Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,972)

Search Parameters:
Keywords = derived ratios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1587 KB  
Article
Optimal Resource Allocation via Unified Closed-Form Solutions for SWIPT Multi-Hop DF Relay Networks
by Yang Yu, Xiaoqing Tang and Guihui Xie
Sensors 2026, 26(2), 512; https://doi.org/10.3390/s26020512 (registering DOI) - 12 Jan 2026
Abstract
Multi-hop relaying can solve the problems of limited single-hop wireless communication distance, poor signal quality, or the inability to communicate directly by “relaying” data transmission through multiple intermediate nodes. It serves as the cornerstone for building large-scale, highly reliable, and self-adapting wireless networks, [...] Read more.
Multi-hop relaying can solve the problems of limited single-hop wireless communication distance, poor signal quality, or the inability to communicate directly by “relaying” data transmission through multiple intermediate nodes. It serves as the cornerstone for building large-scale, highly reliable, and self-adapting wireless networks, especially for the Internet of Things (IoT) and future 6G. This paper focuses on a decode-and-forward (DF) multi-hop relay network that employs simultaneous wireless information and power transfer (SWIPT) technology, with relays operating in a passive state. We first investigate the optimization of the power splitting (PS) ratio at each relay, given the source node transmit power, to maximize end-to-end network throughput. Subsequently, we jointly optimized the PS ratios and the source transmit power to minimize the source transmit power while satisfying the system’s minimum quality of service (QoS) requirement. Although both problems are non-convex, they can be reformulated as convex optimization problems. Closed-form optimal solutions are then derived based on the Karush–Kuhn–Tucker (KKT) conditions and a recursive method, respectively. Moreover, we find that the closed-form optimal solutions for the PS ratios corresponding to the two problems are identical. Through simulations, we validate that the performance of the two proposed schemes based on the closed-form solutions is optimal, while also demonstrating their extremely fast algorithm execution speeds, thereby proving the deployment value of the two proposed schemes in practical communication scenarios. Full article
(This article belongs to the Special Issue Wireless Communication and Networking for loT)
12 pages, 1174 KB  
Article
NET-Like Events on Peripheral Blood Smears at Admission: Association with Disease Severity and Systemic Inflammation in Hospitalized COVID-19 Patients
by Alexy Rosales, Rodrigo Boguen, Felipe Garrido, Francisco Quiñones, José Barros, Fabián Baeza, Josefa Díaz, Salvador Fuentes, Pablo Letelier and Neftalí Guzmán
Medicina 2026, 62(1), 153; https://doi.org/10.3390/medicina62010153 (registering DOI) - 12 Jan 2026
Abstract
Background and Objectives: Neutrophil extracellular traps (NETs) have been linked to hypercoagulability, immunothrombosis, and organ injury in COVID-19. Digital morphology of peripheral blood smears enables the identification of NET-compatible appearances (NET-like) in circulation, and associations between NET-like derived indices and clinical outcomes have [...] Read more.
Background and Objectives: Neutrophil extracellular traps (NETs) have been linked to hypercoagulability, immunothrombosis, and organ injury in COVID-19. Digital morphology of peripheral blood smears enables the identification of NET-compatible appearances (NET-like) in circulation, and associations between NET-like derived indices and clinical outcomes have been reported. However, evidence at hospital admission that relates smear NET-like burden to systemic inflammation and clinical severity remains limited. We therefore aimed to compare the burden of NET-like structures on admission smears according to disease severity and systemic inflammatory markers. Materials and Methods: We included 50 consecutively enrolled adults hospitalized for COVID-19; samples were obtained within 24 h of admission. Severity was defined by the World Health Organization Clinical Progression Scale and grouped as moderate or severe. C-reactive protein (CRP), ferritin, and complete blood counts were measured; the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were calculated. Digital morphology assessed 200 leukocytes per patient; the presence of morphological abnormalities, including NET-like events per patient, was recorded. We additionally quantified NET-like events per 100 white blood cells (NET-like/100 WBC) and the neutrophil extracellular trap–segmented neutrophil ratio (NNSR). Results: At admission, CRP, ferritin, NLR, and PLR of patients were above method-specific reference intervals. NET-like events were identified in 66% of patients. NET-like/100 WBC correlated positively with NLR (r = 0.312; p < 0.05). Patients with severe COVID-19 had higher NET-like/100 WBC than those with moderate disease (5.8 ± 7.34 vs. 14.14 ± 15.12; p = 0.0294). Conclusions: Digital morphological identification of NET-like structures on peripheral blood smears is frequent at admission and is associated with systemic inflammatory burden and with greater COVID-19 severity. These findings support the potential complementary value of reporting NET-like events for initial risk stratification in the clinical laboratory. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

