Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (747)

Search Parameters:
Keywords = deep gated recurrent unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8993 KiB  
Article
A Lightweight Spatiotemporal Graph Framework Leveraging Clustered Monitoring Networks and Copula-Based Pollutant Dependency for PM2.5 Forecasting
by Mohammad Taghi Abbasi, Ali Asghar Alesheikh and Fatemeh Rezaie
Land 2025, 14(8), 1589; https://doi.org/10.3390/land14081589 - 4 Aug 2025
Abstract
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. [...] Read more.
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. However, many existing models, despite their high predictive accuracy, face computational complexity and scalability challenges. This study introduces clustered and lightweight spatio-temporal graph convolutional network with gated recurrent unit (ClusLite-STGCN-GRU), a hybrid model that integrates spatial clustering based on pollutant time series for graph construction, Copula-based dependency analysis for selecting relevant pollutants to predict PM2.5, and graph convolution combined with gated recurrent units to extract spatiotemporal features. Unlike conventional approaches that require learning or dynamically updating adjacency matrices, ClusLite-STGCN-GRU employs a fixed, simple cluster-based structure. Experimental results on Tehran air quality data demonstrate that the proposed model not only achieves competitive predictive performance compared to more complex models, but also significantly reduces computational cost—by up to 66% in training time, 83% in memory usage, and 84% in number of floating-point operations—making it suitable for real-time applications and offering a practical balance between accuracy, interpretability, and efficiency. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 142
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

19 pages, 3636 KiB  
Article
Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model
by Hanlin Liu, Yule Hu and Zhenkun Wu
Appl. Sci. 2025, 15(15), 8317; https://doi.org/10.3390/app15158317 - 26 Jul 2025
Viewed by 198
Abstract
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. [...] Read more.
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. To solve these problems, this study proposes a parallel input gated recurrent unit (Pi-GRU) model based on the TensorFlow framework. The GRU network captures the temporal dependencies of sequence data (such as dip angle and azimuth angle), while the BP neural network extracts deep correlations from non-sequence features (such as stratum lithology), thereby achieving multi-source data fusion modeling. Orthogonal experimental design was adopted to optimize the model hyperparameters, and the ablation experiment confirmed the necessity of the parallel architecture. The experimental results obtained based on the data of a certain coal mine in Shanxi Province show that the mean square errors (MSE) of the azimuth and dip angle angles of the Pi-GRU model are 0.06° and 0.01°, respectively. Compared with the emerging CNN-BiLSTM model, they are reduced by 66.67% and 76.92%, respectively. To evaluate the generalization performance of the model, we conducted cross-scenario validation on the dataset of the Dehong Coal Mine. The results showed that even under unknown geological conditions, the Pi-GRU model could still maintain high-precision predictions. The Pi-GRU model not only outperforms existing methods in terms of prediction accuracy, with an inference delay of only 0.21 milliseconds, but also requires much less computing power for training and inference than the maximum computing power of the Jetson TX2 hardware. This proves that the model has good practicability and deployability in the engineering field. It provides a new idea for real-time wellbore trajectory correction in intelligent drilling systems and shows strong application potential in engineering applications. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

22 pages, 2728 KiB  
Article
Intelligent Deep Learning Modeling and Multi-Objective Optimization of Boiler Combustion System in Power Plants
by Chen Huang, Yongshun Zheng, Hui Zhao, Jianchao Zhu, Yongyan Fu, Zhongyi Tang, Chu Zhang and Tian Peng
Processes 2025, 13(8), 2340; https://doi.org/10.3390/pr13082340 - 23 Jul 2025
Viewed by 216
Abstract
The internal combustion process in a boiler in power plants has a direct impact on boiler efficiency and NOx generation. The objective of this study is to propose an intelligent deep learning modeling and multi-objective optimization approach that considers NOx emission concentration and [...] Read more.
The internal combustion process in a boiler in power plants has a direct impact on boiler efficiency and NOx generation. The objective of this study is to propose an intelligent deep learning modeling and multi-objective optimization approach that considers NOx emission concentration and boiler thermal efficiency simultaneously for boiler combustion in power plants. Firstly, a hybrid deep learning model, namely, convolutional neural network–bidirectional gated recurrent unit (CNN-BiGRU), is employed to predict the concentration of NOx emissions and the boiler thermal efficiency. Then, based on the hybrid deep prediction model, variables such as primary and secondary airflow rates are considered as controllable variables. A single-objective optimization model based on an improved flow direction algorithm (IFDA) and a multi-objective optimization model based on NSGA-II are developed. For multi-objective optimization using NSGA-II, the average NOx emission concentration is reduced by 5.01%, and the average thermal efficiency is increased by 0.32%. The objective functions are to minimize the boiler thermal efficiency and the concentration of NOx emissions. Comparative analysis of the experiments shows that the NSGA-II algorithm can provide a Pareto optimal front based on the requirements, resulting in better results than single-objective optimization. The effectiveness of the NSGA-II algorithm is demonstrated, and the obtained results provide reference values for the low-carbon and environmentally friendly operation of coal-fired boilers in power plants. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

