Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bitter Melon Seed Protein (BMSP) Extraction
2.3. Bitter Melon Seed Protein Gastrointestinal Proteases Hydrolysate Preparation
2.4. Determination of DPP4 Inhibitory Activity and IC50
2.5. Determination of ACE Inhibitory Activity and IC50
2.6. Bioassay-Guided Fractionation of BMSP-GP Hydrolysate
2.7. HR-MS/MS Analysis for Peptide Identification Assisted by De Novo Sequencing and Database Search
2.8. Synthetic Peptides Preparation
2.9. Investigation of Peptide Inhibition Mechanism Toward DPP4 and ACE
2.10. Molecular Docking Simulation of Peptide Toward DPP4 and ACE
2.11. Stability of MW4 and VF7 Against Simulated Gastrointestinal (SGI) Digestion
2.12. Statistical Analysis
3. Results
3.1. DPP4 Inhibitory Assay of Bitter Melon Seed Protein (BMSP) Hydrolysate
3.2. Fractionation of BMSP-GP
3.3. Peptide Sequence Identification
3.4. The Bioactivity Confirmation of Peptide Candidates from the Fraction F8
3.5. Inhibitory Mechanism of MW4 Toward ACE and DPP4 Along with VF7 Toward DPP4
3.6. Intermolecular Interaction Study of MW4 and VF7 Toward DPP4 and ACE Using Molecular Docking Simulation
3.7. In Vitro Simulated Gastrointestinal (SGI) Digestion Stability of MW4 and VF7
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Kumar, A.; Gangwar, R.; Ahmad Zargar, A.; Kumar, R.; Sharma, A. Prevalence of diabetes in india: A review of idf diabetes atlas 10th edition. Curr. Diabetes Rev. 2024, 20, 105–114. [Google Scholar] [CrossRef]
- Karagiannis, T.; Boura, P.; Tsapas, A. Safety of dipeptidyl peptidase 4 inhibitors: A perspective review. Ther. Adv. Drug Saf. 2014, 5, 138–146. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, T.-H.; Sun, C.-C.; Chen, J.-Y.; Chang, S.-S.; Yeung, L.; Tsai, Y.-W. Dipeptidyl peptidase-4 inhibitors and the risks of autoimmune diseases in type 2 diabetes mellitus patients in taiwan: A nationwide population-based cohort study. Acta Diabetol. 2020, 57, 1181–1192. [Google Scholar] [CrossRef]
- Zhou, X.-j.; Ding, L.; Liu, J.-X.; Su, L.-Q.; Dong, J.-J.; Liao, L. Efficacy and short-term side effects of sitagliptin, vildagliptin and saxagliptin in chinese diabetes: A randomized clinical trial. Endocr. Connect. 2019, 8, 318–325. [Google Scholar] [CrossRef]
- Choy, M.; Lam, S. Sitagliptin: A novel drug for the treatment of type 2 diabetes. Cardiol. Rev. 2007, 15, 264–271. [Google Scholar] [CrossRef]
- Lacroix, I.M.; Li-Chan, E.C. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes. Mol. Nutr. Food Res. 2014, 58, 61–78. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.-m.; Feng, Y.; Yu, S.; Li, Z.; Zhang, D.; Wang, C. Dpp-iv inhibitory peptides from coix seed prolamins: Release, identification, and analysis of the interaction between key residues and enzyme domains. J. Agric. Food Chem. 2023, 71, 14575–14592. [Google Scholar] [CrossRef]
- Zambrowicz, A.; Eckert, E.; Pokora, M.; Bobak, Ł.; Dąbrowska, A.; Szołtysik, M.; Trziszka, T.; Chrzanowska, J. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from asian pumpkin (Cucurbita ficifolia). RSC Adv. 2015, 5, 10460–10467. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, L.; Zhang, Y.; Sheng, N.-J.; Wang, Z.-K.; Wu, T.-Z.; Wang, X.-Z.; Wu, H. Rapid identification of dipeptidyl peptidase-iv (dpp-iv) inhibitory peptides from ruditapes philippinarum hydrolysate. Molecules 2017, 22, 1714. [Google Scholar] [CrossRef]
- Ferrannini, E.; Cushman, W.C. Diabetes and hypertension: The bad companions. Lancet 2012, 380, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, P.B.; Alvarenga, E.C.; Siqueira, P.D.; Paredes-Gamero, E.J.; Sabatini, R.A.; Morais, R.L.; Reis, R.I.; Santos, E.L.; Teixeira, L.G.; Casarini, D.E. Angiotensin ii binding to angiotensin i–converting enzyme triggers calcium signaling. Hypertension 2011, 57, 965–972. [Google Scholar] [CrossRef]
- FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr. 2004, 134, 980S–988S. [Google Scholar] [CrossRef]
- Marczak, E.D.; Usui, H.; Fujita, H.; Yang, Y.; Yokoo, M.; Lipkowski, A.W.; Yoshikawa, M. New antihypertensive peptides isolated from rapeseed. Peptides 2003, 24, 791–798. [Google Scholar] [CrossRef]
