Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit
Abstract
1. Introduction
2. Experimental Test Method and Experimental Scheme of Diamond Coring Bit
2.1. Experimental Equipment and Experimental Methods
2.2. Experimental Samples and Scheme
3. Experimental Data and Rock-Breaking Efficiency Analysis of Diamond Coring Bits
3.1. Experimental Results and Data Analysis
- (1)
- Experimental data of drilling sandstone
- (2)
- Experimental data of drilling limestone
- (3)
- Experimental data of drilling dolomite
3.2. Rock-Breaking Efficiency Analysis
4. Working Mechanics Modeling and Load Calculation of Diamond Coring Bits
4.1. Cutting Force Modeling of Single-Crystal Diamond
4.2. Working Load Modeling of Full Drill Bit
- where is
5. Conclusions and Limitations
5.1. Conclusions
5.2. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Ji, G.; Wang, H.; Chen, C.; Ji, G.; Wang, H.; Huang, H.; Wu, Q.; Liu, L. Safe speed-up drilling technology for ultra-deep well based on geology-engineering integration. Springer Ser. Geomech. Geoeng. 2023, 2023, 2784–2798. [Google Scholar] [CrossRef]
- Dvoynikov, M.V.; Sidorkin, D.I.; Yurtaev, S.L.; Grokhotov, E.I.; Ulyanov, D.S. Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields. J. Min. Inst. 2022, 258, 945–955. [Google Scholar] [CrossRef]
- Zhu, X.; Li, R.; Liu, W. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells. J. Southwest Pet. Univ. 2023, 45, 1–18. [Google Scholar]
- Hou, Z.; Jia, X.; Li, S.; Deng, W.; Zeng, D. Research on the torsion impact generator for speeding up drilling in deep formation of Yubei area. Oil Drill. Prod. Technol. 2013, 35, 132–136. [Google Scholar]
- Zhang, G.; Ma, F.; Liang, B.; Zhao, J.; Qin, H.; Liu, X.; Zhang, K.; Ke, W. Global progress in deep oil and gas exploration theories and technologies. Acta Pet. Sin. 2015, 36, 1156–1166. [Google Scholar]
- Chen, X. Current status and development trend of deep and ultra-deep well drilling technology. Chem. Eng. Equip. 2023, 312, 211–213. [Google Scholar]
- Chen, G.; Wu, J.; Liu, Y.; Wu, S.; Zhang, J.; Zhang, X. New progress and challenges in deep shale gas exploration and development in the southern Sichuan Basin. Nat. Gas Ind. 2022, 42, 24–34. [Google Scholar]
- Wang, H.; Huang, H.; Ji, G.; Chen, C.; Lv, Z.; Chen, W.; Bi, W.; Liu, L. Progress and challenges of deep, ultra-deep, and horizontal well drilling and completion technologies in China. Chin. Pet. Explor. 2023, 28, 1–11. [Google Scholar]
- Wang, D.; Liu, H.; Han, S.; Zhong, S.; Xiong, J.; Ye, L. Research on deep rock mechanics and deep well drilling technology. Drill. Prod. Technol. 2006, 3, 6–10. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Bi, W.; Ji, G.; Zhou, B.; Zhuo, L. Deep and ultra-deep oil and gas well drilling technologies: Progress and prospect. Nat. Gas Ind. B 2022, 9, 141–157. [Google Scholar] [CrossRef]
- Fang, J.; Yan, T.; Li, T. Analysis on bottom-hole wear process of double-nozzle ultra-high matrix diamond drill bit. Coal Geol. Explor. 2011, 39, 74–77. [Google Scholar]
- Ruan, H.; Shen, L.; Li, C.; Ouyang, Z.; Wu, H.; Chen, Y. Development and application of a new type of sharp-tooth PDC bit for elastic-plastic dense mudstone. Explor. Eng. 2014, 41, 80–83. [Google Scholar]
- Wang, J.; Zhang, S. Experimental study and rock-breaking mechanism analysis of matrix-wear-weakened impregnated diamond drill bit. J. Cent. South Univ. 2015, 46, 1436–1441. [Google Scholar]
- Loginov, P.A.; Sidorenko, D.A.; Bychkova, M.Y.; Zaitsev, A.A.; Levashov, E.A. Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder. Int. J. Adv. Manuf. Technol. 2019, 102, 2041–2047. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, K. Experimental study on wear of diamond milling cutter in stone cutting. Mech. Des. Manuf. 2019, 4, 143–145. [Google Scholar]
- Gao, Y.; Chen, Y. Experimental study on diamond drill bit for drilling hard and dense rock formations. Superhard Mater. Eng. 2021, 33, 1–6. [Google Scholar]
- Wang, Y.; Yin, X.; Yin, G.; Chen, H.; Wang, L.; Feng, Y.; Xu, L. Development of continuous coring bit for deep-sea hard rock. Drill. Eng. 2021, 48, 26–32. [Google Scholar]