14 pages, 3415 KB  
Article
Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit
by Jianlin Yao, Bin Liu, Kunpeng Yao and Haitao Ren
Processes 2026, 14(2), 267; https://doi.org/10.3390/pr14020267 - 12 Jan 2026
Abstract
Diamond coring bits exhibit stable rock-breaking and coring processes as well as a long service life. However, when drilling in complex and challenging formations are characterized by high hardness, strong plasticity, and high abrasiveness, issues such as low rock-breaking efficiency, rapid failure, and [...] Read more.
Diamond coring bits exhibit stable rock-breaking and coring processes as well as a long service life. However, when drilling in complex and challenging formations are characterized by high hardness, strong plasticity, and high abrasiveness, issues such as low rock-breaking efficiency, rapid failure, and shortened service life frequently occur. To prevent premature bit failure and enhance rock-breaking efficiency, this study investigated the effects of drilling pressure and rotational speed on rock-breaking performance through bench-scale experiments using typical rock samples. A total of 15 experimental groups were included in this study, with one independent trial performed for each group. ROP is calculated as the ratio of effective drilling depth to time consumed, and MSE is derived based on axial force, torque, and rock-breaking volume. The experimental results indicated that (1) sandstone is more sensitive to rotational speed, whereas limestone and dolomite are more sensitive to drilling pressure; (2) the minimum mechanical specific energy (MSE) of sandstone was achieved at a drilling pressure of 15 kN and rotational speed of 50 r/min; (3) limestone exhibited the lowest MSE at 10 kN drilling pressure and 50 r/min rotational speed; and (4) dolomite showed the minimum energy consumption at 10 kN drilling pressure and 25 r/min rotational speed. On this basis, this paper establishes a cutting mechanics model for single-crystal diamond and a working load calculation model for the entire bit, respectively. The cutting mechanics model for single-crystal diamond is re-established based on Hertzian contact theory and elastic-plastic deformation theory. The findings of this study are expected to provide a working load calculation method for diamond coring bits in typical complex and challenging drilling formations and offer technical support for the design of coring bit cutting structures and the development of customized new products. It should be noted that the conclusions of this study are limited to the experimental parameter range (drilling pressure: 5–15 kN; rotational speed: 25–80 r/min), and their applicability under higher load conditions requires further verification. Full article
Show Figures

Figure 1

28 pages, 1398 KB  
Review
A Conceptual Digital Health Framework for Longevity Optimization: Inflammation-Centered Approach Integrating Microbiome and Lifestyle Data—A Review and Proposed Platform
by Sasan Adibi
Nutrients 2026, 18(2), 231; https://doi.org/10.3390/nu18020231 - 12 Jan 2026
Abstract
Chronic low-grade inflammation, or “inflammaging,” represents a central mechanism linking dietary patterns, gut microbiome composition, and biological aging. Evidence from Blue Zone populations and Mediterranean diet studies demonstrates that specific nutritional interventions are associated with up to 23% lower all-cause mortality, with analyses [...] Read more.
Chronic low-grade inflammation, or “inflammaging,” represents a central mechanism linking dietary patterns, gut microbiome composition, and biological aging. Evidence from Blue Zone populations and Mediterranean diet studies demonstrates that specific nutritional interventions are associated with up to 23% lower all-cause mortality, with analyses suggesting that part of this association may be mediated by measurable improvements in inflammatory biomarkers. This paper synthesizes published evidence from Mediterranean diet trials, centenarian microbiome studies, and digital health platforms to propose a comprehensive digital health framework that integrates quarterly inflammation and microbiome monitoring with continuous lifestyle tracking to deliver personalized longevity interventions. This paper introduces the Longevity-Inflammation Index (L-II), a composite score combining high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and microbiome-derived markers, with scoring algorithms derived from centenarian population studies. The proposed platform leverages artificial intelligence to generate evidence-based recommendations adapted from centenarian and Mediterranean dietary patterns. Published evidence from multiple randomized controlled trials demonstrates that Mediterranean dietary interventions reduce hs-CRP by 18–32%, increase microbiome diversity by 6–28%, and improve metabolic markers including HOMA-IR and TG/HDL ratios. Digital health platforms demonstrate sustained engagement rates of 58–84% at 12 months, with dietary logging frequencies of 4–6 days per week. Cost-effectiveness analyses of dietary interventions show incremental cost-effectiveness ratios of USD 2100–4800 per quality-adjusted life year gained. This inflammation-centered digital health framework offers a scalable approach for translating longevity research into practical interventions for healthy aging, with validation studies needed to confirm the integrated platform’s efficacy and real-world implementation feasibility. Full article
Show Figures

