Driving Factors, Regional Differences and Mitigation Strategies for Greenhouse Gas Emissions from China’s Agriculture
Abstract
1. Introduction
2. Methods
2.1. Data Sources
- (1)
- China’s cropping pattern maps (2015–2021) [31];
- (2)
- IPCC greenhouse gas emission datasets [32];
- (3)
- ERA5—the fifth-generation atmospheric reanalysis product from the European Centre for Medium-Range Weather Forecasts (ECMWF) [33];
- (4)
- Fertilizer application rate maps per crop and year [34];
- (5)
- The 2016–2020 National Classification Dataset of Conservation Tillage/Conventional Tillage Farmland [35];
- (6)
- The annual dynamic dataset of high-resolution crop water use in China from 1991 to 2019 [36].
- Ecological zone;
- Farming practices;
- Crop type;
- Climate parameters.
2.2. Data Processing
- Initial model fitting: The algorithm fits the model to the complete feature set. Performance metrics—including accuracy, mean squared error (MSE), and other relevant indicators—are recorded.
- Feature importance ranking: After the initial fitting, features are ranked based on their relative importance. The ranking metrics depend on the selected machine learning algorithm. For tree-based models such as random forests (employed in this study), the Gini impurity or information gain is utilized to determine importance (the present study employs the Gini impurity as a metric).
- Feature elimination: The least important features are removed from the feature set. This step is critical and requires rigorous execution.
- Model refitting: The model is refitted using the reduced feature set, and the performance metrics are recorded again.
- Iteration: Steps 2–4 are repeated until the target number of features is attained or model performance stabilizes.
2.3. Model Training
2.4. Geographical Segmentation
3. Results
3.1. GHG Emissions
3.2. Influencing Factors of Different GHG Emissions
3.3. Influencing Factors of GHG Emissions in Each Region
4. Discussion
4.1. Recommendations for GHG Emission Reduction
4.2. GHG Emission Reduction Recommendations for Different Regions
4.3. Limitations of This Study
4.4. Implications and Policy Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse Gas |
CO2 | Carbon Dioxide |
CH4 | Methane |
N2O | Nitrous Oxide |
GWP | Global Warming Potential |
IPCC | Intergovernmental Panel on Climate Change |
RFE | Recursive Feature Elimination |
RFR | Random Forest Regression Model |
SVR | Support Vector Regression |
ECMWF | European Centre for Medium-Range Weather Forecasts |
CMA | China Meteorological Administration |
CO2bio | Carbon Dioxide from Biologically Active Sources |
CAP | Common Agricultural Policy |
CSA | Climate-Smart Agriculture |
Pre Fl | Precipitation Flux |
Ir | Irrigation |
NEC | Northeast China |
NC | North China |
SC | South China |
EC | East China |
CC | Central China |
NC | Northwest China |
SWC | Southwest China |
Appendix A
The Principles of CART
- Calculate the sum of squared errors for the two parts and divided by each feature value and select the optimal feature and optimal split point with the smallest sum of squared errors (as shown in the following equation):
- Based on the optimal feature A and the optimal splitting point a, divide the dataset of this node into two parts, and , and give the corresponding output values:
- Continue to apply steps 1–2 to the two subsets until the termination condition is met.
- Generate a regression tree.
