Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,993)

Search Parameters:
Keywords = deterioration factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 25176 KB  
Article
Land-Cover-Based Approach for Exploring Ecosystem Services Supply–Demand and Spatial Non-Stationary Responses to Determinants: Case Study of the Loess Plateau, China
by Menghao Yang, Ming Wang, Lianhai Cao, Haipeng Zhang and Huhu Niu
Land 2025, 14(9), 1795; https://doi.org/10.3390/land14091795 - 3 Sep 2025
Abstract
Quantitative analysis of ecosystem services (ESs) supply–demand dynamics, and identifying its dominant drivers and the spatial non-stationarity of driving mechanisms, is a crucial prerequisite for effective regional ESs management and the formulation of scientific ecological conservation plans. Previous related studies have primarily focused [...] Read more.
Quantitative analysis of ecosystem services (ESs) supply–demand dynamics, and identifying its dominant drivers and the spatial non-stationarity of driving mechanisms, is a crucial prerequisite for effective regional ESs management and the formulation of scientific ecological conservation plans. Previous related studies have primarily focused on the supply–demand balance of specific ESs and the driving analysis of ESs supply. Comprehensive analysis of ESs supply–demand dynamics and research on their spatially heterogeneous response mechanisms remain relatively scarce. In this study, we assessed the supply, demand, and supply–demand matching relationships of ESs on the Loess Plateau (LP) from 1990 to 2023 using a land-cover-based ESs supply–demand quantitative matrix. We then employed Geodetector and Geographically weighted regression model to explore the dominant driving factors and their spatially varying effects on ESs supply–demand relationships. The results revealed that over the past three decades, the continuous decline in ESs supply coupled with the annual increase in ESs demand has led to a worsening trend in ESs supply–demand relationships towards deficit. Fortunately, the LP still maintained a supply-surplus state at present. The proportion of construction land, population density, GDP density, and the proportion of forestland and grassland were identified as key drivers of changes in ESs supply–demand relationships. The expansion of construction land was the most crucial driver of the deterioration in ESs supply–demand relationships on the LP, exhibiting a universally negative inhibitory effect. The proportion of forestland and grassland exerted a regionally wide positive spatial effect, highlighting the critical role of vegetation restoration in improving ESs relationships. The influences of population density and GDP density exhibited a coexistence of positive promoting and negative inhibitory effects across space. Our results emphasize that ESs management policies on the LP must account for the spatial heterogeneity of driving mechanisms, requiring more localized and targeted land use strategies and management policies to enhance ESs sustainability. Full article
(This article belongs to the Special Issue Monitoring Ecosystem Services and Biodiversity Under Land Use Change)
Show Figures

Figure 1

12 pages, 5771 KB  
Article
Assessment of 10CrMo9-10 Power Engineering Steel Degradation State by Using Small Punch Test
by Kamil Majchrowicz, Barbara Romelczyk-Baishya, Monika Wieczorek-Czarnocka, Szymon Marciniak, Milena Mras, Dominik Kukla, Mateusz Kopec and Zbigniew Pakieła
Materials 2025, 18(17), 4133; https://doi.org/10.3390/ma18174133 - 3 Sep 2025
Abstract
Degradation of power engineering steel structures requires constant monitoring of their mechanical properties to estimate remaining service life. Therefore, the current study aimed to develop a methodology that will enable for accurate determination of changes in mechanical properties of 10CrMo9-10 steel after long-term [...] Read more.
Degradation of power engineering steel structures requires constant monitoring of their mechanical properties to estimate remaining service life. Therefore, the current study aimed to develop a methodology that will enable for accurate determination of changes in mechanical properties of 10CrMo9-10 steel after long-term exploitation involving the Small Punch Test (SPT). Firstly, the as-received 10CrMo9-10 steel was annealed at 770 °C for different periods (1.5, 6 and 24 h) to deteriorate its strength to a level similar to its exploited counterpart. Then, mechanical properties were characterized by uniaxial tensile tests and the SPT method using miniaturized discs with a diameter of 8 mm and a thickness of 0.5 mm as recommended by the EN 10371:2021 standard. It allowed to determine a formula correlating the SPT results (i.e., elastic–plastic transition force and maximum force) with the yield and ultimate tensile strength. The βRp0.2 and βRm correlation factors were equal to 0.437 and 0.255, respectively. Finally, the exploited 10CrMo9-10 steel was tested by the SPT method. Based on the SPT results, the values of Rp0.2 = 236 ± 27 MPa and Rm = 459 ± 17 MPa were estimated, which were close to those assessed during the uniaxial tensile tests (Rp0.2 = 218 ± 3 MPa and Rm = 454 ± 4 MPa). It was shown that the application of such a relatively simple method is a promising way for determining the changes in mechanical properties of structural steels after long-term service at elevated temperature. Full article
Show Figures