Figure 1

13 pages, 2824 KB  
Article
Characteristics and Kinetics of the Co-Pyrolysis of Oil Shale and Municipal Solid Waste Assessed via Thermogravimetric Analysis
by Lin Chen, Liping Zheng, Yichun Xie, Xiongwei Gao, Yuxiang Lin, Zhaosheng Yu and Lianfeng Lai
Sustainability 2026, 18(2), 753; https://doi.org/10.3390/su18020753 - 12 Jan 2026
Abstract
To address the issues of cities being overwhelmed by the waste and energy crisis, the pyrolysis of municipal solid waste (MSW), oil shale (OS) and their blends was investigated using a thermogravimetric simultaneous thermal analyzer in this study. The experimental research was conducted [...] Read more.
To address the issues of cities being overwhelmed by the waste and energy crisis, the pyrolysis of municipal solid waste (MSW), oil shale (OS) and their blends was investigated using a thermogravimetric simultaneous thermal analyzer in this study. The experimental research was conducted to investigate the thermal behavior and kinetic parameters of the different blending ratios of MSW and OS, to better utilize these intractable resources, observing whether there is a synergistic effect and trying to find the optimal process conditions. The Ozawa–Flynn–Wall method and the Kissinger–Akahira–Sunose method were used to calculate the activation energy at four different heating rates. The existence of interactions between MSW and OS was confirmed by comparing the experimental thermogravimetric and derivative thermogravimetric curves with the calculated ones. The findings of the thermogravimetric analysis, the calculation of theoretical and experimental curves, and kinetic analysis confirmed the interaction between the components and that the optimal blending ratio is 30% MSW and 70% OS. The optimality results in a relatively smaller activation energy (Eave = 115 kJ/mol), better comprehensive pyrolysis characteristics, and a more beneficial mutual effect. Full article
Show Figures