- Kheeree, N.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. Ace inhibitory peptides derived from de-fatted lemon basil seeds: Optimization, purification, identification, structure–activity relationship and molecular docking analysis. Food Funct. 2020, 11, 8161–8178. [Google Scholar] [CrossRef]
- Aondona, M.M.; Ikya, J.K.; Ukeyima, M.T.; Gborigo, T.w.J.; Aluko, R.E.; Girgih, A.T. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J. Food Biochem. 2021, 45, e13587. [Google Scholar] [CrossRef]
- Suleman, D.P.; Sutopo, C.C.Y.; Hsu, J.-L. Characterization of novel angiotensin-i converting enzyme inhibitory peptides derived from taiwan red quinoa (Chenopodium formosanum Koidz.) seed proteins using two sequential bioassay-guided fractionations. Med. Chem. Res. 2024, 33, 107–116. [Google Scholar] [CrossRef]
- Grover, J.; Yadav, S.; Vats, V. Medicinal plants of india with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef]
- Fuangchan, A.; Sonthisombat, P.; Seubnukarn, T.; Chanouan, R.; Chotchaisuwat, P.; Sirigulsatien, V.; Ingkaninan, K.; Plianbangchang, P.; Haines, S.T. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J. Ethnopharmacol. 2011, 134, 422–428. [Google Scholar] [CrossRef]
- Zeng, Y.; Guan, M.; Li, C.; Xu, L.; Zheng, Z.; Li, J.; Xue, Y. Bitter melon (Momordica charantia) attenuates atherosclerosis in apo-e knock-out mice possibly through reducing triglyceride and anti-inflammation. Lipids Health Dis. 2018, 17, 251. [Google Scholar] [CrossRef]
- Naik, M.; Natarajan, V.; Modupalli, N.; Thangaraj, S.; Rawson, A. Pulsed ultrasound assisted extraction of protein from defatted bitter melon seeds (Momardica charantia L.) meal: Kinetics and quality measurements. LWT—Food Sci. Technol. 2022, 155, 112997. [Google Scholar] [CrossRef]
- Hung, W.-T.; Sutopo, C.C.Y.; Wu, M.-L.; Hsu, J.-L. Discovery and characterization of a dual-function peptide derived from bitter gourd seed protein using two orthogonal bioassay-guided fractionations coupled with in silico analysis. Pharmaceuticals 2023, 16, 1629. [Google Scholar] [CrossRef] [PubMed]
- Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Protein. Bethesda (md): National Library of Medicine (USA), National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/protein/ (accessed on 3 July 2024).
- Shih, Y.-H.; Chen, F.-A.; Wang, L.-F.; Hsu, J.-L. Discovery and study of novel antihypertensive peptides derived from cassia obtusifolia seeds. J. Agric. Food Chem. 2019, 67, 7810–7820. [Google Scholar] [CrossRef]
- Hiramatsu, H.; Yamamoto, A.; Kyono, K.; Higashiyama, Y.; Fukushima, C.; Shima, H.; Sugiyama, S.; Inaka, K.; Shimizu, R. The Crystal Structure of Human Dipeptidyl Peptidase IV (Dppiv) Complex with Diprotin A; Walter de Gruyter: Berlin, Germany, 2004. [Google Scholar]
- Natesh, R.; Schwager, S.L.; Evans, H.R.; Sturrock, E.D.; Acharya, K.R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin i-converting enzyme. Biochemistry 2004, 43, 8718–8724. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, J. Bovine lactoferrin-derived ace inhibitory tripeptide lrp also shows antioxidative and anti-inflammatory activities in endothelial cells. J. Funct. Foods 2016, 25, 375–384. [Google Scholar] [CrossRef]
- Sutopo, C.C.Y.; Aznam, N.; Arianingrum, R.; Hsu, J.-L. Screening potential hypertensive peptides using two consecutive bioassay-guided spe fractionations and identification of an ace inhibitory peptide, dhstavw (dw7), derived from pearl garlic protein hydrolysate. Peptides 2023, 167, 171046. [Google Scholar] [CrossRef]
- Herraiz, T. Sample preparation and reversed phase-high performance liquid chromatography analysis of food-derived peptides. Anal. Chim. Acta 1997, 352, 119–139. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Ngamsuk, S.; Hsu, J.-L. Identification of dipeptidyl peptidase iv inhibitory peptides derived from gac seed protein hydrolysate using hydrophilic interaction liquid chromatography and reversed-phase high-performance liquid chromatography. Agric. Nat. Resour. 2022, 56, 847–856. [Google Scholar]
- Nongonierma, A.B.; FitzGerald, R.J. Investigation of the potential of hemp, pea, rice and soy protein hydrolysates as a source of dipeptidyl peptidase iv (dpp-iv) inhibitory peptides. Food Dig. 2015, 6, 19–29. [Google Scholar] [CrossRef]