Figure 1

16 pages, 1332 KB  
Review
Neuroprotective Effects of Wine Polyphenols in Alzheimer’s and Parkinson’s Diseases: A Review of Risks and Benefits
by Aleksandra Zięba, Aleksandra Wiśniowska, Patrycja Bronowicka-Adamska, Beata Kuśnierz-Cabala, Paweł Zagrodzki and Malgorzata Tyszka-Czochara
Beverages 2025, 11(5), 131; https://doi.org/10.3390/beverages11050131 - 2 Sep 2025
Abstract
Neurodegenerative diseases are characterized by the irreversible and progressive loss of nerve cell function, leading to gradual cognitive decline. These diseases often result in a deterioration in quality of life and a shortened lifespan. The most common neurodegenerative diseases in humans are Alzheimer’s, [...] Read more.
Neurodegenerative diseases are characterized by the irreversible and progressive loss of nerve cell function, leading to gradual cognitive decline. These diseases often result in a deterioration in quality of life and a shortened lifespan. The most common neurodegenerative diseases in humans are Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis. The recent growing interest is due to the increasing incidence of these diseases and the lack of effective therapeutic methods that could prevent them. However, bioactive compounds contained in foods and beverages have been found to play a significant role in this respect. In particular, a growing body of reports suggests the inverse relationship between wine consumption and the development of such diseases. The main components of wine include ethyl alcohol and polyphenolic compounds (obviously, on a different scale). Wine polyphenols exhibit antioxidant and anti-inflammatory effects. Some of them may cross the blood–brain barrier and then affect the functioning of neurons and other cells. Such activity is considered to be an important factor in the prevention of neurodegenerative diseases related to inflammation, oxidative stress, and mitochondrial dysfunctions. The review presents the current knowledge on the impact of wine consumption and its components on the development of neurodegenerative diseases. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

12 pages, 753 KB  
Article
Association of Aspiration Pneumonia-Related Factors with the Incidence of Healthcare-Associated Pneumonia in Elderly with Dementia
by Takahide Miyamoto, Kanae Karita, Koichi Kozaki and Takae Ebihara
J. Clin. Med. 2025, 14(17), 6186; https://doi.org/10.3390/jcm14176186 - 2 Sep 2025
Abstract
Background/Objectives: The predominant etiology of healthcare-associated pneumonia (HCAP) that frequently manifests in elderly with advanced dementia is aspiration pneumonia in which the deteriorated upper respiratory protective reflexes are significant responsible triggers. However, the association of HCAP with cerebral degeneration has not been [...] Read more.
Background/Objectives: The predominant etiology of healthcare-associated pneumonia (HCAP) that frequently manifests in elderly with advanced dementia is aspiration pneumonia in which the deteriorated upper respiratory protective reflexes are significant responsible triggers. However, the association of HCAP with cerebral degeneration has not been investigated. Therefore, a cross-sectional and retrospective cohort study was conducted to elucidate the association of aspiration pneumonia-related factors with HCAP in elderly with dementia. Methods: Of the 154 participants (87.9 years), 30 of Alzheimer’s type dementia (AD) or 124 of vascular dementia (VaD) were assigned to the pneumonia group or the control group. Participant’s characteristics, including cognition, clinical pattern and stage of dementia, physical and eating abilities, latency of the swallowing reflex (LTSR), threshold of CRS, and tongue moisture (TOM), were evaluated. Result: The progression of dementia and the decline in LTSR, CRS, and TOM were synchronized (p < 0.05). Participants in the pneumonia group who were male, with eating difficulties, prolonged LTSR, lacunar infarction, or a smoking history, were significantly observed. The multiple logistic analysis indicated that the LTSR was a significant independent factor for developing HCAP (p = 0.01). Furthermore, as the possessed number of aspiration pneumonia-related factors increased, the odds ratio for HCAP became significantly higher (p < 0.001). Blunted CRS, male gender, and lacunar infarctions were evident in VaD participants but not in AD participants. Finally, the incidence of HCAP in VaD was 2.11 times higher than that in AD (p = 0.005). Conclusions: The higher incidence of HCAP in VaD than AD may be due to different underlying pathophysiological mechanisms between them. Full article
(This article belongs to the Special Issue Respiratory Medicine in the Oldest-Old)
Show Figures