Figure 1

23 pages, 3772 KB  
Article
Fatigue Performance Enhancement of Open-Hole Steel Plates Under Alternating Tension–Compression Loading via Hotspot-Targeted CFRP Reinforcement
by Zhenpeng Jian, Byeong Hwa Kim, Jinlei Gai, Yunlong Zhao and Xujiao Yang
Buildings 2026, 16(2), 313; https://doi.org/10.3390/buildings16020313 - 11 Jan 2026
Abstract
Steel plates with open holes are common in engineering structures such as bridges and towers for pipeline penetrations and connections. These openings, however, induce significant stress concentration under alternating tension–compression loading (stress ratio R = −1), drastically accelerating fatigue crack initiation and threatening [...] Read more.
Steel plates with open holes are common in engineering structures such as bridges and towers for pipeline penetrations and connections. These openings, however, induce significant stress concentration under alternating tension–compression loading (stress ratio R = −1), drastically accelerating fatigue crack initiation and threatening structural integrity. Effective identification and mitigation of such stress concentrations is crucial for enhancing the fatigue resistance of perforated components. This study proposes a closed-loop methodology integrating theoretical weak zone identification, targeted CFRP reinforcement, and experimental validation to improve the fatigue performance of open-hole steel plates. Analytical solutions for dynamic stresses around the hole were derived using complex function theory and conformal mapping, identifying critical stress concentration angles. Experimental tests compared unreinforced and CFRP-reinforced specimens in terms of circumferential strain distribution, dynamic stress concentration behavior, and fatigue life. Results indicate that Carbon fiber-reinforced polymer (CFRP) reinforcement significantly reduces stress concentration near 90°, smooths polar strain distributions, and slows strain decay. The S–N curves shift upward, indicating extended fatigue life under identical stress amplitude and increased allowable stress at identical life cycles. Comparison with standardized design curves confirms that reinforced specimens meet higher fatigue categories, providing practical design guidance for perforated plates under alternating loads. This work establishes a systematic framework from theoretical prediction to experimental verification, offering a reliable reference for engineering applications. Full article
20 pages, 2214 KB  
Article
Fungal Pectinolytic Enzyme System for the Production of Long- and Short-Chain Pectin-Derived Oligosaccharides (POS) from Pomelo Albedo and Their Prebiotic Potential
by Katesuda Aiewviriyasakul, Worawat Surarit, Pawadee Methacanon, Hataikarn Lekakarn, Chonchanok Buathongjan, Chaiwut Gamonpilas, Wipawee Sritusnee, Thanaporn Laothanachareon, Duriya Chantasingh, Verawat Champreda and Benjarat Bunterngsook
Catalysts 2026, 16(1), 85; https://doi.org/10.3390/catal16010085 - 11 Jan 2026
Abstract
Pectin-derived oligosaccharides (POS) are emerging as promising functional prebiotics with growing industrial interest. This study reports a synergistic fungal pectinolytic biocatalytic system comprising endopolygalacturonase (EndoPG) and pectin methylesterase (PET11) from Aspergillus aculeatinus BCC 17849 for the controlled depolymerization of pomelo (Citrus maxima [...] Read more.
Pectin-derived oligosaccharides (POS) are emerging as promising functional prebiotics with growing industrial interest. This study reports a synergistic fungal pectinolytic biocatalytic system comprising endopolygalacturonase (EndoPG) and pectin methylesterase (PET11) from Aspergillus aculeatinus BCC 17849 for the controlled depolymerization of pomelo (Citrus maxima) albedo pectin. PET11-mediated demethylation increased substrate accessibility, thereby enhancing EndoPG-catalyzed hydrolysis and resulting in higher POS yields than those obtained with single-enzyme systems. The highest production of short-chain POS, comprising GalA, di-GalA, and tri-GalA (681 mg/g substrate), was achieved at an EndoPG:PET11 dosage ratio of 15:5. The resulting POS fraction significantly promoted the growth of five probiotic strains, including Lactobacilli and Bifidobacteria species, and enhanced probiotic adherence to intestinal epithelial cells. In particular, Lactobacillus acidophilus TBRC 5030 exhibited the highest adhesion level (35.24 ± 6.43%) in the presence of 2.0 mg/mL POS. Overall, this work demonstrated that enzyme-assisted demethylation coupled with targeted endo-hydrolysis enables effective tailoring of POS chain length, providing a promising biocatalytic strategy for pectin valorization into prebiotic ingredients. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