30 pages, 9222 KiB  
Article
Using Deep Learning in Forecasting the Production of Electricity from Photovoltaic and Wind Farms
by Michał Pikus, Jarosław Wąs and Agata Kozina
Energies 2025, 18(15), 3913; https://doi.org/10.3390/en18153913 - 23 Jul 2025
Viewed by 297
Abstract
Accurate forecasting of electricity production is crucial for the stability of the entire energy sector. However, predicting future renewable energy production and its value is difficult due to the complex processes that affect production using renewable energy sources. In this article, we examine [...] Read more.
Accurate forecasting of electricity production is crucial for the stability of the entire energy sector. However, predicting future renewable energy production and its value is difficult due to the complex processes that affect production using renewable energy sources. In this article, we examine the performance of basic deep learning models for electricity forecasting. We designed deep learning models, including recursive neural networks (RNNs), which are mainly based on long short-term memory (LSTM) networks; gated recurrent units (GRUs), convolutional neural networks (CNNs), temporal fusion transforms (TFTs), and combined architectures. In order to achieve this goal, we have created our benchmarks and used tools that automatically select network architectures and parameters. Data were obtained as part of the NCBR grant (the National Center for Research and Development, Poland). These data contain daily records of all the recorded parameters from individual solar and wind farms over the past three years. The experimental results indicate that the LSTM models significantly outperformed the other models in terms of forecasting. In this paper, multilayer deep neural network (DNN) architectures are described, and the results are provided for all the methods. This publication is based on the results obtained within the framework of the research and development project “POIR.01.01.01-00-0506/21”, realized in the years 2022–2023. The project was co-financed by the European Union under the Smart Growth Operational Programme 2014–2020. Full article
Show Figures

Figure 1

26 pages, 4203 KiB  
Article
Research on Industrial Process Fault Diagnosis Method Based on DMCA-BiGRUN
by Feng Yu, Changzhou Zhang and Jihan Li
Mathematics 2025, 13(15), 2331; https://doi.org/10.3390/math13152331 - 22 Jul 2025
Viewed by 199
Abstract
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, [...] Read more.
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, which makes it difficult to capture multi-scale features simultaneously. Additionally, the use of numerous fixed-size convolutional filters often results in redundant parameters. During the feature extraction process, the CNN often struggles to take inter-channel dependencies and spatial location information into consideration. There are also limitations in extracting various time-scale features. To address these issues, a fault diagnosis method on the basis of a dual-path mixed convolutional attention-BiGRU network (DMCA-BiGRUN) is proposed for industrial processes. Firstly, a dual-path mixed CNN (DMCNN) is designed to capture features at multiple scales while effectively reducing the parameter count. Secondly, a coordinate attention mechanism (CAM) is designed to help the network to concentrate on main features more effectively during feature extraction by combining the channel relationship and position information. Finally, a bidirectional gated recurrent unit (BiGRU) is introduced to process sequences in both directions, which can effectively learn the long-range temporal dependencies of sequence data. To verify the fault diagnosis performance of the proposed method, simulation experiments are implemented on the Tennessee Eastman (TE) and Continuous Stirred Tank Reactor (CSTR) datasets. Some deep learning methods are compared in the experiments, and the results confirm the feasibility and superiority of DMCA-BiGRUN. Full article
Show Figures

