Phytochemical Compounds, and Antioxidant, Anti-Hyperglycemic, and Anti-Inflammatory Activity of Microencapsulated Garambullo (Myrtillocactus geometrizans) Extract During In Vitro Digestion and Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Samples
2.3. Storage and Freezing
2.4. Extraction of Phytochemical Compounds
2.5. Analytical Methods
2.5.1. Quantification of PC
2.5.2. Quantification of BL, BX, and BC
2.5.3. In Vitro Biological Activities
Antioxidant Activity (AA)
Anti-Hyperglycemic Activity
Anti-Inflammatory Activity
2.6. Microencapsulation
2.7. Characterization of the Microcapsules
2.7.1. Moisture Content and Water Activity (aw)
2.7.2. Retention Efficiency
2.7.3. Particle Size Distribution
2.7.4. Morphology of Microcapsules
2.8. Simulated Gastrointestinal Conditions
2.9. Phytochemical Compounds and In Vitro Biological Activities During Storage
2.10. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Compounds and In Vitro Biological Activities of Garambullo Extract
3.2. Microencapsulation by Spray Drying with GA and SPI
3.2.1. Moisture Content and Water Activity (aw) of Microcapsules
3.2.2. Content and Retention (%) of Phytochemical Compounds of Microcapsules
3.2.3. Retention (%) and Content of Antioxidant Activity and Inhibition (%) of In Vitro Biological Activities of Microcapsules
3.2.4. Particle Size Distribution of Microcapsules
3.2.5. Morphology of Microcapsules
3.2.6. Bioaccessibility of Phytochemical Compounds and In Vitro Biological Activities Under Simulated Gastrointestinal Conditions
3.2.7. Retention (%) of Phytochemical Compounds and In Vitro Biological Activities During Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SEMARNAT (Secretaría de Agricultura y Desarrollo Rural). El Garambullo una Oportunidad Para Prosperar. Available online: https://www.gob.mx/agricultura/articulos/el-garambullo-una-oportunidad-para-prosperar (accessed on 1 September 2024).
- Ramírez-Rodríguez, Y.; Martínez Huélamo, M.; Pedraza Cheverri, J.; Ramírez, V.; Martínez Tagueña, N.; Tujillo, J. Ethnobotanical, nutritional and medicinal properties of Mexican drylands Cactaceae Fruits: Recent findings and research opportunities. Food Chem. 2020, 312, 126073–126086. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-Camacho, R.; Martínez-Samayoa, P.; Ramos-Gómez, M.; Guzmán, H.; Salgado, L.M. Antidiabetic and renal protective properties of berrycactus fruit (Myrtillocactus geometrizans). J. Med. Food. 2015, 18, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Sánchez, M.; García-Cayuela, T.; Gómez-Maqueo, A.; García, H.; Cano, M.P. In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem. 2021, 342, 128087–128098. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Hernández, M.G.; Guevara-Lara, F.; Reynoso-Camacho, R.; Guzmán-Maldonado, S.H. Effects of madurity stage and storage on cactus Berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties. Food Chem. 2011, 129, 1744–1750. [Google Scholar] [CrossRef]
- Gómez-Espinoza, D.; Ríos-Fuentes, B.; Aguirre-Mancilla, C.L.; Villaseñor-Ortega, F.; Pérez-Pérez, M.C.I. Microencapsulation of betalains obtained from garambullo fruit (Myrtillocactus geometrizans) by spray drying. Rev. Mex. Ing. Quim. 2024, 23, 24247–24258. [Google Scholar] [CrossRef]
- Rios-Aguirre, S.; Gil-Garzón, M.A. Microencapsulation of Bioactive Compounds in Diverse Matrices by Spray Drying: A Literature Review. TecnoLógicas 2021, 24, e1836–e1846. [Google Scholar] [CrossRef]
- García-Barrera, F.A.; Reynoso, C.R.; González de Mejía, E. Stability of betalains extracted from garambullo (Myrtillocactus geometrizans). Food Sci. Technol. Int. 1998, 4, 115–120. [Google Scholar] [CrossRef]
- Vázquez-Cruz, M.A.; Jiménez-García, S.N.; Torres-Pacheco, I.; Guzmán-Maldonado, S.H.; Guevara-González, R.G.; Miranda-López, R. Effect of maturity stage and storage on flavor compounds and sensory description of berrycactus (Myrtillocactus geometrizans). J. Food Sci. 2012, 77, C366–C373. [Google Scholar]