14 pages, 1312 KB  
Article
DOTAP-Based Hybrid Nanostructured Lipid Carriers for CRISPR–Cas9 RNP Delivery Targeting TGFB1 in Diabetic Nephropathy
by Nurul Jummah, Hanifa Syifa Kamila, Satrialdi, Aluicia Anita Artarini, Ebrahim Sadaqa, Anindyajati and Diky Mudhakir
Pharmaceutics 2026, 18(1), 94; https://doi.org/10.3390/pharmaceutics18010094 - 11 Jan 2026
Abstract
Background: Diabetic nephropathy (DN) is largely driven by transforming growth factor-β1 (TGF-β1)-mediated fibrosis. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes offer precise gene disruption, yet effective non-viral delivery remains a challenge. This study developed cationic lipid-based [...] Read more.
Background: Diabetic nephropathy (DN) is largely driven by transforming growth factor-β1 (TGF-β1)-mediated fibrosis. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes offer precise gene disruption, yet effective non-viral delivery remains a challenge. This study developed cationic lipid-based hybrid nanostructured lipid carriers (NLCs) for intracellular delivery of TGFB1-targeting RNP as an early-stage platform for DN gene modulation. Methods: A single-guide RNA (sgRNA) targeting human TGFB1 was assembled with Cas9 protein (1:1 and 1:2 molar ratios). Hybrid NLCs comprising squalene, glyceryl trimyristate, and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were formulated via optimized emulsification–sonication to achieve sub-100 nm particles. Physicochemical properties, including polydispersity index (PDI), were assessed via dynamic light scattering (DLS), while silencing efficacy in HEK293T cells was quantified using quantitative reverse transcription PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results: Optimized NLCs achieved hydrodynamic diameters of 65–99 nm (PDI < 0.5) with successful RNP complexation. The 1:2 Cas9:sgRNA formulation produced the strongest gene-editing response, reducing TGFB1 mRNA by 67% (p < 0.01) compared with 39% for the 1:1 ratio. This translated to a significant reduction in TGF-β1 protein (p < 0.05) within 24 h. Conclusions: DOTAP-based hybrid NLCs enable efficient delivery of CRISPR–Cas9 RNP and achieve significant suppression of TGFB1 expression at both transcriptional and protein levels. These findings establish a promising non-viral platform for upstream modulation of profibrotic signaling in DN and support further evaluation in kidney-derived cells and in vivo renal models. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
22 pages, 4948 KB  
Article
Synthesis of Hydroxyaromatic Carboxylic Acids via Homogeneous Kolbe-Schmitt Carboxylation of Phenoxides
by Dmitriy A. Merzliakov, Michael S. Alexeev, Maxim A. Topchiy, Dmitry G. Yakhvarov, Nikolai Yu. Kuznetsov, Anton L. Maximov and Irina P. Beletskaya
Molecules 2026, 31(2), 239; https://doi.org/10.3390/molecules31020239 - 10 Jan 2026
Viewed by 45
Abstract
Homogeneous Kolbe-Schmitt carboxylation of phenoxides offers a mild and effective alternative to the classical high-temperature solid-phase Kolbe-Schmitt reaction. To develop this into a practical synthetic approach, we investigated several fundamental dependencies, particularly the impact of cations (Na, K, Li, Cs, and Rb), phenoxide [...] Read more.
Homogeneous Kolbe-Schmitt carboxylation of phenoxides offers a mild and effective alternative to the classical high-temperature solid-phase Kolbe-Schmitt reaction. To develop this into a practical synthetic approach, we investigated several fundamental dependencies, particularly the impact of cations (Na, K, Li, Cs, and Rb), phenoxide concentration, and solvents (DMSO or DMF) on the yield and regioisomeric ratio of hydroxyaromatic carboxylic acids (HACAs). We identified optimal conditions for the effective carboxylation of different phenoxides, including a chiral Ellman’s sulfinamide derived from ortho-vanillin. Both solvents and cations were found to be crucial in the carboxylation of phenoxides. Due to solvation effects, DMSO directs CO2 attack to the para-position of phenoxide, while DMF, although less selective, generally affords higher HACA yields. The addition of equiv. amounts of mesitolate salt to phenoxide in either DMSO or DMF solution often drives the reaction to completion, resulting in yields of up to 98%. Phenoxides containing several EWG groups, such as halogens or alkyl groups, adjacent to the reaction center show considerably lower reactivity in carboxylation; however, by carefully adjusting parameters, acceptable conversions (>70%) can be achieved. Using the gasometry, we assessed the stability of phenoxide and mesitolate carbonate complexes in DMSO. These experiments revealed distinct stages for the onset of decomposition and carboxylation at atmospheric pressure, indicating a lower energy barrier in the homogeneous process. Further insight into carbonate complex behavior was obtained through DOSY and 13C NMR experiments, which support increased molecular association in solution and correlate with enhanced reactivity. Full article
(This article belongs to the Special Issue Chemical Conversion and Utilization of CO2)
Show Figures