References
- Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009, 43, 37–50. [Google Scholar] [CrossRef]
- Chamberlain, S.D.; Ingraffea, A.R.; Sparks, J.P. Sourcing methane and carbon dioxide emissions from a small city: Influence of natural gas leakage and combustion. Environ. Pollut. 2016, 218, 102–110. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zou, C. How does agricultural specialization affect carbon emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Liobikienė, G.; Butkus, M. Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions. Renew. Energy 2019, 132, 1310–1322. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Beach, R.H.; DeAngelo, B.J.; Rose, S.; Li, C.; Salas, W.; DelGrosso, S.J. Mitigation potential and costs for global agricultural greenhouse gas emissions 1. Agric. Econ. 2008, 38, 109–115. [Google Scholar] [CrossRef]
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Cóndor Golec, R.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks; FAO: Rome, Italy, 2014. [Google Scholar]
- He, Y.; Chen, R.; Wu, H.; Xu, J.; Song, Y. Spatial dynamics of agricultural carbon emissions in China and the related driving factors. Chin. J. Eco-Agric. 2018, 26, 1269–1282. [Google Scholar]
- Lepadatu, C. Effects of market reform on agricultural policy community and rural areas. Sci. Pap. 2012, 12, 105–108. [Google Scholar]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [PubMed]
- Nordborg, M.; Davis, J.; Cederberg, C.; Woodhouse, A. Freshwater ecotoxicity impacts from pesticide use in animal and vegetable foods produced in Sweden. Sci. Total Environ. 2017, 581, 448–459. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- ACIL Tasman. Agriculture and GHG Mitigation Policy: Options in Addition to the CPRS; Report for Victorian Department of Primary Industries and Industry and Investment NSW; ACIL Tasman Pty Ltd.: Melbourne, Australia, 2009. [Google Scholar]
- Dace, E.; Blumberga, D. How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis. Ecol. Indic. 2016, 71, 352–358. [Google Scholar] [CrossRef]
- Castesana, P.S.; Vázquez-Amábile, G.; Dawidowski, L.H.; Gómez, D.R. Temporal and spatial variability of nitrous oxide emissions from agriculture in Argentina. Carbon. Manag. 2020, 11, 251–263. [Google Scholar] [CrossRef]
- Brocks, S.; Jungkunst, H.F.; Bareth, G. A regionally disaggregated inventory of nitrous oxide emissions from agricultural soils in Germany–a GIS-based empirical approach. Erdkunde 2014, 68, 125–144. [Google Scholar] [CrossRef]
- Dimitrov, D.D.; Wang, J. Geographic Inventory Framework for estimating spatial pattern of methane and nitrous oxide emissions from agriculture in Alberta, Canada. Environ. Dev. 2019, 32, 100461. [Google Scholar] [CrossRef]
- Musenze, R.S.; Grinham, A.; Werner, U.; Gale, D.; Sturm, K.; Udy, J.; Yuan, Z. Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs. Environ. Sci. Technol. 2014, 48, 14499–14507. [Google Scholar] [CrossRef]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Chen, Q. Distributional dynamic and trend evolution of China’s agricultural carbon emissions—An analysis on panel data of 31 provinces from 2002 to 2011. Chin. J. Popul. Resour. Environ. 2015, 13, 206–214. [Google Scholar] [CrossRef]
- Fang, C. China’s economic growth prospects: From demographic dividend to reform dividend. In China’s Economic Growth Prospects; Edward Elgar Publishing: Cheltenham, UK, 2016. [Google Scholar]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, H. Research on fairness of agricultural carbon emissions in China’s major grain producing areas from the perspective of industrial structure. J. Agrotech. Econ. 2020, 1, 45–55. [Google Scholar]
- Koponen, H.T.; Duran, C.E.; Maljanen, M.; Hytönen, J.; Martikainen, P.J. Temperature responses of NO and N2O emissions from boreal organic soil. Soil Biol. Biochem. 2006, 38, 1779–1787. [Google Scholar] [CrossRef]
- Lu, B.; Song, L.; Zang, S.; Wang, H. Warming promotes soil CO2 and CH4 emissions but decreasing moisture inhibits CH4 emissions in the permafrost peatland of the Great Xing’an Mountains. Sci. Total Environ. 2022, 829, 154725. [Google Scholar] [CrossRef]
- Ullah, A.; Nawaz, A.; Farooq, M.; Siddique, K.H. Agricultural innovation and sustainable development: A case study of rice–wheat cropping systems in South Asia. Sustainability 2021, 13, 1965. [Google Scholar] [CrossRef]
- Shukla, R.; Gleixner, S.; Yalew, A.W.; Schauberger, B.; Sietz, D.; Gornott, C. Dynamic vulnerability of smallholder agricultural systems in the face of climate change for Ethiopia. Environ. Res. Lett. 2021, 16, 044007. [Google Scholar] [CrossRef]
- Qiu, B.; Hu, X.; Chen, C.; Tang, Z.; Yang, P.; Zhu, X.; Yan, C.; Jian, Z. Maps of cropping patterns in China during 2015–2021. Sci. Data 2022, 9, 479. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview (accessed on 26 August 2025).