- Sánchez-Recillas, E.; Campos-Vega, R.; Pérez-Ramírez, I.F.; Luzardo-Ocampo, I.; Cuéllar-Núñez, M.L.; Vergara-Castañeda, H.A. Garambullo (Myrtillocactus geometrizans): Effect of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of phytochemicals. Food Funct. 2022, 13, 4699–4713. [Google Scholar] [CrossRef]
- Santiago-Mora, P.D.; Cardador-Martínez, A.; Téllez-Pérez, C.; Montejano-Gaitan, J.G.; Martin del Campo, S.T. In-vitro antioxidant capacity and bioactive compounds preservation post-drying on berrycactus (Myrtillocactus geometrizans). J. Food Res. 2017, 6, 121–133. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic and reagents. AJEV 1965, 16, 144–158. [Google Scholar] [CrossRef]
- MoBhammer, M.R.; Stinzing, F.C.; Carle, R. Colour studies on fruit juice blends from Opuntia and Hylocereus cacti and betalain-containing model solution derived therefrom. Food Res. Int. 2005, 38, 975–981. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical methods to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J. Enzym. Inhib. Med. Chem. 2009, 24, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complement Altern. Med. 2019, 19, 74. [Google Scholar] [CrossRef]
- Roa-Tort, A.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Ramos-Monroy, O.A. Extraction and microencapsulation of phytochemical compounds from mango peel (Mangifera indica L.) var. “Kent” and assessment of bioaccessibility through in vitro digestion. Processes 2024, 12, 154. [Google Scholar] [CrossRef]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Recio, I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Bustamante, A.; Masson, L.; Velasco, J.; del Valle, J.M.; Robert, P. Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha tocopherol. Food Chem. 2016, 190, 1013–1021. [Google Scholar] [CrossRef]
- Oboh, H.A.; Obayiuwana, O.A.; Aihie, E.O.; Iyayi, J.I.; Udoh, E.J. Beetroot (Beta vulgaris) juice inhibits key carbohydrate metabolizing enzymes associated with type II diabetes. Nig. J. Basic Appl. Sci. 2020, 28, 1–6. [Google Scholar]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Hernández-Ledesma, B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J. Funct. Foods 2017, 35, 531–539. [Google Scholar] [CrossRef]
- Miyuki, K.; Yamane, T.; Nakano, Y.; Nakagaki, T.; Ohkubo, I.; Ariga, H. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice. BBRC 2015, 465, 433–436. [Google Scholar]
- Chakrabarti, R.; Bhavtaran, S.; Narendra, P.; Varghese, N.; Vanchhawng, L.; Mohamed, H.; Thirumurugan, K. Dipeptidyl Peptidase- IV Inhibitory Activity of Berberis aristata. J. Nat. Prod. 2011, 4, 158–163. [Google Scholar]
- Malik, A.; Aziz, G.M.; Adhiah, A.H. The Potential of some Plant Extracts as Radical Scavengers and Dipeptidyl Peptidase-4 Inhibitors. Baghdad Sci. J. 2019, 16, 0162. [Google Scholar]
- Kazeem, M.; Bankole, H.; Ogunrinola, O.; Wusu, A.; Kappo, A. Functional foods with dipeptidyl peptidase-4 inhibitory potential and management of type 2 diabetes: A review. Food Front. 2021, 2, 153–162. [Google Scholar] [CrossRef]
- Salazar, E.; Orellana, A.; Pimentel, E. Inhibidores específicos de Cox-2: Riesgo para el paciente Cardiópata? Acta Odontol. Venez. 2004, 42, 58–59. [Google Scholar]
- Allegra, M.; Tesoriere, L.; Livrea, M.A. Betalain inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins. Free Rad. Res. 2007, 41, 335–341. [Google Scholar] [CrossRef]
- Allegra, M.; Ianaro, A.; Tersigni, M.; Panza, E.; Tesoriere, L.; Livrea, M.A. Indicaxanthin from cactus pear fruit exerts anti-inflammatory effects in carrageenin-induced rat pleurisy. J. Nutr. 2014, 144, 185–192. [Google Scholar] [CrossRef]
- Shofinita, D.; Langrish, T.A.G. Spray drying of orange peel extracts: Yield, total phenolic content and economic evaluation. J. Food Eng. 2014, 130, 31–42. [Google Scholar] [CrossRef]
- Jansen-Alves, C.; Fernandes, K.F.; Crizel-Cardozo, M.M.; Krumreich, F.D.; Borges, C.D.; Zambiazi, R.C. Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems. Food Bioprocess Technol. 2018, 11, 1422–1436. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Chen, X.; Quek, Y.S. Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. J. Food Eng. 2020, 269, 109744–109754. [Google Scholar] [CrossRef]
