the downstream analysis of peptide sequences identified 117 peptides predicted (with >80% confidence) to impact metabolism, primarily through modulation of the renin–angiotensin system, insulin secretion, and redox pathways. This work advances our understanding of dietary bioactive peptides and their relevance to human metabolism, highlighting the potential health benefits of colostrum consumption. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 3797 KiB  
Article
In Silico Hydrolysis of Lupin (Lupinus angustifolius L.) Conglutins with Plant Proteases Releases Antihypertensive and Antidiabetic Peptides That Are Bioavailable, Non-Toxic, and Gastrointestinal Digestion Stable
by Jesús Gilberto Arámburo-Gálvez, Raúl Tinoco-Narez-Gil, José Antonio Mora-Melgem, Cesar Antonio Sánchez-Cárdenas, Martina Hilda Gracia-Valenzuela, Lilian Karem Flores-Mendoza, Oscar Gerardo Figueroa-Salcido and Noé Ontiveros
Int. J. Mol. Sci. 2024, 25(23), 12866; https://doi.org/10.3390/ijms252312866 - 29 Nov 2024
Viewed by 1329
Abstract
Lupin (Lupinus angustifolius L.) proteins are potential sources of bioactive peptides (LBPs) that can inhibit dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE-I) activity. However, the capacity of different enzymes to release LBPs, the pharmacokinetic and bioactivities of the peptides released, [...] Read more.
Lupin (Lupinus angustifolius L.) proteins are potential sources of bioactive peptides (LBPs) that can inhibit dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE-I) activity. However, the capacity of different enzymes to release LBPs, the pharmacokinetic and bioactivities of the peptides released, and their binding affinities with the active sites of DPP-IV and ECA-I are topics scarcely addressed. Therefore, we used in silico hydrolysis (BIOPEP-UWM platform) with various enzymes to predict the release of LBPs. Among the bioactive peptides identified in lupin proteins (n = 4813), 2062 and 1558 had DPP-IV and ACE-I inhibitory activity, respectively. Ficin, bromelain, and papain released the highest proportion of ACE-I (n = 433, 411, and 379, respectively) and DPP-IV (n = 556, 544, and 596, respectively) inhibitory peptides. LBPs with favorable pharmacokinetics and gastrointestinal stability tightly interacted with the active sites of ACE-I (–5.6 to –8.9 kcal/mol) and DPP-IV (–5.4 to –7.6 kcal/mol). Papain generated the most bioavailable LBPs (n = 459) with ACE-I (n = 223) and DPP-IV (n = 412) inhibitory activity. These peptides were non-toxic and gastrointestinal digestion stable. Notably, papain-based hydrolysis released some LBPs (n = 270) that inhibited both ACE-I and DPP-IV. Plant protease-based hydrolysis is a promising approach for producing lupin hydrolysates with ACE-I and DPP-IV inhibitory activities. Full article
Show Figures