- Coello, F.; Decorte, T.; Janssens, I.; Mortier, S.; Sardans, J.; Peñuelas, J.; Verdonck, T. Global Crop-specific fertilization dataset from 1961–2019. Sci. Data 2025, 12, 40. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, F.; Chen, Y.; Yin, L. Mapping the spatiotemporal patterns of tillage practices across Chinese croplands with Google Earth Engine. Comput. Electron. Agric. 2024, 216, 108509. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The annual dynamic dataset of high-resolution crop water use in China from 1991 to 2019. Sci. Data 2024, 11, 1373. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Griggs, D.J.; Noguer, M. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the inter-governmental panel on climate change. Weather 2002, 57, 267–269. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for simulating impacts of climate change on crop production. Field Crops Res. 2011, 124, 357–368. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Khan, N.; Sachindra, D.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of droughts over Pakistan using machine learning algorithms. Adv. Water Resour. 2020, 139, 103562. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Xu, S.; Karimian, H.; Zhao, Y.; Jin, L.; Xu, Y.; Qi, Y. Unveiling the air pollution tapestry in China: A comprehensive assessment of spatiotemporal variations through geographically and temporally weighted regression. Atmos. Pollut. Res. 2024, 15, 101987. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, M.-H. Re-evaluation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects. China Rural Econ. 2022, 3, 104–127. (In Chinese) [Google Scholar]
- Yang, S.; Chen, H.; Li, Z.; Ruan, Y.; Yang, Q. Temporal and spatial analysis of fertilizer application intensity and its environmental risks in China from 1978 to 2022. Environ. Sci. Eur. 2024, 36, 188. [Google Scholar] [CrossRef]
- Li, C.; Jia, J.; Wu, F.; Zuo, L.; Cui, X. County-level intensity of carbon emissions from crop farming in China during 2000–2019. Sci. Data 2024, 11, 457. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef]
- Millar, N.; Urrea, A.; Kahmark, K.; Shcherbak, I.; Robertson, G.P.; Ortiz-Monasterio, I. Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agric. Ecosyst. Environ. Dev. 2018, 261, 125–132. [Google Scholar] [CrossRef]
- Yang, L.; Deng, Y.; Wang, X.; Zhang, W.; Shi, X.; Chen, X.; Lakshmanan, P.; Zhang, F. Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids). Sci. Total Environ. 2021, 752, 141795. [Google Scholar] [CrossRef]
- Meng, X.; Liu, S.; Zou, J.; Osborne, B. The effect of substituting inorganic fertilizer with manure on soil N2O and CH4 emissions and crop yields: A global meta-analysis. Field Crops Res. 2025, 326, 109831. [Google Scholar] [CrossRef]
- Cui, X.; Chen, S.; Yang, J.; Zhao, L.; Hu, T.; Lu, J.; Li, A.; Zhang, J.; Chang, Z.; Liu, J. Ammonia volatilization and nitrous oxide emission and their responses to environmental indicators under different irrigation levels and nitrogen fertilizer synergists. J. Environ. Manag. 2025, 377, 124580. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Sereenonchai, S.; Pumijumnong, N. On-Farm evaluation of the potential use of greenhouse gas mitigation techniques for rice cultivation: A case study in Thailand. Climate 2018, 6, 36. [Google Scholar] [CrossRef]
- Wang, T.; Cong, X.; Yu, J.; Zhao, H.; Xu, L.; Pang, G.; Xu, Z. Impact of biochar and deficit irrigation on greenhouse gas emissions reduction in maize-wheat rotation systems. Agric. Water Manag. 2025, 315, 109547. [Google Scholar] [CrossRef]