Figure 1

19 pages, 636 KB  
Review
Advances in Cold Stress Response Mechanisms of Cucurbits
by Lili Li, Juan Hou, Jianbin Hu and Wenwen Mao
Horticulturae 2025, 11(9), 1032; https://doi.org/10.3390/horticulturae11091032 - 1 Sep 2025
Abstract
Cold stress can inhibit the growth of cucurbits, disrupt pollination and fertilization, induce fruit deformities, reduce plant resistance, and increase susceptibility to diseases, ultimately resulting in yield reduction, quality deterioration, or even complete crop failure. This review focuses on the main cucurbits, such [...] Read more.
Cold stress can inhibit the growth of cucurbits, disrupt pollination and fertilization, induce fruit deformities, reduce plant resistance, and increase susceptibility to diseases, ultimately resulting in yield reduction, quality deterioration, or even complete crop failure. This review focuses on the main cucurbits, such as melon, cucumber, and watermelon, systematically expounding the roles of plant hormones, signaling molecules, soluble sugars, key regulatory factors, molecular mechanisms, and network interactions in their response to cold stress. Furthermore, it highlights future research directions and application potential. By analyzing existing challenges and prospective advancements in this field, the review aims to provide a comprehensive reference for facilitating genetic improvement in cold tolerance. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetics Improvement of Watermelon and Melon)
Show Figures

Figure 1

16 pages, 683 KB  
Article
Risk Factors of Mental Health in University Students: A Predictive Model Based on Personality Traits, Coping Styles, and Sociodemographic Variables
by Josefa A. Antón-Ruiz, Elisa Isabel Sánchez-Romero, Elena Cuevas-Caravaca, Miguel Bernabé and Ana I. López-Navas
Medicina 2025, 61(9), 1575; https://doi.org/10.3390/medicina61091575 - 31 Aug 2025
Viewed by 226
Abstract
Background and Objectives: Data on mental health in university students have been increasingly concerning, with high prevalence rates of clinical conditions such as anxiety, stress, and depression. This study aims to evaluate the risk factors associated with mental health status and to [...] Read more.
Background and Objectives: Data on mental health in university students have been increasingly concerning, with high prevalence rates of clinical conditions such as anxiety, stress, and depression. This study aims to evaluate the risk factors associated with mental health status and to develop a predictive model. Materials and Methods: A total of 242 university students were recruited (74.8% women). Participants’ ages ranged from 18 to 56 years (M = 25.81; SD = 7.59). Data collection were conducted through the Depression, Anxiety, and Stress Scale (DASS-21), the Big Five Inventory-10 (BFI-10), and the Coping Orientation to Problems Experienced Inventory (COPE-28). Results: Overall, mean scores across the three clinical dimensions are within the moderate range, but anxiety shows the highest mean value (M = 8.67, SD = 5.69) and is categorized as “extremely severe.” Additionally, identifying as female, living with family or roommates, and having high scores on passive coping styles were significant risk factors for mental health deterioration. In contrast, identifying as male, living with a romantic partner (cohabitation), and having high scores on the Responsibility personality trait were identified as protective factors against mental health impairment. Conclusions: Additional research is warranted to explore additional mediating variables and to develop specific intervention protocols for improving university students’ psychological well-being. Full article
Show Figures