- Wang, Y.; Zhang, K.; Li, Q.; Zhou, Q.; Ling, X.; Liu, B. Study on the interaction between single diamond particle and rock under ultra-high speed. Drill. Eng. 2023, 50, 21–29. [Google Scholar]
- Li, X.; Li, K.; Liang, J.; Yin, H.; Wang, Z.; Sun, J.; Zhang, Y. Analysis of core jamming causes and preventive measures in coring drilling in complex formations. Explor. Eng. 2018, 45, 12–15. [Google Scholar]
- Li, X.; Liu, X.; Yin, H. Optimization design concept of wireline coring tools for deep holes in complex formations. Explor. Eng. 2017, 44, 56–59. [Google Scholar]
- Kong, Z.; Yu, X. Coring drilling technology for ancient buried hill reservoirs in Liaohe Oilfield. Pet. Drill. Technol. 2014, 42, 50–54. [Google Scholar]
- Yu, W.; Blanchard, J.P. An elastic-plastic indentation model and its solution. J. Mater. Res. 1996, 11, 2358–2367. [Google Scholar] [CrossRef]
- Zou, Y.J. Understanding and Comprehension of Soil Cohesion and Internal Friction Angle. For. Constr. 2014, 4, 40–42. [Google Scholar]












| Rock Type | Compressive Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio | Drillability Grade | Hardness (MPa) |
|---|---|---|---|---|---|
| Sandstone | 67.548 ± 2.13 | 11.54 ± 0.42 | 0.062 ± 0.005 | 5.07 ± 0.12 | 630.96 ± 15.72 |
| Limestone | 105.951 ± 3.47 | 31.2 ± 0.89 | 0.171 ± 0.008 | 8.58 ± 0.15 | 1495.1 ± 28.63 |
| Dolomite | 110.973 ± 3.82 | 34.42 ± 0.95 | 0.201 ± 0.009 | 8.67 ± 0.16 | 1574.4 ± 31.29 |
| Serial Number | Drilling Pressure (kN) | Rotating Speed (r/min) | Rock Type | Number of Repeats |
|---|---|---|---|---|
| 1 | 5 | 25 | Sandstone | 3 |
| 2 | 10 | 50 | Sandstone | 3 |
| 3 | 10 | 80 | Sandstone | 3 |
| 4 | 15 | 50 | Sandstone | 3 |
| 5 | 10 | 25 | Limestone | 3 |
| 6 | 5 | 50 | Limestone | 3 |
| 7 | 10 | 50 | Limestone | 3 |
| 8 | 15 | 80 | Limestone | 3 |
| 9 | 10 | 25 | Dolomite | 3 |
| 10 | 15 | 25 | Dolomite | 3 |
| 11 | 5 | 50 | Dolomite | 3 |
| 12 | 10 | 50 | Dolomite | 3 |
| 13 | 15 | 50 | Dolomite | 3 |
| 14 | 5 | 80 | Dolomite | 3 |
| 15 | 10 | 80 | Dolomite | 3 |
| Drilling Pressure (kN) | Rotating Speed (r/min) | Torque (N·m) | Drilling Rate (m/h) |
|---|---|---|---|
| 5 | 25 | 120.51 ± 7.23 | 0.052 ± 0.004 |
| 10 | 50 | 187.19 ± 9.45 | 0.37 ± 0.021 |
| 10 | 80 | 194.39 ± 10.12 | 0.79 ± 0.038 |
| 15 | 50 | 252.54 ± 12.67 | 0.69 ± 0.042 |
| Drilling Pressure (kN) | Rotating Speed (r/min) | Torque (N·m) | Drilling Rate (m/h) |
|---|---|---|---|
| 5 | 50 | 58.85 ± 3.53 | 0.11 ± 0.007 |
| 10 | 25 | 119.49 ± 6.08 | 0.13 ± 0.008 |
| 10 | 50 | 126.77 ± 7.61 | 0.15 ± 0.009 |
| 15 | 80 | 243.04 ± 12.15 | 0.97 ± 0.058 |
| Drilling Pressure (kN) | Rotating Speed (r/min) | Torque (N·m) | Drilling Rate (m/h) |
|---|---|---|---|
| 5 | 50 | 86.52 ± 4.33 | 0.19 ± 0.011 |
| 5 | 80 | 85.21 ± 4.26 | 0.31 ± 0.015 |
| 10 | 25 | 171.59 ± 8.58 | 0.31 ± 0.016 |
| 10 | 50 | 177.53 ± 8.88 | 0.54 ± 0.027 |
| 10 | 80 | 192.77 ± 9.64 | 0.63 ± 0.031 |
| 15 | 25 | 310.77 ± 15.54 | 0.42 ± 0.021 |
| 15 | 50 | 329.81 ± 16.49 | 0.82 ± 0.041 |
| Drilling Pressure (kN) | Rotational Speed (r/min) | MSE (J/cm3)—Sandstone | MSE (J/cm3)—Limestone | MSE (J/cm3)—Dolomite |
|---|---|---|---|---|
| 5 | 25 | 60.16 ± 3.61 | / | / |
| 5 | 50 | / | 32.97 ± 1.98 | 23.65 ± 1.42 |
| 5 | 80 | / | / | 25.52 ± 1.53 |
| 10 | 25 | / | 23.89 ± 1.43 | 14.39 ± 0.86 |
| 10 | 50 | 26.29 ± 1.58 | 29.33 ± 1.76 | 21.86 ± 1.31 |
| 10 | 80 | 24.59 ± 1.48 | / | 25.44 ± 1.53 |
| 15 | 25 | / | / | 19.24 ± 1.15 |
| 15 | 50 | 23.01 ± 1.38 | / | 20.92 ± 1.25 |
| 15 | 80 | / | 33.18 ± 1.99 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yao, J.; Liu, B.; Yao, K.; Ren, H. Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit. Processes 2026, 14, 267. https://doi.org/10.3390/pr14020267
Yao J, Liu B, Yao K, Ren H. Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit. Processes. 2026; 14(2):267. https://doi.org/10.3390/pr14020267
Chicago/Turabian StyleYao, Jianlin, Bin Liu, Kunpeng Yao, and Haitao Ren. 2026. "Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit" Processes 14, no. 2: 267. https://doi.org/10.3390/pr14020267
APA StyleYao, J., Liu, B., Yao, K., & Ren, H. (2026). Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit. Processes, 14(2), 267. https://doi.org/10.3390/pr14020267