Graphical abstract

12 pages, 818 KB  
Article
Predictors of Long-Term Relapse in Primary Monosymptomatic Nocturnal Enuresis: A Retrospective Cohort Study
by Serap Ata and Sevim Yener
Children 2026, 13(1), 103; https://doi.org/10.3390/children13010103 - 10 Jan 2026
Viewed by 52
Abstract
Introduction: Nocturnal enuresis is defined as involuntary urination during sleep in children, particularly those aged 5 years or older. Primary monosymptomatic nocturnal enuresis (PMNE) involves nighttime wetting without daytime symptoms, and although factors like reduced bladder capacity, nocturnal polyuria, and impaired arousal contribute, [...] Read more.
Introduction: Nocturnal enuresis is defined as involuntary urination during sleep in children, particularly those aged 5 years or older. Primary monosymptomatic nocturnal enuresis (PMNE) involves nighttime wetting without daytime symptoms, and although factors like reduced bladder capacity, nocturnal polyuria, and impaired arousal contribute, predictors of long-term relapse remain uncertain. Methods: This retrospective cohort study included 227 children aged ≥5 years with strictly defined PMNE who achieved complete remission following a standardized 3-month treatment protocol (alarm therapy, desmopressin, or desmopressin plus oxybutynin). All children underwent ICCS-based assessment, including physical examination, urinalysis, ultrasonography, UFM, a 48 h frequency/volume (F/V) diary, and post-void residual measurement. One year after treatment discontinuation, patients were reassessed using a 14-day wet-night diary. Predictors of relapse were analyzed using comparative statistics. Result: At 1-year follow-up, 48.5% of children experienced relapse. Age, sex, treatment modality, family history, and baseline wet-night frequency were not associated with relapse (p > 0.05). Diary-based FBC was significantly higher than UFM-based capacity (p < 0.001). Reduced diary-based mean FBC/EBC ratios were significantly more common among relapsing children (p < 0.001), whereas UFM-derived ratios showed no significant difference (p = 0.052). ROC analysis demonstrated moderate discriminatory performance for diary-based FBC/EBC (AUC 0.671). A ratio > 79% predicted sustained remission with 83.6% specificity and a positive predictive value of 73.5%. Conclusions: Diary-derived bladder capacity is the strongest predictor of long-term relapse in PMNE and outperforms UFM-based assessment. A mean FBC/EBC ratio > 79% provides a clinically useful threshold for identifying children at low risk of recurrence. Those with reduced diary-based capacity may benefit from closer follow-up or extended maintenance therapy. Full article
(This article belongs to the Section Pediatric Nephrology & Urology)
Show Figures

Figure 1

15 pages, 5279 KB  
Article
High-Density Aviation Fuel or Diesel-Range Naphthenes Are Synthesized from Biomass-Derived Isophorone and Furfural
by Mengze Sun, Xing Zhang, Jiamin Yan, Hui Zhang, Zhipeng Li, Li Huang, Song Jin, Wei Wang and Ning Li
Catalysts 2026, 16(1), 83; https://doi.org/10.3390/catal16010083 - 10 Jan 2026
Viewed by 40
Abstract
High-density aviation fuels and diesel-range cycloalkanes are in high demand for the transportation sector, but the development of sustainable and high-efficiency synthesis routes from biomass-derived platform chemicals remains a key challenge. High-density aviation fuel and diesel-grade cycloalkanes were successfully synthesized from biomass-derived isophorone [...] Read more.
High-density aviation fuels and diesel-range cycloalkanes are in high demand for the transportation sector, but the development of sustainable and high-efficiency synthesis routes from biomass-derived platform chemicals remains a key challenge. High-density aviation fuel and diesel-grade cycloalkanes were successfully synthesized from biomass-derived isophorone and furfural through a continuous process of selective hydrogenation, aldol condensation, and hydrodeoxygenation reaction. (E) 2-(Furan-2-methylene)-3,5,5-trimethylcyclohex-1-one (1A) was obtained by selective hydrogenation of isophorone to obtain 3,3,5-trimethylcyclohexanone (TMCH), which was then subjected to aldol condensation with furfural. The system studied key reaction parameters such as solvent type, temperature, catalyst type, catalyst loading, and reaction time that affect the aldol condensation of TMCH and furfural. The yield of 1A reached 98.69%, under optimized conditions using NaOH as the catalyst at a molar ratio of 3,3,5-trimethylcyclohexanone:furfural = 1:1, NaOH 0.15 g, anhydrous ethanol as the solvent, and a reaction temperature of 313 K for 1 h. A series of nickel-based catalysts supported on porous materials, including SiO2, CeO2, Al2O3, Hβ, and HZSM-5, were prepared and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These catalysts were evaluated for the hydrodeoxygenation of 1A. Among them, the 10% Ni-SiO2 catalyst exhibited the highest catalytic activity, affording a C9–C14 cycloalkane yield of 88.32% and a total carbon yield of 99.6%. This work demonstrates a promising and sustainable strategy for producing branched cycloalkanes in the diesel and jet fuel range from lignocellulosic biomass-derived platform chemicals. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