Figure 1

36 pages, 14784 KB  
Article
Analyzing Spatiotemporal Variations and Influencing Factors in Low-Carbon Green Agriculture Development: Empirical Evidence from 30 Chinese Districts
by Zhiyuan Ma, Jun Wen, Yanqi Huang and Peifen Zhuang
Agriculture 2025, 15(17), 1853; https://doi.org/10.3390/agriculture15171853 - 30 Aug 2025
Viewed by 215
Abstract
Agriculture is fundamental to food security and environmental sustainability. Advancing its holistic ecological transformation can stimulate socioeconomic progress while fostering human–nature harmony. Utilizing provincial data from mainland China (2013–2022), this research establishes a multidimensional evaluation framework across four pillars: agricultural ecology, low-carbon practices, [...] Read more.
Agriculture is fundamental to food security and environmental sustainability. Advancing its holistic ecological transformation can stimulate socioeconomic progress while fostering human–nature harmony. Utilizing provincial data from mainland China (2013–2022), this research establishes a multidimensional evaluation framework across four pillars: agricultural ecology, low-carbon practices, modernization, and productivity enhancement. Through comprehensive assessment, we quantify China’s low-carbon green agriculture (LGA) development trajectory and conduct comparative regional analysis across eastern, central, and western zones. As for methods, this study employs multiple econometric approaches: LGA was quantified using the TOPSIS entropy weight method at the first step. Moreover, multidimensional spatial–temporal patterns were characterized through ArcGIS spatial analysis, Dagum Gini coefficient decomposition, Kernel density estimation, and Markov chain techniques, revealing regional disparities, evolutionary trajectories, and state transition dynamics. Last but not least, Tobit regression modeling identified driving mechanisms, informing improvement strategies derived from empirical evidence. The key findings reveal the following: 1. From 2013 to 2022, LGA in China fluctuated significantly. However, the current growth rate is basically maintained between 0% and 10%. Meanwhile, LGA in the vast majority of provinces exceeds 0.3705, indicating that LGA in China is currently in a stable growth period. 2. After 2016, the growth momentum in the central and western regions continued. The growth rate peaked in 2020, with some provinces having a growth rate exceeding 20%. Then the growth rate slowed down, and the intra-regional differences in all regions remained stable at around 0.11. 3. Inter-regional differences are the main factor causing the differences in national LGA, with contribution rates ranging from 67.14% to 74.86%. 4. LGA has the characteristic of polarization. Some regions have developed rapidly, while others have lagged behind. At the end of our ten-year study period, LGA in Yunnan, Guizhou and Shanxi was still below 0.2430, remaining in the low-level range. 5. In the long term, the possibility of improvement in LGA in various regions of China is relatively high, but there is a possibility of maintaining the status quo or “deteriorating”. Even provinces with a high level of LGA may be downgraded, with possibilities ranging from 1.69% to 4.55%. 6. The analysis of driving factors indicates that the level of economic development has a significant positive impact on the level of urban development, while the influences of urbanization, agricultural scale operation, technological input, and industrialization level on the level of urban development show significant regional heterogeneity. In summary, during the period from 2013 to 2022, although China’s LGA showed polarization and experienced ups and downs, it generally entered a period of stable growth. Among them, the inter-regional differences were the main cause of the unbalanced development across the country, but there was also a risk of stagnation and decline. Economic development was the general driving force, while other driving factors showed significant regional heterogeneity. Finally, suggestions such as differentiated development strategies, regional cooperation and resource sharing, and coordinated policy allocation were put forward for the development of LGA. This research is conducive to providing references for future LGA, offering policy inspirations for LGA in other countries and regions, and also providing new empirical results for the academic community. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