- Mudgil, P.; Kilari, B.P.; Kamal, H.; Olalere, O.A.; FitzGerald, R.J.; Gan, C.-Y.; Maqsood, S. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-iv and angiotensin i converting enzymes. J. Cereal Sci. 2020, 96, 103130. [Google Scholar] [CrossRef]
- Nong, N.T.P.; Chen, Y.-K.; Shih, W.-L.; Hsu, J.-L. Characterization of novel dipeptidyl peptidase-iv inhibitory peptides from soft-shelled turtle yolk hydrolysate using orthogonal bioassay-guided fractionations coupled with in vitro and in silico study. Pharmaceuticals 2020, 13, 308. [Google Scholar] [CrossRef]
- Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wu, J.; Jiang, D.; Ju, X.; Wang, L. Identification and quantification of dpp-iv-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. J. Agric. Food Chem. 2019, 67, 3679–3690. [Google Scholar] [CrossRef]
- Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase iv inhibitory peptides from defatted rice bran. Food Chem. 2012, 134, 797–802. [Google Scholar] [CrossRef]
- De Boer, I.H.; Bangalore, S.; Benetos, A.; Davis, A.M.; Michos, E.D.; Muntner, P.; Rossing, P.; Zoungas, S.; Bakris, G. Diabetes and hypertension: A position statement by the american diabetes association. Diabetes Care 2017, 40, 1273–1284. [Google Scholar] [CrossRef]
- Jandeleit-Dahm, K.; Cooper, M.E. Hypertension and diabetes. Curr. Opin. Nephrol. Hypertens. 2002, 11, 221–228. [Google Scholar] [CrossRef]
- Nong, N.T.P.; Sutopo, C.C.Y.; Hung, W.-T.; Wu, P.-H.; Hsu, J.-L. The molecular docking and inhibition kinetics of angiotensin i-converting enzyme inhibitory peptides derived from soft-shelled turtle yolk. Appl. Sci.-Basel 2022, 12, 12340. [Google Scholar] [CrossRef]
- Sutopo, C.C.Y.; Hung, W.-T.; Hsu, J.-L. A simple tandem bioassay-guided scx-rp spe fractionation for efficient active peptide screening from inca nut cake protein hydrolysate. J. Chromatogr. B 2024, 1236, 124061. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Identification of novel dipeptidyl peptidase iv (dpp-iv) inhibitory peptides in camel milk protein hydrolysates. Food Chem. 2018, 244, 340–348. [Google Scholar] [CrossRef]
- Andújar-Sánchez, M.; Cámara-Artigas, A.; Jara-Pérez, V. A calorimetric study of the binding of lisinopril, enalaprilat and captopril to angiotensin-converting enzyme. Biophys. Chem. 2004, 111, 183–189. [Google Scholar] [CrossRef]
- Chen, M.; Li, B. The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion. Innov. Food Sci. Emerg. Technol. 2012, 16, 341–348. [Google Scholar] [CrossRef]
- Vermeirssen, V.; Camp, J.V.; Verstraete, W. Bioavailability of angiotensin i converting enzyme inhibitory peptides. Br. J. Nutr. 2004, 92, 357–366. [Google Scholar] [CrossRef]
- Ningrum, S.; Sutrisno, A.; Hsu, J.-L. An exploration of angiotensin-converting enzyme (ace) inhibitory peptides derived from gastrointestinal protease hydrolysate of milk using a modified bioassay-guided fractionation approach coupled with in silico analysis. Int. J. Dairy Sci. 2022, 105, 1913–1928. [Google Scholar] [CrossRef]
Identified Peptide | IC50 (µM) |
---|---|
MPHW (MW4) | 128.0 ± 1.3 |
RATLPF (RF6) | 1667.0 ± 45.4 |
VPSGAPF (VF7) | 150.6 ± 3.4 |
LFY (LY3) | 2099.0 ± 55.2 |
MLPQNF (MF6) | 956.7 ± 39.2 |
LFPNAGY (LY7) | 913.6 ± 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, W.-T.; Sutopo, C.C.Y.; Mahatmanto, T.; Wu, M.-L.; Hsu, J.-L. Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate. Biomedicines 2024, 12, 2452. https://doi.org/10.3390/biomedicines12112452
Hung W-T, Sutopo CCY, Mahatmanto T, Wu M-L, Hsu J-L. Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate. Biomedicines. 2024; 12(11):2452. https://doi.org/10.3390/biomedicines12112452
Chicago/Turabian StyleHung, Wei-Ting, Christoper Caesar Yudho Sutopo, Tunjung Mahatmanto, Mei-Li Wu, and Jue-Liang Hsu. 2024. "Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate" Biomedicines 12, no. 11: 2452. https://doi.org/10.3390/biomedicines12112452
APA StyleHung, W.-T., Sutopo, C. C. Y., Mahatmanto, T., Wu, M.-L., & Hsu, J.-L. (2024). Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate. Biomedicines, 12(11), 2452. https://doi.org/10.3390/biomedicines12112452