Figure 1

16 pages, 3455 KiB  
Article
Phytochemical Compounds, and Antioxidant, Anti-Hyperglycemic, and Anti-Inflammatory Activity of Microencapsulated Garambullo (Myrtillocactus geometrizans) Extract During In Vitro Digestion and Storage
by Isay Ruíz-Aguilar, Ofelia Gabriela Meza-Márquez, Guillermo Osorio-Revilla, Tzayhri Gallardo-Velázquez and Oswaldo Arturo Ramos-Monroy
Processes 2024, 12(11), 2526; https://doi.org/10.3390/pr12112526 - 13 Nov 2024
Viewed by 935
Abstract
Garambullo fruit (Myrtillocactus geometrizans) is a rich source of phytochemical compounds that exhibit antioxidant, anti-hyperglycemic, and anti-inflammatory activities, helping to prevent diseases associated with oxidative stress. The objective of this study was to evaluate phenolic compound (PC), betalain (BL), betaxanthin (BX), [...] Read more.
Garambullo fruit (Myrtillocactus geometrizans) is a rich source of phytochemical compounds that exhibit antioxidant, anti-hyperglycemic, and anti-inflammatory activities, helping to prevent diseases associated with oxidative stress. The objective of this study was to evaluate phenolic compound (PC), betalain (BL), betaxanthin (BX), and betacyanin (BC) contents, and in vitro biological activities (antioxidant, anti-hyperglycemic, and anti-inflammatory) in microencapsulated garambullo extract during in vitro gastrointestinal digestion and storage. Microencapsulation was performed using spray drying. Arabic Gum (GA, 10% in feed solution) and soy protein isolate (SPI, 7% in feed solution) were used as wall materials. After in vitro digestion, the microcapsules (GA, SPI) exhibited higher bioaccessibility (p ≤ 0.05) of PC, BL, BX, and BC, and higher antioxidant activity (AA), compared to the non-encapsulated extract. Both microcapsules showed bioaccessibility in anti-hyperglycemic activity: α-amylase (GA: 90.58%, SPI: 84.73%), α-glucosidase (GA: 76.93%, SPI: 68.17%), and Dipeptidyl peptidase-4 (DPP-4) (GA: 52.81%, SPI: 53.03%); and in anti-inflammatory activity: cyclooxygenase-1 (COX-1) (GA: 78.14%, SPI: 77.90%) and cyclooxygenase-2 (COX-2) (GA: 82.77%, SPI: 84.99%). During storage, both microcapsules showed a similar trend with a significant decrease (p ≤ 0.05) in PC (GA: 39.29%, SPI: 39.34%), BL (GA: 21.17%, SPI: 21.62%), BX (GA: 23.89%, SPI: 23.45%), BC (GA: 19.55%, SPI: 19.84%), and AA (GA: 41.59%, SPI: 42.51%) after 60 days at 30 °C. Both microcapsules retained anti-hyperglycemic activity evaluated by the inhibitory activity of α-amylase (GA: 68.84%, SPI: 70.18%), α-glucosidase (GA: 59.93%, SPI: 58.69%), and DPP-4 (GA: 52.81%, SPI: 53.01%), and anti-inflammatory activity evaluated by the inhibitory activity of COX-1 (GA: 82.18%, SPI: 82.81%) and COX-2 (GA: 81.11%, SPI: 81.08%). Microencapsulation protected the phytochemical compounds and in vitro biological activities by allowing controlled release during in vitro digestion compared to the non-encapsulated extract. However, after 60 days storage at 30 °C, 60% of PC and AA, 80% of BL, BX, and BC, and 20–45% of the anti-hyperglycemic and anti-inflammatory activity were lost. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

15 pages, 4010 KiB  
Article
Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate
by Wei-Ting Hung, Christoper Caesar Yudho Sutopo, Tunjung Mahatmanto, Mei-Li Wu and Jue-Liang Hsu
Biomedicines 2024, 12(11), 2452; https://doi.org/10.3390/biomedicines12112452 - 25 Oct 2024
Cited by 3 | Viewed by 1720
Abstract
Background/Objectives: Type 2 diabetes (T2D) has become a critical global health issue, with an increasing prevalence that contributes to significant morbidity and mortality. Inhibiting dipeptidyl peptidase-IV (DPP4) is a promising strategy for managing T2D. This study aimed to explore the DPP4 inhibitory peptide [...] Read more.
Background/Objectives: Type 2 diabetes (T2D) has become a critical global health issue, with an increasing prevalence that contributes to significant morbidity and mortality. Inhibiting dipeptidyl peptidase-IV (DPP4) is a promising strategy for managing T2D. This study aimed to explore the DPP4 inhibitory peptide derived from bitter melon seed protein (BMSP) hydrolysate. Methods: Reversed-phase high-performance liquid chromatography (RP-HPLC) was utilized to fractionate the hydrolysate. Peptide in the highest activity fraction was analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Peptide synthetic was used for further characterizations, such as bioactivity exploration, inhibition mechanism, molecular docking, and peptide stability against in vitro simulated gastrointestinal (SGI) digestion. Results: The BMSP hydrolysate was digested with gastrointestinal proteases (GP) and assessed for DPP4 inhibitory activity, yielding an IC50 of 1448 ± 105 μg/mL. Following RP-HPLC fractionation, MPHW (MW4) and VPSGAPF (VF7) were identified from fraction F8 with DPP4 IC50 values of 128.0 ± 1.3 µM and 150.6 ± 3.4 µM, respectively. Additionally, MW4 exhibited potential antihypertensive effects through ACE inhibition with an IC50 of 172.2 ± 10.6 µM. The inhibitory kinetics and molecular docking simulations indicated that both MW4 and VF7 were competitive inhibitors of DPP4, while MW4 was also a competitive inhibitor of ACE. Importantly, both peptides remained stable during simulated gastrointestinal digestion, suggesting their resistance to human digestive processes and their capacity to maintain biological activity. Conclusions: The findings suggest that BMSP-GP hydrolysate may have potential in terms of the development of health foods or therapeutic agents. However, in vivo studies are also essential for further confirmation of efficacy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