13 pages, 1330 KB  
Case Report
Pulmonary Verruconis Infection in an Immunocompetent Patient: A Case Report and Literature Review
by Lulu Xu and Lili Tao
J. Fungi 2025, 11(9), 634; https://doi.org/10.3390/jof11090634 - 29 Aug 2025
Viewed by 269
Abstract
Verruconis species are thermophilic, darkly pigmented fungi commonly found in hot environments. Despite their environmental ubiquity, fewer than fifty human infections have been reported, with V. gallopava responsible for most cases. While infections primarily occur in immunocompromised individuals, only six cases in immunocompetent [...] Read more.
Verruconis species are thermophilic, darkly pigmented fungi commonly found in hot environments. Despite their environmental ubiquity, fewer than fifty human infections have been reported, with V. gallopava responsible for most cases. While infections primarily occur in immunocompromised individuals, only six cases in immunocompetent patients have been documented. We describe a case of pulmonary Verruconis infection in a 75-year-old immunocompetent woman. Despite broad-spectrum antifungal treatments, including liposomal amphotericin B and voriconazole, the patient’s condition deteriorated. Bronchoalveolar lavage (BAL) revealed hyphal forms, and fungal culture identified a Verruconis species. Antifungal susceptibility tests showed low minimal inhibitory concentrations (MICs) for amphotericin B (1 μg/mL) and voriconazole (0.5 μg/mL). Clinical manifestations of Verruconis infection in immunocompetent pneumonia patients are non-specific. Structural lung disease was identified as the primary risk factor in such hosts. BAL fungal cultures and metagenomics are valuable tools in diagnosing rare fungal infections. Treatment regimens vary, with amphotericin B and triazoles being the most commonly used antifungal agents. Currently, there are no standardized guidelines for diagnosis or treatment. Further studies are needed to establish clinical protocols. Full article
Show Figures

Figure 1

22 pages, 5453 KB  
Article
Heritage at Altitude: Navigating Moisture Challenges in Alpine Architectural Conservation
by Elisabetta Rosina, Megi Zala, Antonio Ammendola and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(17), 9480; https://doi.org/10.3390/app15179480 - 29 Aug 2025
Viewed by 157
Abstract
This study presents the diagnostics and microclimate analysis of four case studies located in the Alps region in Valtellina and Valposchiavo. The primary focus is on evaluating and comparing microclimatic conditions, encompassing temperature (T°C), relative humidity (RH%), mixing ratio (MR), and dew point [...] Read more.
This study presents the diagnostics and microclimate analysis of four case studies located in the Alps region in Valtellina and Valposchiavo. The primary focus is on evaluating and comparing microclimatic conditions, encompassing temperature (T°C), relative humidity (RH%), mixing ratio (MR), and dew point depression (DPD). The choice of the variables and statistic metrics depends substantially on the aim to identify the risk factor for the preservation of the historical materials of historical buildings, and the procedures for identifying the anomalies in the trends useful to study how to prevent these anomalies in the future. The paper has the target to support the activities of restorers and building managers for improving the restoration process. While various moisture detection methodologies have been studied, no single approach is preferred for analyzing moisture via microclimate monitoring in built heritage. Therefore, this research delves into the influence of various factors, including altitude, location, building type, structure, materials, orientation, and use, on the microclimatic parameters. Altitude and building use significantly influence indoor microclimates: unoccupied structures exhibit greater stability, whereas seasonal use increases condensation risks. Key risks included high RH% and critical T-RH zones (T > 25 °C + RH > 65%), exacerbating material stress. Probability density function (PDF) analysis reveals temperature and RH% distributions, highlighting bimodal T°C patterns and prolonged RH% in high-elevation exposed sites. The findings underscore the need for tailored conservation strategies and targeted interventions to mitigate microclimate-induced deterioration in Alpine heritage. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 2618 KB  
Article
Sustainability Assessment and Sustainable Management Scenario of Lake Batur in Bali, Indonesia: Insights from a Multi-Aspect Approach
by Heri Apriyanto, Warseno Warseno, Sri Handoyo Mukti, Aphang Suhendra, Taufiq Dwi Tamtomo, Hermawan Prasetya, Tukiyat Tukiyat, Hendro Wibowo, Temmy Wikaningrum, Rijal Hakiki and Janthy Trilusianthy Hidayat
Resources 2025, 14(9), 135; https://doi.org/10.3390/resources14090135 - 28 Aug 2025
Viewed by 219
Abstract
Lake Batur is part of the Batur UNESCO Global Geopark and an active caldera of Mount Batur on Bali Island, Indonesia, and it has no inlet or outlet. The current state of the lake has deteriorated due to severe environmental degradation. The lake’s [...] Read more.
Lake Batur is part of the Batur UNESCO Global Geopark and an active caldera of Mount Batur on Bali Island, Indonesia, and it has no inlet or outlet. The current state of the lake has deteriorated due to severe environmental degradation. The lake’s management will focus on the environment and other aspects planned in an integrated, sustainable lake management scenario. The research aims to develop a Key Performance Indicator instrument to determine the lake’s sustainable status. These indicators included environmental, socio-cultural, economic, institutional-management, and infrastructure-technology aspects. The method used is Multi-Aspect Sustainability Analysis to determine its sustainable status and identify the factors that have the most leverage in actions to restore Lake Batur. The primary data was collected through in-depth interviews, questionnaires, and field surveys. Respondents were stakeholders who knew the factual conditions of Lake Batur. The research results show that Lake Batur is in a state of alert or declining sustainability, even predicted to become critical if there is no significant management soon. The performance of all aspects is in the alert category (unsustainable or <50/100) except the social-cultural in the acceptable category (not yet ideal/sustainable). The management scenario of Lake Batur, at least increases to the acceptable category, includes controlling the number of floating net cages and the forest area, developing the potential of tourism and fisheries, reducing conflicts, establishing rules for lake use, increasing the role of the central government, and digitalization of lake management development, construction of water infrastructure and the use of renewable energy. Full article
Show Figures