9 pages, 458 KB  
Article
A Novel Combination of Postbiotics and Essential Oil Compounds Supports a Consistent Improvement in Broiler Performance
by Vivek A. Kuttappan, Gregory S. Archer, Yann Fournis and Marc Decoux
Animals 2026, 16(2), 209; https://doi.org/10.3390/ani16020209 - 10 Jan 2026
Viewed by 73
Abstract
Recent innovations in poultry feed technology have emphasized the role of postbiotics and phytogenics as promising strategies to strengthen gut health and improve overall performance in broilers. Within this context, the current study evaluated the effectiveness of Biostrong™ Dual (Cargill Inc., Cedar Rapids, [...] Read more.
Recent innovations in poultry feed technology have emphasized the role of postbiotics and phytogenics as promising strategies to strengthen gut health and improve overall performance in broilers. Within this context, the current study evaluated the effectiveness of Biostrong™ Dual (Cargill Inc., Cedar Rapids, IA, USA), a novel product that integrates Saccharomyces cerevisiae fermentation-derived postbiotic products (SCFPs) with a proprietary blend of essential oil compounds (EOCs). The objective was to determine whether this dual formulation could consistently enhance growth, feed efficiency, and carcass quality across multiple production phases. To test this, three independent trials were conducted using commercial broiler strains. Birds were allocated to either a control group (CON) receiving a basal diet or a treatment group (DUAL) receiving the same diet supplemented with 0.4 kg/MT of Biostrong™ Dual. Each trial employed a randomized block design with 24 replicates per treatment and 16–25 birds per replicate. Results consistently demonstrated that DUAL improved (p < 0.05) body weight and the cumulative feed conversion ratio (cFCR) at 42 days. Pooled analysis revealed body weight gains of 5.5%, a cFCR improvement of 5 points, increased feed intake, and a 0.86% rise in breast meat yield. Additionally, one trial showed reduced footpad lesion scores. Collectively, these findings highlight Biostrong™ Dual as a valuable nutritional intervention to optimize productivity and carcass quality in poultry production and further research is needed to understand the mode of action of the product. Full article
(This article belongs to the Special Issue Novel Feed Additives in Livestock and Poultry Nutrition)
Show Figures

Figure 1

30 pages, 3405 KB  
Article
Cooperation Strategies of Sharing Platform and Manufacturers Considering Value-Added Services
by Huabao Zeng, Jin Yan, Tong Shu, Jinhong Li and Shouyang Wang
Mathematics 2026, 14(2), 252; https://doi.org/10.3390/math14020252 - 9 Jan 2026
Viewed by 61
Abstract
Shared manufacturing platforms improve the utilization of manufacturing resources by digitally matching demand with competing manufacturers and providing value-added services (VAS). Because VAS is costly and its benefits are jointly created, an appropriate cooperation mechanism between the platform and manufacturers is essential for [...] Read more.
Shared manufacturing platforms improve the utilization of manufacturing resources by digitally matching demand with competing manufacturers and providing value-added services (VAS). Because VAS is costly and its benefits are jointly created, an appropriate cooperation mechanism between the platform and manufacturers is essential for achieving sustainable profitability. This study explores three cooperation strategies: (1) no-cooperation strategy (Model N); (2) cost-sharing strategy (Model CS); and (3) revenue-sharing (Model RS) strategy. This study establishes a shared supply chain model for each strategy, derives the equilibrium results, and compares the optimal performances. The results show that neither cost sharing nor revenue sharing guarantees a Pareto improvement: both parties benefit only when the negotiated cost-sharing ratio or revenue-sharing rate lies within a feasible range that properly balances the platform’s service cost burden and the manufacturers’ participation incentives. Additionally, equilibrium profits for both manufacturers and the sharing platform are decreasing as the value-added services (VAS) cost coefficient increases. Thus, the sharing platform should endeavor to decrease the VAS cost efficiency to reduce the VAS cost and enhance profits for all participants. These findings provide actionable guidance for selecting cooperation strategies and setting sharing parameters to achieve mutually beneficial outcomes in platform-enabled shared manufacturing. Full article
Show Figures