31 pages, 2280 KiB  
Review
Bioactive Peptides from Corn (Zea mays L.) with the Potential to Decrease the Risk of Developing Non-Communicable Chronic Diseases: In Silico Evaluation
by Caroline Cagnin, Bianca de Fátima Garcia, Thais de Souza Rocha and Sandra Helena Prudencio
Biology 2024, 13(10), 772; https://doi.org/10.3390/biology13100772 - 27 Sep 2024
Cited by 2 | Viewed by 2443
Abstract
Studies have shown that corn (Zea mays L.) proteins, mainly α-zein, have the potential to act on therapeutic targets related to non-communicable chronic diseases, such as high blood pressure and type 2 diabetes. Enzymatic hydrolysis of proteins present in foods can result [...] Read more.
Studies have shown that corn (Zea mays L.) proteins, mainly α-zein, have the potential to act on therapeutic targets related to non-communicable chronic diseases, such as high blood pressure and type 2 diabetes. Enzymatic hydrolysis of proteins present in foods can result in a great diversity of peptides with different structures and possible bioactivities. A review of recent scientific research papers was performed to show evidence of the bioactive properties of corn peptides by in vitro assays. The α-zein amino acid sequences were identified in the UniProtKB protein database and then analyzed in the BIOPEP database to simulate enzymatic digestion and verify the potential biological action of the resulting peptides. The peptides found in the BIOPEP database were categorized according to the probability of presenting biological action using the PeptideRanker database. The aim was to use existing data to identify in silico the potential for obtaining biologically active peptides from α-zein, the main storage protein of corn. The analysis showed that the majority of peptide fragments were related to the inhibition of angiotensin-converting enzyme, followed by the inhibition of dipeptidyl peptidase IV and dipeptidyl peptidase III. Many drugs used to treat high blood pressure and type 2 diabetes work by inhibiting these enzymes, suggesting that corn peptides could be potential alternative agents. In vitro studies found that the primary bioactivity observed was antioxidative action. Both in vitro and in silico approaches are valuable for evaluating the bioactive properties resulting from protein hydrolysis, such as those found in α-zein. However, conducting in vitro studies based on prior in silico evaluation can be more efficient and cost-effective. Full article
Show Figures

Figure 1

13 pages, 1567 KiB  
Article
Influence of In Vitro Digestion on Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Activity of Plant-Protein Hydrolysates Obtained from Agro-Industrial By-Products
by Raúl Pérez-Gálvez, Carmen Berraquero-García, J. Lizeth Ospina-Quiroga, F. Javier Espejo-Carpio, M. Carmen Almécija, Antonio Guadix, Pedro J. García-Moreno and Emilia M. Guadix
Foods 2024, 13(17), 2691; https://doi.org/10.3390/foods13172691 - 26 Aug 2024
Cited by 3 | Viewed by 1389
Abstract
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of [...] Read more.
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of simulated gastrointestinal digestion on the DPP-IV inhibitory activity of all the hydrolysates was evaluated. Overall, the lowest values of IC50 (1.02 ± 0.09 – 1.24 ± 0.19 mg protein/mL) were observed for the hydrolysates with a high proportion of short-chain [< 1 kDa] peptides (i.e., olive seed, sunflower seed, and lupin) or high content of proline (i.e., rapeseed). Contrarily, the IC50 of the pea and potato hydrolysates was significantly higher (1.50 ± 0.13 – 1.93 ± 0.13 mg protein/mL). In vitro digestion led to an increase in peptides <1 kDa for almost all hydrolysates (except olive and sunflower seed meals), which was noticeable for rapeseed, pea, and potato hydrolysates. Digestion did not significantly modify the DPP-IV inhibitory activity of olive, sunflower, rapeseed, and potato hydrolysates, whereas a significant decrease in IC50 value was obtained for pea hydrolysate and a significant increase in IC50 was obtained for lupin hydrolysate. Thus, this work shows the potential of agro-industrial by-products for the production of protein hydrolysates exhibiting DPP-IV inhibition. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