Figure 1

18 pages, 10043 KB  
Article
Driving Factors, Regional Differences and Mitigation Strategies for Greenhouse Gas Emissions from China’s Agriculture
by Shuo Zhou, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(9), 2073; https://doi.org/10.3390/agronomy15092073 - 28 Aug 2025
Viewed by 323
Abstract
Global warming and climate deterioration are primarily driven by massive greenhouse gas emissions, making the comprehensive assessment of agricultural emissions imperative. This study integrates multiple datasets to achieve three objectives: (1) quantifying agricultural greenhouse gas emissions, (2) identifying regional influencing factors, and (3) [...] Read more.
Global warming and climate deterioration are primarily driven by massive greenhouse gas emissions, making the comprehensive assessment of agricultural emissions imperative. This study integrates multiple datasets to achieve three objectives: (1) quantifying agricultural greenhouse gas emissions, (2) identifying regional influencing factors, and (3) exploring mitigation strategies. In this study, a random forest regression model was used to fit the data, providing a new perspective for the analysis of emission factors. Key findings reveal fertilization and irrigation as the dominant emission drivers, with significant regional variations. Specifically, (1) fertilization practices, particularly nitrogen application, exert a greater influence than phosphorus on carbon emissions; (2) irrigation impacts correlate strongly with regional water usage patterns among staple crops; (3) distinct emission patterns emerge across China’s northeast–southwest divide, reflecting variations in grain crop impacts and climatic responses. The study proposes three mitigation approaches: precision fertilization, adaptive irrigation management, and crop structure optimization. These strategies provide actionable pathways for China to meet agricultural emission reduction targets while advancing sustainable development goals. Full article
Show Figures