Figure 1

17 pages, 4208 KB  
Article
Equivalent Elastic Modulus Study of a Novel Quadrangular Star-Shaped Zero Poisson’s Ratio Honeycomb Structure
by Aling Luo, Dong Yan, Zewei Wu, Hong Lu and He Ling
Symmetry 2026, 18(1), 127; https://doi.org/10.3390/sym18010127 - 9 Jan 2026
Viewed by 173
Abstract
This study proposes a novel four-pointed-star-shaped honeycomb structure having zero Poisson’s ratio, designed to overcome the stress concentration inherent in traditional point-to-point connected star-shaped honeycombs.By introducing a horizontal connecting wall at cell junctions, the new configuration achieves a more uniform stress distribution and [...] Read more.
This study proposes a novel four-pointed-star-shaped honeycomb structure having zero Poisson’s ratio, designed to overcome the stress concentration inherent in traditional point-to-point connected star-shaped honeycombs.By introducing a horizontal connecting wall at cell junctions, the new configuration achieves a more uniform stress distribution and enhanced structural stability. An analytical model for the in-plane equivalent elastic modulus was derived using homogenization theory and the energy method. The model, along with the structure’s zero Poisson’s ratio characteristic, was validated through finite element simulations and experimental compression tests. The simulations predicted an equivalent elastic modulus of 51.71 MPa (Y-direction) and 74.67 MPa (X-direction), which aligned closely with the experimental measurements of 56.61 MPa and 60.50 MPa, respectively. The experimental Poisson’s ratio was maintained near zero (v = 0.02). Parametric analysis further revealed that the in-plane equivalent elastic modulus decreases with increases in the wall angle, horizontal wall length, and wall thickness. This work demonstrates a successful structural optimization strategy that improves both mechanical performance and manufacturability for zero Poisson’s ratio honeycomb applications. Full article
Show Figures

Figure 1

10 pages, 1178 KB  
Article
The Modification of Nitrogen to Modulate Perovskite for the Application of p-Type Transparent Conductive Oxides
by Yunting Liang, Kaihua Li, Haixu Chen, Yinling Wang, Shasha Zheng and Liuyang Bai
Molecules 2026, 31(2), 222; https://doi.org/10.3390/molecules31020222 - 8 Jan 2026
Viewed by 87
Abstract
Due to the strong electronegativity of oxygen ions, the valence band maximum (VBM) that is derived from the O 2p orbital leads to strong localization, as well as further heavy hole mass and low hole mobility, which makes it extremely difficult to obtain [...] Read more.
Due to the strong electronegativity of oxygen ions, the valence band maximum (VBM) that is derived from the O 2p orbital leads to strong localization, as well as further heavy hole mass and low hole mobility, which makes it extremely difficult to obtain high-conductivity p-type transparent conductive materials. Herein, we propose the strategy of multiple anions through the introduction of weaker electronegative nitrogen, in consideration of the delocalization on VBM, as well as the stability of octahedral anion cages. As such, first-principles calculations in the framework of density functional theory (DFT) are used for this work. Crystal structure prediction software USPEX (version 2023.0) was adopted to investigate the N-O appropriate ratio in CaTiO3−xNx (0 ≤ x ≤ 1) to balance the high transmission of light and highly favorable dispersion at the VBM. Furthermore, the p-type TCO performance of CaTiO3-xNx was evaluated based on the hole effective mass, hole mobility, and conductivity. The effectiveness of modulating p-type TCO through N-O multiple anions was also evaluated through defect formation energy and ionization energy. Ultimately, the construction of a CaTiO3-xNx/Si heterojunction and band alignment were considered for practical application. This approach attempts to boost the diversity of p-type perovskite-based TCOs and opens a new perspective for engineering and innovative material design for sustainable TCOs demand. Full article
Show Figures

Figure 1

Back to TopTop