10 pages, 1708 KiB  
Article
Exploration of Protease Resources in the Gut of Omnivorous Gryllotalpa orientalis (Orthoptera: Gryllotalpidae)
by Xiang Zheng, Fangtong Wu, Lu Zhao, He Zhou, Zhijun Zhou, Zhenhua Jia and Fuming Shi
Biology 2024, 13(9), 650; https://doi.org/10.3390/biology13090650 - 23 Aug 2024
Viewed by 1105
Abstract
An insect’s gut microbiome is an essential “organ” in their life cycle, playing a crucial role by aiding food digestion and nutrient absorption. This study employed both culture-independent and culture-dependent methods to explore the protease resources present in the gut of the omnivorous [...] Read more.
An insect’s gut microbiome is an essential “organ” in their life cycle, playing a crucial role by aiding food digestion and nutrient absorption. This study employed both culture-independent and culture-dependent methods to explore the protease resources present in the gut of the omnivorous insect Gryllotalpa orientalis. The findings revealed that the gut extract of G. orientalis contained a diverse array of proteases, including cysteine proteases, pepsin, serine proteases, and trypsin, as well as some unidentified proteases. Furthermore, the protease gene htpX, derived from gut bacterium Priestia megaterium DX-3, has been cloned and recombinantly expressed. The recombinant DX-3-htpX protease exhibited a 61.9-fold increase in fermentation level compared to the DX-3 protease. This protease was characterized as a neutral, heat-resistant metalloprotease with an M48 peptidase domain, and it was observed that the binding of Ca2+ to the recombinant protease resulted in the formation of the largest active pocket. This study provides technical support for further development and utilization of functional protein resources in insect gut. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

27 pages, 3207 KiB  
Article
First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors
by Anna Shestakova, Artem Fatkulin, Daria Surkova, Alexander Osmolovskiy and Elizaveta Popova
Int. J. Mol. Sci. 2024, 25(13), 7121; https://doi.org/10.3390/ijms25137121 - 28 Jun 2024
Cited by 1 | Viewed by 1656
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism’s proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction [...] Read more.
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism’s proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated. Full article
(This article belongs to the Special Issue Advances in Proteolysis and Proteolytic Enzymes)
Show Figures