Figure 1

26 pages, 26439 KB  
Article
Assessing the Impact of Agricultural Land Consolidation on Ecological Environment Quality in Arid Areas Based on an Improved Water Benefit-Based Ecological Index
by Liqiang Shen, Jiaxin Hao, Linlin Cui, Huanhuan Chen, Lei Wang, Yuejian Wang and Yongpeng Tong
Remote Sens. 2025, 17(17), 2987; https://doi.org/10.3390/rs17172987 - 28 Aug 2025
Viewed by 373
Abstract
Agricultural land consolidation (ALC) is a critical instrument for protecting the environment and expanding cropland. However, implementing different consolidation methods, scales, and technologies may have adverse effects on ecological and environmental factors. The ecological effects of ALC are evaluated in this investigation, with [...] Read more.
Agricultural land consolidation (ALC) is a critical instrument for protecting the environment and expanding cropland. However, implementing different consolidation methods, scales, and technologies may have adverse effects on ecological and environmental factors. The ecological effects of ALC are evaluated in this investigation, with the Manas River Basin in China as the research object. Initially, the research examined the changes in land use that occurred during various periods of ALC in the basin using land cover data (CLCD). Secondly, an enhanced water benefit-based ecological index (SWBEI) for arid regions was developed using the Google Earth Engine (GEE) platform. The spatiotemporal variations in ecological environment quality (EEQ) during various ALC periods were analysed. Ultimately, the effects of a variety of factors on EEQ were disclosed. The research results show that: (1) The principal land-use types in the Manas River Basin are barren land, grassland, and cropland, with substantial fluctuations in area. Cropland area is increasing, with the majority being converted from grassland and desolate land. During the initial phase of farmland consolidation, the most rapid growth was observed, with expansion occurring both inward and outward from existing cropland. (2) The SWBEI outperforms the water benefit-based ecological index (WBEI) in arid regions. (3) The EEQ of the basin and cropland typically exhibits an “increasing–decreasing–increasing trend”, with deterioration predominantly occurring during early-stage ALC and a gradual improvement in EEQ during late-stage ALC. The Gobi Desert belt at the foothills of mountains and high-altitude frigid regions exhibit a deteriorating trend in the EEQ, whereas the oasis areas in the middle reaches of the basin exhibit an improving trend. (4) The most significant explanatory power for the basin’s EEQ is attributed to climate factors, followed by topographic factors, hydrological factors, and human factors. The influence of human factors and hydrological factors on the basin’s EEQ is increasing. The primary factors that influence the EEQ of a basin are the actual evapotranspiration, temperature, and elevation. The explanatory power of these two factors for the basin’s EEQ is augmented by their interaction. In the long term, ALC helps improve the EEQ of the basin and cropland. This study provides a reference for improving ALC methods and approaches, enhancing the ecological environment of river basins, and balancing agricultural production efficiency. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 12695 KB  
Article
Multidimensional Profiling of Senescence in Eastern Honey Bee, Apis cerana (Hymenoptera: Apidae), Workers: Morphology, Microstructure, and Transcriptomics
by Qiang Ma, Zachary Y. Huang, Qianmin Hai, Jun Zhang, Xiangyou Tang, Xiaoqun Dang, Jinshan Xu, Zhengang Ma and Zeyang Zhou
Insects 2025, 16(9), 902; https://doi.org/10.3390/insects16090902 - 28 Aug 2025
Viewed by 348
Abstract
Worker honey bees are crucial for colony stability and ecosystem pollination. However, the cross-scale aging features and underlying mechanisms in the Eastern honey bee (Apis cerana) remain poorly understood. This study systematically investigated age-related changes in A. cerana workers across youth [...] Read more.
Worker honey bees are crucial for colony stability and ecosystem pollination. However, the cross-scale aging features and underlying mechanisms in the Eastern honey bee (Apis cerana) remain poorly understood. This study systematically investigated age-related changes in A. cerana workers across youth (1~5 days post-emergence, dpe), middle age (29 dpe), and old age (50 dpe) through integrated morphological, ultrastructural, and transcriptomic analyses. With increasing age, the phenotypic deterioration in the old bees (OBs) was significant: the body color brightness decreased by 16.7% compared to the young bees (YBs) (p < 0.001), and the hair density of the head, thorax, and abdomen declined by 63.5%, 97.2%, and 91.5%, respectively (p < 0.0001). The wing wear index (WWI) increased to 96.7% (p < 0.0001). The locomotor performance declined sharply, with only 6.7% of the OBs successfully reaching the feeding platform within 15 s (p < 0.0001). Ultrastructural analysis revealed sensory organ abrasion, flattened thoracic bristles, thickened cuticle, and 90.4% increased mitochondrial damage (p < 0.0001). The autophagosomes showed dynamic changes, with 81.8% reduction versus those of mid-aged bees (MBs) (p < 0.001), which suggests that mitochondrial dysfunction and autophagy dysregulation may be the core driving factors behind aging. Transcriptomics identified 67 differentially expressed genes enriched in lifespan regulation, glutathione metabolism, and lysosomal pathways. Fifteen key aging-related genes were identified, such as major royal jelly protein 3 (MRJP3), synaptic vesicle glycoprotein 2A (SV2A), and apidermin 3 (APD3), whose expression dynamics have been shown to be closely related to nutritional metabolism, behavioral perception, and the decline of epidermal barrier function. This work establishes the first multidimensional aging evaluation system for A. cerana, providing critical insights into bee senescence mechanisms and colony health optimization. Full article
(This article belongs to the Special Issue Current Advances in Pollinator Insects)
Show Figures