- Hussain, S.A.; Hameed, A.; Nazir, Y.; Naz, T.; Wu, Y.; Suleria, H.A.R.; Song, Y. Microencapsulation and the Characterization of Polyherbal Formulation (PHF) Rich in Natural Polyphenolic Compounds. Nutrients 2018, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Damián, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Téllez-Medina, D.I.; Ramos-Monroy, O.A. Microencapsulation of red banana peel extract and bioaccessibility assessment by in vitro digestion. Processes 2022, 10, 768. [Google Scholar] [CrossRef]
- Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.; Calderas, F.; González-Laredo, R.; Rocha-Guzmán, N.; Ochoa-Martínez, L.; Bernand-Bernand, M. Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT-Food Sci. Technol. 2015, 64, 571–577. [Google Scholar] [CrossRef]
- Rocha, J.; de Barros, F.; Perrone, T.; Viana, K.; Tavares, G.; Stephani, R.; Stringheta, P. Microencapsulation by atomization of the mixture of phenolic extracts. Powder Technol. 2019, 343, 317–325. [Google Scholar] [CrossRef]
- Ketnawa, S.; Suwannachot, J.; Ogawa, Y. In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chem. 2020, 311, 125885–125898. [Google Scholar] [CrossRef]
- Aldana, A.S.; Sandoval, E.R.; Aponte, A.A. Encapsulación de aditivos para la industria de alimentos. Ing. Comp. 2024, 5, 73–83. [Google Scholar]
Parameter | Concentrated Extract |
---|---|
PC (mg GAE/100 g dw) | 1423.81 ± 1.68 |
BL (mg/100 g dw) | 94.06 ± 1.51 |
BX (mg IE/100 g dw) | 38.89 ± 1.39 |
BC (mg BE/100 g dw) | 55.18 ± 1.02 |
In vitro biological activities | |
AA (μmol TE/100 g dw) | 287,649.69 ± 11.47 |
α-amylase (% Inhibition) | 1.22 ± 0.04 |
α-glucosidase (% Inhibition) | 3.81 ± 0.15 |
DPP-4 (% Inhibition) | 23.21 ± 0.61 |
COX-1 (% Inhibition) | 56.65 ± 0.25 |
COX-2 (% Inhibition) | 59.02 ± 0.98 |
Microcapsules | Sauter Diameter (D[2]) μm | Equivalent Sphere Diameter (D[4,3]) μm | Span |
---|---|---|---|
GA | 15.61 ± 0.26 b | 25.04 ± 0.27 b | 1.31 b |
SPI | 17.25 ± 0.33 a | 27.20 ± 0.48 a | 1.41 a |
In Vitro Biological Activities | %Retention | |
---|---|---|
GA | SPI | |
Anti-hyperglycemic activity | ||
α-amylase | 68.84 ± 0.29 a A | 70.18 ± 0.38 a A |
α-glucosidase | 59.93 ± 0.15 a B | 58.69 ± 0.67 a B |
DPP-4 | 52.81 ± 0.27 a C | 53.01 ± 0.54 a C |
Anti-inflammatory activity | ||
COX-1 | 82.18 ± 0.23 a A’ | 82.81 ± 0.21 a A’ |
COX-2 | 81.11 ± 0.29 a A’ | 81.08 ± 0.28 a A’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz-Aguilar, I.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Ramos-Monroy, O.A. Phytochemical Compounds, and Antioxidant, Anti-Hyperglycemic, and Anti-Inflammatory Activity of Microencapsulated Garambullo (Myrtillocactus geometrizans) Extract During In Vitro Digestion and Storage. Processes 2024, 12, 2526. https://doi.org/10.3390/pr12112526
Ruíz-Aguilar I, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T, Ramos-Monroy OA. Phytochemical Compounds, and Antioxidant, Anti-Hyperglycemic, and Anti-Inflammatory Activity of Microencapsulated Garambullo (Myrtillocactus geometrizans) Extract During In Vitro Digestion and Storage. Processes. 2024; 12(11):2526. https://doi.org/10.3390/pr12112526
Chicago/Turabian StyleRuíz-Aguilar, Isay, Ofelia Gabriela Meza-Márquez, Guillermo Osorio-Revilla, Tzayhri Gallardo-Velázquez, and Oswaldo Arturo Ramos-Monroy. 2024. "Phytochemical Compounds, and Antioxidant, Anti-Hyperglycemic, and Anti-Inflammatory Activity of Microencapsulated Garambullo (Myrtillocactus geometrizans) Extract During In Vitro Digestion and Storage" Processes 12, no. 11: 2526. https://doi.org/10.3390/pr12112526
APA StyleRuíz-Aguilar, I., Meza-Márquez, O. G., Osorio-Revilla, G., Gallardo-Velázquez, T., & Ramos-Monroy, O. A. (2024). Phytochemical Compounds, and Antioxidant, Anti-Hyperglycemic, and Anti-Inflammatory Activity of Microencapsulated Garambullo (Myrtillocactus geometrizans) Extract During In Vitro Digestion and Storage. Processes, 12(11), 2526. https://doi.org/10.3390/pr12112526