Figure 1

16 pages, 3410 KiB  
Article
Transcriptome Analysis of Juvenile Black Rockfish Sebastes schlegelii under Air Exposure Stress
by Changlin Liu, Zheng Zhang, Shouyong Wei, Wenjie Xiao, Chao Zhao, Yue Wang and Liguo Yang
Fishes 2024, 9(6), 239; https://doi.org/10.3390/fishes9060239 - 19 Jun 2024
Cited by 1 | Viewed by 1851
Abstract
The study aimed to uncover the molecular response of juvenile Sebastes schlegelii to air exposure stress by identifying differentially expressed genes (DEGs) that may underlie their anti-stress mechanisms. Juvenile Sebastes schlegelii were subjected to varying durations of air exposure stress. The total RNA [...] Read more.
The study aimed to uncover the molecular response of juvenile Sebastes schlegelii to air exposure stress by identifying differentially expressed genes (DEGs) that may underlie their anti-stress mechanisms. Juvenile Sebastes schlegelii were subjected to varying durations of air exposure stress. The total RNA was extracted from whole tissues and sequenced using the Illumina NovaSeq 6000 platform. The transcriptome data were analyzed to identify DEGs through pairwise comparisons across a control group and two experimental groups exposed to air for 40 s and 2 min 30 s, respectively. The comparative DEG analysis revealed a significant number of transcripts responding to air exposure stress. Specifically, 5173 DEGs were identified in the 40 s exposure group (BS) compared to the control (BC), 6742 DEGs in the 2 min 30 s exposure group (BD) compared to the control (BC), and 2653 DEGs when comparing the BD to the BS group. Notably, Gene Ontology (GO) analysis showed an enrichment of DEGs associated with peptidase activity and extracellular regions, suggesting a role in the organism’s stress response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis pointed to the involvement of metabolic pathways, which are crucial for energy management under stress. The upregulation of protein digestion and absorption pathways may indicate a physiological adaptation to nutrient scarcity during stress. Additionally, the identification of antibiotic biosynthesis pathways implies a potential role in combating stress-induced infections or damage. The identified DEGs and enriched pathways provide insights into the complex anti-stress response mechanisms in juvenile Sebastes schlegelii. The enrichment of peptidase activity and extracellular region-related genes may reflect the initiation of tissue repair and immune response following air exposure. The connection between protein digestion and absorption pathways and anti-stress capabilities could be interpreted as a metabolic readjustment to prioritize energy-efficient processes and nutrient assimilation during stress. The role of antibiotic biosynthesis pathways suggests a defensive mechanism against oxidative stress or microbial invasion that might occur with air exposure. Full article
(This article belongs to the Special Issue Physiological Response Mechanisms of Aquatic Animals to Stress)
Show Figures

Figure 1

20 pages, 2332 KiB  
Article
Black Goji Berry (Lycium ruthenicum) Juice Fermented with Lactobacillus rhamnosus GG Enhances Inhibitory Activity against Dipeptidyl Peptidase-IV and Key Steps of Lipid Digestion and Absorption
by Kritmongkhon Kamonsuwan, Vernabelle Balmori, Marisa Marnpae, Charoonsri Chusak, Thavaree Thilavech, Suvimol Charoensiddhi, Scott Smid and Sirichai Adisakwattana
Antioxidants 2024, 13(6), 740; https://doi.org/10.3390/antiox13060740 - 19 Jun 2024
Cited by 9 | Viewed by 3034
Abstract
With the global increase in hyperglycemia and hyperlipidemia, there is an urgent need to explore dietary interventions targeting the inhibition of dipeptidyl peptidase-IV (DPP-IV) and lipid digestion and absorption. This study investigated how Lactobacillus rhamnosus GG (LGG) affects various aspects of black goji [...] Read more.
With the global increase in hyperglycemia and hyperlipidemia, there is an urgent need to explore dietary interventions targeting the inhibition of dipeptidyl peptidase-IV (DPP-IV) and lipid digestion and absorption. This study investigated how Lactobacillus rhamnosus GG (LGG) affects various aspects of black goji berry (BGB) (Lycium ruthenicum Murr.) juice, including changes in physicochemical and functional properties, as well as microbiological and sensory attributes. Throughout the fermentation process with 2.5–10% (w/v) BGB, significantly improved probiotic viability, lactic acid production, and decreased sugar content. While total flavonoids increase, anthocyanins decrease, with no discernible change in antioxidant activities. Metabolite profiling reveals elevated phenolic compounds post-fermentation. Regarding the inhibition of lipid digestion and absorption, fermented BGB exhibits improved bile acid binding, and disrupted cholesterol micellization by approximately threefold compared to non-fermented BGB, while also increasing pancreatic lipase inhibitory activity. Furthermore, a decrease in cholesterol uptake was observed in Caco-2 cells treated with fermented BGB (0.5 mg/mL), with a maximum reduction of 16.94%. Fermented BGB also shows more potent DPP-IV inhibition. Sensory attributes are significantly improved in fermented BGB samples. These findings highlight the potential of BGB as a bioactive resource and a promising non-dairy carrier for LGG, enhancing its anti-hyperglycemic and anti-hyperlipidemic properties. Full article
(This article belongs to the Special Issue Antioxidant Activity of Fermented Foods and Food Microorganisms)
Show Figures

Figure 1

Back to TopTop