Graphical abstract

19 pages, 8926 KB  
Article
GRACE/GRACE-FO Satellite Assessment of Sown Area Expansion Impacts on Groundwater Sustainability in Jilin Province
by Yang Liu, Changlei Dai, Yang Jing, Qing Ru, Feiyang Yan and Yiding Zhang
Sustainability 2025, 17(17), 7731; https://doi.org/10.3390/su17177731 - 27 Aug 2025
Viewed by 373
Abstract
Jilin Province, an important commodity grain base in China, relies on groundwater resources for its agricultural development. The implementation of a series of policies, including agricultural subsidies and food security policies, has led to a rapid expansion of the sowing area in recent [...] Read more.
Jilin Province, an important commodity grain base in China, relies on groundwater resources for its agricultural development. The implementation of a series of policies, including agricultural subsidies and food security policies, has led to a rapid expansion of the sowing area in recent decades, resulting in an increase in agricultural water demand. This has had a significant impact on the groundwater system. It is therefore imperative to understand the dynamics of the groundwater to ensure the security of water resources, ecological security, and food security. An evaluation of the sustainability of groundwater resources in Jilin Province was conducted through a quantitative analysis of the reliability, resilience, and vulnerability of groundwater. This analysis was informed by the inversion of changes in groundwater reserves over a period of 249 months, commencing from 2002-04 to 2022-12. The inversion process utilized data from the Gravity Recovery and Climate Experiment (GRACE) gravity satellite and Global Land Data Assimilation System (GLDAS), offering a comprehensive view of the temporal dynamics of groundwater reserves in the region. The results indicated the following: (1) Groundwater storage (total amount of water below the surface) in Jilin Province exhibited an overall decreasing trend, with the highest groundwater level recorded in June and the lowest in September on a monthly basis. (2) Prior to September 2010, groundwater reserves were in surplus most of the time. From October 2010 to August 2018, however, they began to fluctuate between surplus and deficit states. Since September 2018, the reserves have been in a long-term deficit, showing an overall downward trend. (3) Prior to 2005, the groundwater system was at a high/extremely high level of sustainability. However, following 2011, it fell to a very low level of sustainability and has continued to deteriorate. (4) The maximum information coefficient and correlation analysis indicate that the sown area is the most significant factor contributing to the decline in the sustainability of the groundwater system. This study reveals the spatial and temporal distribution pattern and evolution trend of groundwater resources sustainability in Jilin Province, and provides theoretical and data support for regional groundwater resources protection and management. Full article
(This article belongs to the Special Issue Sustainable Irrigation Technologies for Saving Water)
Show Figures

Figure 1

13 pages, 2141 KB  
Article
Selenium-Containing Nano-Micelles Delay the Cellular Senescence of BMSCs Under Oxidative Environment and Maintain Their Regenerative Capacity
by Zirui He, Fangru Xie, Chuanhao Sun, Xuan Wang, Fan Zhang, Yan Zhang, Changsheng Liu and Yuan Yuan
Bioengineering 2025, 12(9), 920; https://doi.org/10.3390/bioengineering12090920 - 26 Aug 2025
Viewed by 422
Abstract
The cellular senescence and functional decline of stem cells are primary contributors to the reduced regenerative capacity and weakened disease resistance in aged tissues. Among the various factors involved, oxidative stress resulting from the accumulation of reactive oxygen species (ROS) is a key [...] Read more.
The cellular senescence and functional decline of stem cells are primary contributors to the reduced regenerative capacity and weakened disease resistance in aged tissues. Among the various factors involved, oxidative stress resulting from the accumulation of reactive oxygen species (ROS) is a key driver of stem cell senescence. In an oxidative environment, cells continuously generate ROS, which accelerates cellular senescence and leads to functional deterioration. To intervene in the cellular senescence process of stem cells under such conditions, we selected bone marrow mesenchymal stem cells (BMSCs) as the model system and developed ROS-responsive selenium (Se)-containing nano-micelles capable of efficiently scavenging intracellular ROS. The optimal formulation was determined by modulating the selenium content. Analysis of cellular senescence markers and regenerative capacity reveals that nano-micelles containing 8% Se (Wt %), at a concentration of 15 μg/mL, can significantly modulate ROS levels in BMSCs under oxidative stress, thereby effectively delaying cellular senescence and preserving the osteogenic differentiation potential of BMSCs. These findings offer a promising strategy for mitigating stem cell senescence. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

Back to TopTop