- Yang, A.; Sun, Z.; Zhang, P.; Hu, K.; Luo, S.; Dong, W.; Li, M. Dynamic Multi-Objective Optimization of Rice Irrigation Integrating Crop Growth and Water Cycle Dynamics: Promoting Synergies in Water Conservation, Production Enhancement, and Emission Reduction. Environ. Technol. Innov. 2025, 39, 104241. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Chellappan, U.; Yamamoto, A.; Ono, K.; Mano, M.; Hayashida, S.; Koothan, V.; Osawa, T. Mitigation potential and yield-scaled global warming potential of early-season drainage from a rice paddy in Tamil Nadu, India. Agronomy 2018, 8, 202. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, P.; Wu, W.; Li, Z.; You, L. Spatio-temporal changes in Chinese crop patterns over the past three decades. Acta Geogr. Sin. 2016, 71, 840–851. (In Chinese) [Google Scholar]
- Tong, H.; Guo, X.; Shahbaz, M.; Khamdamov, S.-J. Historical carbon emissions and future mitigation potentials from staple food cropping systems in China. J. Environ. Manag. 2025, 389, 126090. [Google Scholar] [CrossRef]
- Grosjean, G.; Fuss, S.; Koch, N.; Bodirsky, B.L.; De Cara, S.; Acworth, W. Options to overcome the barriers to pricing European agricultural emissions. Clim. Policy 2018, 18, 151–169. [Google Scholar] [CrossRef]
- Coderoni, S.; Esposti, R. CAP payments and agricultural GHG emissions in Italy. A Farm-Level assessment. Sci. Total Environ. 2018, 627, 427–437. [Google Scholar] [CrossRef]
- van Wijk, M.T.; Merbold, L.; Hammond, J.; Butterbach-Bahl, K. Improving assessments of the three pillars of climate smart agriculture: Current achievements and ideas for the future. Front. Sustain. Food Syst. 2020, 4, 558483. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013. [Google Scholar]
- Hellin, J.; Fisher, E. The Achilles heel of climate-smart agriculture. Nat. Clim. Change 2019, 9, 493–494. [Google Scholar] [CrossRef]
- Lal, R. Farming systems for global issues of the 21st Century. Farming Syst. 2024, 2, 100113. [Google Scholar] [CrossRef]
Category | Characteristic |
---|---|
Ecological zone | Ecological zone |
Crop type | Cropclass |
Farming practices | Cultivation method |
Climate parameters | Tasmax (°C) |
Climate parameters | Tasmin (°C) |
Climate parameters | Tas (°C) |
Climate parameters | Precipitation flux |
Climate parameters | Hurs (%) |
Climate parameters | Rsds (MJ/m2) |
Farming practices | Maize N (kg/ha) |
Farming practices | Maize P2O5 (kg/ha) |
Farming practices | Maize K2O (kg/ha) |
Farming practices | Wheat N (kg/ha) |
Farming practices | Wheat P2O5 (kg/ha) |
Farming practices | Wheat K2O (kg/ha) |
Farming practices | Rice N (kg/ha) |
Farming practices | Rice P2O5 (kg/ha) |
Farming practices | Rice K2O (kg/ha) |
Farming practices | Maize irrigation |
Farming practices | Wheat irrigation |
Farming practices | Rice irrigation |
Farming practices | Tillage |
Characteristic | Percentage Importance |
---|---|
Maize irrigation | 14.83 |
Tasmin (°C) | 11.59 |
Wheat irrigation | 11.09 |
Maize N | 10.04 |
Maize P2O5 | 9.70 |
Wheat N | 9.68 |
Rice irrigation | 7.43 |
Wheat P2O5 | 5.42 |
Maize K2O | 3.77 |
Wheat K2O | 3.08 |
Tas (°C) | 2.46 |
Rice N | 1.82 |
Tasmax (°C) | 1.76 |
Hurs (%) | 1.49 |
Cropclass | 1.36 |
Tillage | 1.26 |
Rsds (MJ/m2) | 0.98 |
Precipitation flux | 0.93 |
Rice K2O | 0.62 |
Rice P2O5 | 0.56 |
Cultivation method | 0.14 |
Ecological zone | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Wang, J.; Jin, D.; Zhang, H. Driving Factors, Regional Differences and Mitigation Strategies for Greenhouse Gas Emissions from China’s Agriculture. Agronomy 2025, 15, 2073. https://doi.org/10.3390/agronomy15092073
Zhou S, Wang J, Jin D, Zhang H. Driving Factors, Regional Differences and Mitigation Strategies for Greenhouse Gas Emissions from China’s Agriculture. Agronomy. 2025; 15(9):2073. https://doi.org/10.3390/agronomy15092073
Chicago/Turabian StyleZhou, Shuo, Jianquan Wang, Dian Jin, and Hailin Zhang. 2025. "Driving Factors, Regional Differences and Mitigation Strategies for Greenhouse Gas Emissions from China’s Agriculture" Agronomy 15, no. 9: 2073. https://doi.org/10.3390/agronomy15092073
APA StyleZhou, S., Wang, J., Jin, D., & Zhang, H. (2025). Driving Factors, Regional Differences and Mitigation Strategies for Greenhouse Gas Emissions from China’s Agriculture. Agronomy, 15(9), 2073. https://doi.org/10.3390/agronomy15092073