Figure 1

31 pages, 7723 KiB  
Article
A Hybrid CNN–GRU–LSTM Algorithm with SHAP-Based Interpretability for EEG-Based ADHD Diagnosis
by Makbal Baibulova, Murat Aitimov, Roza Burganova, Lazzat Abdykerimova, Umida Sabirova, Zhanat Seitakhmetova, Gulsiya Uvaliyeva, Maksym Orynbassar, Aislu Kassekeyeva and Murizah Kassim
Algorithms 2025, 18(8), 453; https://doi.org/10.3390/a18080453 - 22 Jul 2025
Viewed by 455
Abstract
This study proposes an interpretable hybrid deep learning framework for classifying attention deficit hyperactivity disorder (ADHD) using EEG signals recorded during cognitively demanding tasks. The core architecture integrates convolutional neural networks (CNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) layers to [...] Read more.
This study proposes an interpretable hybrid deep learning framework for classifying attention deficit hyperactivity disorder (ADHD) using EEG signals recorded during cognitively demanding tasks. The core architecture integrates convolutional neural networks (CNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) layers to jointly capture spatial and temporal dynamics. In addition to the final hybrid architecture, the CNN–GRU–LSTM model alone demonstrates excellent accuracy (99.63%) with minimal variance, making it a strong baseline for clinical applications. To evaluate the role of global attention mechanisms, transformer encoder models with two and three attention blocks, along with a spatiotemporal transformer employing 2D positional encoding, are benchmarked. A hybrid CNN–RNN–transformer model is introduced, combining convolutional, recurrent, and transformer-based modules into a unified architecture. To enhance interpretability, SHapley Additive exPlanations (SHAP) are employed to identify key EEG channels contributing to classification outcomes. Experimental evaluation using stratified five-fold cross-validation demonstrates that the proposed hybrid model achieves superior performance, with average accuracy exceeding 99.98%, F1-scores above 0.9999, and near-perfect AUC and Matthews correlation coefficients. In contrast, transformer-only models, despite high training accuracy, exhibit reduced generalization. SHAP-based analysis confirms the hybrid model’s clinical relevance. This work advances the development of transparent and reliable EEG-based tools for pediatric ADHD screening. Full article
Show Figures

Graphical abstract

26 pages, 6714 KiB  
Article
End-of-Line Quality Control Based on Mel-Frequency Spectrogram Analysis and Deep Learning
by Jernej Mlinarič, Boštjan Pregelj and Gregor Dolanc
Machines 2025, 13(7), 626; https://doi.org/10.3390/machines13070626 - 21 Jul 2025
Viewed by 198
Abstract
This study presents a novel approach to the end-of-line (EoL) quality inspection of brushless DC (BLDC) motors by implementing a deep learning model that combines MEL diagrams, convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs). The suggested system utilizes raw vibration [...] Read more.
This study presents a novel approach to the end-of-line (EoL) quality inspection of brushless DC (BLDC) motors by implementing a deep learning model that combines MEL diagrams, convolutional neural networks (CNNs) and bidirectional gated recurrent units (BiGRUs). The suggested system utilizes raw vibration and sound signals, recorded during the EoL quality inspection process at the end of an industrial manufacturing line. Recorded signals are transformed directly into Mel-frequency spectrograms (MFS) without pre-processing. To remove non-informative frequency bands and increase data relevance, a six-step data reduction procedure was implemented. Furthermore, to improve fault characterization, a reference spectrogram was generated from healthy motors. The neural network was trained on a highly imbalanced dataset, using oversampling and Bayesian hyperparameter optimization. The final classification algorithm achieved classification metrics with high accuracy (99%). Traditional EoL inspection methods often rely on threshold-based criteria and expert analysis, which can be inconsistent, time-consuming, and poorly scalable. These methods struggle to detect complex or subtle patterns associated with early-stage faults. The proposed approach addresses these issues by learning discriminative patterns directly from raw sensor data and automating the classification process. The results confirm that this approach can reduce the need for human expert engagement during commissioning, eliminate redundant inspection steps, and improve fault detection consistency, offering significant production efficiency gains. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

32 pages, 8923 KiB  
Article
A Comparative Study of Unsupervised Deep Learning Methods for Anomaly Detection in Flight Data
by Sameer Kumar Jasra, Gianluca Valentino, Alan Muscat and Robert Camilleri
Aerospace 2025, 12(7), 645; https://doi.org/10.3390/aerospace12070645 - 21 Jul 2025
Viewed by 266
Abstract
This paper provides a comparative study of unsupervised Deep Learning (DL) methods for anomaly detection in Flight Data Monitoring (FDM). The paper applies Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Convolutional Neural Network (CNN), classic Transformer architecture, and LSTM combined with a [...] Read more.
This paper provides a comparative study of unsupervised Deep Learning (DL) methods for anomaly detection in Flight Data Monitoring (FDM). The paper applies Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Convolutional Neural Network (CNN), classic Transformer architecture, and LSTM combined with a self-attention mechanism to real-world flight data and compares the results to the current state-of-the-art flight data analysis techniques applied in the industry. The paper finds that LSTM, when integrated with a self-attention mechanism, offers notable benefits over other deep learning methods as it effectively handles lengthy time series like those present in flight data, establishes a generalized model applicable across various airports and facilitates the detection of trends across the entire fleet. The results were validated by industrial experts. The paper additionally investigates a range of methods for feeding flight data (lengthy time series) to a neural network. The innovation of this paper involves utilizing Transformer architecture and LSTM with self-attention mechanism for the first time in the realm of aviation data, exploring the optimal method for inputting flight data into a model and evaluating all deep learning techniques for anomaly detection against the ground truth determined by human experts. The paper puts forth a compelling case for shifting from the existing method, which relies on examining events through threshold exceedances, to a deep learning-based approach that offers a more proactive style of data analysis. This not only enhances the generalization of the FDM process but also has the potential to improve air transport safety and optimize aviation operations. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

26 pages, 5535 KiB  
Article
Research on Power Cable Intrusion Identification Using a GRT-Transformer-Based Distributed Acoustic Sensing (DAS) System
by Xiaoli Huang, Xingcheng Wang, Han Qin and Zhaoliang Zhou
Informatics 2025, 12(3), 75; https://doi.org/10.3390/informatics12030075 - 21 Jul 2025
Viewed by 418
Abstract
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch [...] Read more.
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch parallel collaborative architecture: two branches employ Gramian Angular Summation Field (GASF) and Recursive Pattern (RP) algorithms to convert one-dimensional intrusion waveforms into two-dimensional images, thereby capturing rich spatial patterns and dynamic characteristics and the third branch utilizes a Gated Recurrent Unit (GRU) algorithm to directly focus on the temporal evolution features of the waveform; additionally, a Transformer component is integrated to capture the overall trend and global dependencies of the signals. Ultimately, the terminal employs a Bidirectional Long Short-Term Memory (BiLSTM) network to perform a deep fusion of the multidimensional features extracted from the three branches, enabling a comprehensive understanding of the bidirectional temporal dependencies within the data. Experimental validation demonstrates that the GRT-Transformer achieves an average recognition accuracy of 97.3% across three typical intrusion events—illegal tapping, mechanical operations, and vehicle passage—significantly reducing false alarms, surpassing traditional methods, and exhibiting strong practical potential in complex real-world scenarios. Full article
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Viewed by 264
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 237
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

27 pages, 3705 KiB  
Article
A Method for Selecting the Appropriate Source Domain Buildings for Building Energy Prediction in Transfer Learning: Using the Euclidean Distance and Pearson Coefficient
by Chuyi Luo, Liang Xia and Sung-Hugh Hong
Energies 2025, 18(14), 3706; https://doi.org/10.3390/en18143706 - 14 Jul 2025
Viewed by 187
Abstract
Building energy prediction faces challenges such as data scarcity while Transfer Learning (TL) demonstrates significant potential by leveraging source building energy data to enhance target building energy prediction. However, the accuracy of TL heavily relies on selecting appropriate source buildings as the source [...] Read more.
Building energy prediction faces challenges such as data scarcity while Transfer Learning (TL) demonstrates significant potential by leveraging source building energy data to enhance target building energy prediction. However, the accuracy of TL heavily relies on selecting appropriate source buildings as the source data. This study proposes a novel, easy-to-understand, statistics-based visualization method that combines the Euclidean distance and Pearson correlation coefficient for selecting source buildings in TL for target building electricity prediction. Long Short-Term Memory, the Gated Recurrent Unit, and the Convolutional Neural Network were applied to verify the appropriateness of the source domain buildings. The results showed the source building, selected via the method proposed by this research, could reduce 65% of computational costs, while the RMSE was approximately 6.5 kWh, and the R2 was around 0.92. The method proposed in this study is well suited for scenes requiring rapid response times and exhibiting low tolerance for prediction errors. Full article
(This article belongs to the Special Issue Innovations in Low-Carbon Building Energy Systems)
Show Figures

Figure 1

24 pages, 26672 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 580
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

32 pages, 9426 KiB  
Article
Multi-Output Prediction and Optimization of CO2 Laser Cutting Quality in FFF-Printed ASA Thermoplastics Using Machine Learning Approaches
by Oguzhan Der
Polymers 2025, 17(14), 1910; https://doi.org/10.3390/polym17141910 - 10 Jul 2025
Viewed by 421
Abstract
This research article examines the CO2 laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), [...] Read more.
This research article examines the CO2 laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), bottom kerf width (Bottom KW), and bottom heat-affected zone (Bottom HAZ). Forty-five experiments were conducted using five thickness levels, three power levels, and three cutting speeds. To model and predict these outputs, seven machine learning approaches were employed: Autoencoder, Autoencoder–Gated Recurrent Unit, Autoencoder–Long Short-Term Memory, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Regression, and Linear Regression. Among them, XGBoost yielded the highest accuracy across all performance metrics. Analysis of Variance results revealed that Ra is mainly affected by plate thickness, Bottom KW by cutting speed, and Bottom HAZ by power, while Top KW is influenced by all three parameters. The study proposes an effective prediction framework using multi-output modeling and hybrid deep learning, offering a data-driven foundation for process optimization. The findings are expected to support intelligent manufacturing systems for real-time quality prediction and adaptive laser post-processing of engineering-grade thermoplastics such as ASA. This integrative approach also enables a deeper understanding of nonlinear dependencies in laser–material interactions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop