Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = deep coal seams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2448 KiB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 - 3 Aug 2025
Viewed by 208
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 193
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

31 pages, 14609 KiB  
Article
Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
by Xianglong Fang, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li and Yidong Cai
Energies 2025, 18(15), 3987; https://doi.org/10.3390/en18153987 - 25 Jul 2025
Viewed by 249
Abstract
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal [...] Read more.
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal seam in the Yulin area of Ordos basin as the research subject. Based on the test results from core drilling wells, a comprehensive analysis of the characteristics and variation patterns of coal reservoir properties and a comparative analysis of the exploration and development potential of deep CBM are conducted, aiming to provide guidance for the development of deep CBM in the Ordos basin. The research results indicate that the coal seams are primarily composed of primary structure coal, with semi-bright to bright being the dominant macroscopic coal types. The maximum vitrinite reflectance (Ro,max) ranges between 1.99% and 2.24%, the organic is type III, and the high Vitrinite content provides a substantial material basis for the generation of CBM. Longitudinally, influenced by sedimentary environment and plant types, the lower part of the coal seam exhibits higher Vitrinite content and fixed carbon (FCad). The pore morphology is mainly characterized by wedge-shaped/parallel plate-shaped pores and open ventilation pores, with good connectivity, which is favorable for the storage and output of CBM. Micropores (<2 nm) have the highest volume proportion, showing an increasing trend with burial depth, and due to interlayer sliding and capillary condensation, the pore size (<2 nm) distribution follows an N shape. The full-scale pore heterogeneity (fractal dimension) gradually increases with increasing buried depth. Macroscopic fractures are mostly found in bright coal bands, while microscopic fractures are more developed in Vitrinite, showing a positive correlation between fracture density and Vitrinite content. The porosity and permeability conditions of reservoirs are comparable to the Daning–Jixian block, mostly constituting oversaturated gas reservoirs with a critical depth of 2400–2600 m and a high proportion of free gas, exhibiting promising development prospects, and the middle and upper coal seams are favorable intervals. In terms of resource conditions, preservation conditions, and reservoir alterability, the development potential of CBM from the Carboniferous deep 8# coal seam is comparable to the Linxing block but inferior to the Daning–Jixian block and Baijiahai uplift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

21 pages, 9288 KiB  
Article
Research on Deformation Mechanisms and Control Technology for Floor Heave in Deep Dynamic Pressure Roadway
by Haojie Xue, Chong Zhang, Yubing Huang, Ancheng Wang, Jie Wang, Kuoxing Li and Jiantao Zhang
Appl. Sci. 2025, 15(15), 8125; https://doi.org/10.3390/app15158125 - 22 Jul 2025
Viewed by 301
Abstract
Under deep, high-intensity mining conditions, a high mineral pressure develops at the working face, which can easily cause floor heave deformation of the roadway. In this paper, with the geological conditions of Buertai coal mine as the background, through on-site monitoring and numerical [...] Read more.
Under deep, high-intensity mining conditions, a high mineral pressure develops at the working face, which can easily cause floor heave deformation of the roadway. In this paper, with the geological conditions of Buertai coal mine as the background, through on-site monitoring and numerical simulation, the mechanism of strong dynamic pressure roadway floor heave is clarified and a cooperative control method for roadway floor heave deformation is proposed. The main conclusions are as follows: (1) The overall strength of the floor of this strong dynamic pressure roadway is low, which can easily cause roadway floor heave, and on-site multivariate monitoring of the mine pressure is carried out, which clarifies the evolution law of the mine pressure of the mining roadway and along-the-airway roadway. (2) Combined with FLAC3D numerical simulation software, we analyze the influence of coal seam depth and floor lithology on the stability of the roadway floor and find that both have a significant influence on the stability of the roadway. Under the condition of high-intensity mining, the floor will deteriorate gradually, forming a wide range of floor heave areas. (3) Based on the deformation and damage mechanism of the roadway floor, a synergistic control method of “roof cutting and pressure relief + floor anchor injection” is proposed and various technical parameters are designed. An optimized design scheme is designed for the control of floor heave in Buertai coal mine. Full article
Show Figures

Figure 1

27 pages, 53601 KiB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 279
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

20 pages, 15499 KiB  
Article
Molecular Dynamics Unveiled: Temperature–Pressure–Coal Rank Triaxial Coupling Mechanisms Governing Wettability in Gas–Water–Coal Systems
by Lixin Zhang, Songhang Zhang, Shuheng Tang, Zhaodong Xi, Jianxin Li, Qian Zhang, Ke Zhang and Wenguang Tian
Processes 2025, 13(7), 2209; https://doi.org/10.3390/pr13072209 - 10 Jul 2025
Viewed by 284
Abstract
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared [...] Read more.
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared with other geological formations, coals are characterized by a highly developed microporous structure, making the CO2 sequestration mechanism in coal seams closely linked to the microscale interactions among gas, water, and coal matrixes. However, the intrinsic mechanisms remain poorly understood. In this study, molecular dynamics simulations are employed to investigate the wettability behaviors of CO2, CH4, and water on different coal matrix surfaces under varying temperature and pressure conditions, for coal macromolecules representative of four coal ranks. The study reveals the evolution of water wettability in response to CO2 and CH4 injection, identifies wettability differences among coal ranks, and analyzes the microscopic mechanisms governing wettability. The results show the following: (1) The contact angle increases with gas pressure, and the variation in wettability is more pronounced in CO2 environments than in CH4. As pressure increases, the number of hydrogen bonds decreases, while the peak gas density of CH4 and CO2 increases, leading to larger contact angles. (2) Simulations under different temperatures for the four coal ranks indicate that temperature has minimal influence on low-rank Hegu coal, whereas for higher-rank coals, gas adsorption on the coal surface increases, resulting in reduced wettability. Interfacial tension analysis further suggests that higher temperatures reduce water surface tension, cause dispersion of water molecules, and consequently improve wettability. Understanding the wettability variations among different coal ranks under variable pressure–temperature conditions provides a fundamental model and theoretical basis for investigating deep coal seam gas–water interactions and CO2 geological sequestration mechanisms. These findings have significant implications for the advancement of CO2-ECBM technology. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

22 pages, 4046 KiB  
Article
Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams
by Xuan Chen, Chao Wu, Hua Zhang, Shiqi Liu, Xinggang Wang, Hongwei Li, Zongsen Yao, Kaisaer Wureyimu, Fansheng Huang and Zhongliang Cao
Processes 2025, 13(7), 2186; https://doi.org/10.3390/pr13072186 - 8 Jul 2025
Viewed by 295
Abstract
In the development of deep coalbed methane (CBM) resources, the adsorption behavior of supercritical methane is a key factor restricting reserve evaluation and development efficiency. This study integrates scanning electron microscopy (SEM), low-temperature CO2 adsorption (LTCO2A), mercury intrusion porosimetry (MIP), [...] Read more.
In the development of deep coalbed methane (CBM) resources, the adsorption behavior of supercritical methane is a key factor restricting reserve evaluation and development efficiency. This study integrates scanning electron microscopy (SEM), low-temperature CO2 adsorption (LTCO2A), mercury intrusion porosimetry (MIP), high-temperature and high-pressure CH4 adsorption experiments (HTHP-CH4A), and theoretical models to reveal the pore–fracture structure of deep coal seams and the adsorption characteristics of supercritical methane. Based on a predictive model for supercritical methane adsorption capacity, the adsorption capacity of deep methane was predicted. Results show that micro-pores are well-developed in deep coal rocks, but pore connectivity is generally poor, predominantly consisting of fine bottleneck pores and semi-closed pores, with a certain proportion of open pores. The fractal dimension (Dm) of micro-pore structures in deep coal samples ranges from 2.0447 to 2.2439, indicating high micro-pore surface roughness and a large specific surface area, which provide favorable sites for methane adsorption. Pores larger than 100 nm exhibit fractal values between 2.6459 and 2.8833, suggesting that the pore surfaces in deep coal seams approach a three-dimensional pore space with rough surfaces and complex pore structures. As temperature and pressure enter the supercritical region, the adsorption capacity shows an abnormal trend of “first increasing and then decreasing” with increasing pressure. The deep coal rock–supercritical methane adsorption system exhibits two scenarios in low-pressure and high-pressure regions, corresponding to self-adsorption driven by strong methane adsorption potential and external force adsorption or overpressure micro-pore adsorption, respectively. The supercritical adsorption prediction model considering temperature and methane adsorption phase density has extremely low deviation (1.11–1.25%) and high accuracy. The average dispersion between predicted and actual values ranges from 0.44 cm3/g to 0.48 cm3/g, with small error fluctuations and no significant deviation. This study provides theoretical support for the recoverability evaluation and efficient development of deep CBM resources. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 10156 KiB  
Article
Seismic Waveform Feature Extraction and Reservoir Prediction Based on CNN and UMAP: A Case Study of the Ordos Basin
by Lifu Zheng, Hao Yang and Guichun Luo
Appl. Sci. 2025, 15(13), 7377; https://doi.org/10.3390/app15137377 - 30 Jun 2025
Viewed by 300
Abstract
Seismic waveform feature extraction is a critical task in seismic exploration, as it directly impacts reservoir prediction and geological interpretation. However, large-scale seismic data and nonlinear relationships between seismic signals and reservoir properties are challenging for traditional machine learning methods. To address these [...] Read more.
Seismic waveform feature extraction is a critical task in seismic exploration, as it directly impacts reservoir prediction and geological interpretation. However, large-scale seismic data and nonlinear relationships between seismic signals and reservoir properties are challenging for traditional machine learning methods. To address these limitations, this paper proposes a novel framework combining Convolutional Neural Network (CNN) and Uniform Manifold Approximation and Projection (UMAP) for seismic waveform feature extraction and analysis. The UMAP-CNN framework leverages the strengths of manifold learning and deep learning, enabling multi-scale feature extraction and dimensionality reduction while preserving both local and global data structures. The evaluation experiments, which considered runtime, receiver operating characteristic (ROC) curves, embedding distribution maps, and other quantitative assessments, illustrated that the UMAP-CNN outperformed t-distributed stochastic neighbor embedding (t-SNE), locally linear embedding (LLE) and isometric feature mapping (Isomap). A case study in the Ordos Basin further demonstrated that UMAP-CNN offers a high degree of accuracy in predicting coal seam thickness. Furthermore, our framework exhibited superior computational efficiency and robustness in handling large-scale datasets. Full article
(This article belongs to the Special Issue Current Advances and Future Trend in Enhanced Oil Recovery)
Show Figures

Figure 1

14 pages, 3364 KiB  
Article
Selection of an Optimum Anchoring Method of Composite Rock Stratum Based on Anchor Bolt Support Prestress Field
by Yiqun Zhou, Jianwei Yang, Chenyang Zhang, Dingyi Li and Bin Hu
Appl. Sci. 2025, 15(13), 6990; https://doi.org/10.3390/app15136990 - 20 Jun 2025
Viewed by 326
Abstract
In order to make the anchor bolt support prestress field fully diffuse in the composite rock stratum, improve the overall bearing capacity of surrounding rock, and give full play to the role of active support of the anchor bolt, a self-made 1:1-scale composite [...] Read more.
In order to make the anchor bolt support prestress field fully diffuse in the composite rock stratum, improve the overall bearing capacity of surrounding rock, and give full play to the role of active support of the anchor bolt, a self-made 1:1-scale composite rock stratum similarity simulation test bed was used to compare and analyze the distribution of the anchor bolt support prestress field using different anchoring surrounding rock lithology and anchorage lengths, and the principle for optimum selection of anchoring parameters of composite rock stratum was proposed based on the test results. Considered from the point of view of stress diffusion, the effect of prestress diffusion of end anchorage bolts is better than that of lengthening anchorage; at the same time, the anchorage section should be preferentially arranged in hard rock, and the area of anchorage section near the free section should avoid the structural plane of surrounding rock. In conclusion, an industrial test was carried out under the conditions of a deep composite roof of the 2# coal seam in Qinyuan Mining Area, which determined a reasonable anchoring method and position of the composite roof under different conditions and achieved good results. Full article
Show Figures

Figure 1

26 pages, 6795 KiB  
Article
Integrated Analysis of Pore and Fracture Networks in Deep Coal Seams: Implications for Enhanced Reservoir Stimulation
by Kaiqi Leng, Baoshan Guan, Chen Jiang and Weidong Liu
Energies 2025, 18(13), 3235; https://doi.org/10.3390/en18133235 - 20 Jun 2025
Viewed by 246
Abstract
This study systematically investigates the pore–fracture architecture of deep coal seams in the JiaTan (JT) block of the Ordos Basin using an integrated suite of advanced techniques, including nuclear magnetic resonance (NMR), high-pressure mercury intrusion, low-temperature nitrogen adsorption, low-pressure carbon dioxide adsorption, and [...] Read more.
This study systematically investigates the pore–fracture architecture of deep coal seams in the JiaTan (JT) block of the Ordos Basin using an integrated suite of advanced techniques, including nuclear magnetic resonance (NMR), high-pressure mercury intrusion, low-temperature nitrogen adsorption, low-pressure carbon dioxide adsorption, and micro-computed tomography (micro-CT). These complementary methods enable a quantitative assessment of pore structures spanning nano- to microscale dimensions. The results reveal a pore system overwhelmingly dominated by micropores—accounting for more than 98% of the total pore volume—which play a central role in coalbed methane (CBM) storage. Microfractures, although limited in volumetric proportion, markedly enhance permeability by forming critical flow pathways. Together, these features establish a dual-porosity system that governs methane transport and recovery in deep coal reservoirs. The multiscale characterization employed here proves essential for resolving reservoir heterogeneity and designing effective stimulation strategies. Notably, enhancing methane desorption in micropore-rich matrices and improving fracture connectivity are identified as key levers for optimizing deep CBM extraction. These insights offer a valuable foundation for the development of deep coalbed methane (DCBM) resources in the Ordos Basin and similar geological settings. Full article
Show Figures

Figure 1

23 pages, 5175 KiB  
Article
Risk Assessment of Sudden Coal and Gas Outbursts Based on 3D Modeling of Coal Seams and Integration of Gas-Dynamic and Tectonic Parameters
by Vassiliy Portnov, Adil Mindubayev, Andrey Golik, Nurlan Suleimenov, Alexandr Zakharov, Rima Madisheva, Konstantin Kolikov and Sveta Imanbaeva
Fire 2025, 8(6), 234; https://doi.org/10.3390/fire8060234 - 17 Jun 2025
Viewed by 442
Abstract
Sudden coal and gas outbursts pose a significant hazard in deep-seated coal seam extraction, necessitating reliable risk assessment methods. Traditionally, assessments focus on gas-dynamic parameters, but experience shows they must be supplemented with tectonic factors such as fault-related disturbances, weak interlayers, and increased [...] Read more.
Sudden coal and gas outbursts pose a significant hazard in deep-seated coal seam extraction, necessitating reliable risk assessment methods. Traditionally, assessments focus on gas-dynamic parameters, but experience shows they must be supplemented with tectonic factors such as fault-related disturbances, weak interlayers, and increased fracturing. Even minor faults in the Karaganda Basin can weaken the coal massif and trigger outbursts. The integration of 3D modeling enhances risk evaluation by incorporating both dynamic (gas-related) and static (tectonic) parameters. Based on exploratory drilling and geophysical studies, these models map coal seam geometry, fault positioning, and high-risk structural zones. In weakened coal areas, stress distribution changes can lead to avalanche-like gas releases, even under normal gas-dynamic conditions. An expert scoring system was used to convert geological and gas-dynamic data into a comprehensive risk index guiding preventive measures. An analysis of Karaganda Basin incidents (1959–2021) shows all outbursts occurred in geological disturbance zones, with 43% linked to fault proximity, 30% to minor tectonic shifts, and 21% to sudden coal seam changes. Advancing 3D modeling, geomechanical analysis, and microseismic monitoring will improve predictive accuracy, ensuring safer coal mining operations. Full article
Show Figures

Figure 1

24 pages, 20179 KiB  
Article
Research on the Roof Failure Law of Downward Mining of Gently Inclined Coal Seams at Close Range
by Tao Yang, Jiarui Sun, Jie Zhang, Shoushi Gao, Yifeng He, Hui Liu, Dong Liu, Jiayue Deng and Yiming Zhang
Appl. Sci. 2025, 15(12), 6609; https://doi.org/10.3390/app15126609 - 12 Jun 2025
Viewed by 287
Abstract
With the increasing depth of coal mining operations, the repeated extraction of multiple coal seams has led to serious safety threats to mines, including secondary roof fracturing, interlayer separation-induced water hazards, and intense mine pressure. Due to the limited research available on the [...] Read more.
With the increasing depth of coal mining operations, the repeated extraction of multiple coal seams has led to serious safety threats to mines, including secondary roof fracturing, interlayer separation-induced water hazards, and intense mine pressure. Due to the limited research available on the roof failure laws of gently inclined coal seam groups, this study focuses on the Yindonggou Coal Mine and employs a comprehensive approach combining theoretical analysis, numerical simulation, and field measurement. Theoretical calculations indicate that after the mining of Seam 1, the caving zone height ranges from 6.69 to 11.09 m, and the height of the water-conducting fracture zone ranges from 29.59 to 40.79 m. After Coal Seam 2 is mined, the caving zone extends 24.05–33.47 m above the roof of Coal Seam 1, and the fracture zone develops for up to 74.10–94.94 m. Following the mining of Seam 4, the caving zone expands to 30.73–40.15 m above the roof of Coal Seam 1, and the fracture zone reaches 92.26–113.10 m. The numerical simulation results show that after mining Seam 1, the caving zone height is 8.4 m, and the fracture zone reaches 36 m. After Seam 2 is mined, the caving zone extends to 27 m above the roof of Coal Seam 1 and the fracture zone extends to 89 m. After Seam 4 is mined, the caving zone expands to 40 m above the roof of Coal Seam 1 and the fracture zone develops to 112.6 m. The field measurements validate the following findings: a loss of flushing fluid during drilling indicates that after Coal Seam 4 is mined, the fracture zone develops up to 110.5 m above the roof of Coal Seam 1, and the caving zone reaches 47.5 m. Optical imaging logging shows the fracture zone developing to 114.5 m and the caving zone extending to 48.1 m above the roof of Coal Seam 1. The results demonstrate good consistency among these theoretical calculations, numerical simulations, and field measurements. This study reveals a progressive development pattern of roof failure during the repeated mining of gently inclined coal seam groups, providing a theoretical foundation for water hazard prevention and mine pressure control in deep multi-seam mining operations. Full article
Show Figures

Figure 1

22 pages, 7345 KiB  
Article
Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining
by Yan Liu, Shangxin Fang, Tengfei Hu, Cun Zhang, Yuan Guo, Fuzhong Li and Jiawei Huang
Processes 2025, 13(6), 1753; https://doi.org/10.3390/pr13061753 - 2 Jun 2025
Viewed by 574
Abstract
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments [...] Read more.
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments with FLAC3D numerical simulations to systematically investigate the multi-field coupling behavior in the Luotuoshan coal mine. Three types of coal rock samples—raw coal/rock (bending subsidence zone), fractured coal/rock (fracture zone), and broken rock (caved zone)—were subjected to triaxial permeability tests under varying stress conditions. The experimental results quantitatively revealed distinct permeability evolution patterns: the fractured samples exhibited a 23–48 × higher initial permeability (28.03 mD for coal, 13.54 mD for rock) than the intact samples (0.50 mD for coal, 0.21 mD for rock), while the broken rock showed exponential permeability decay (120.32 mD to 23.72 mD) under compaction. A dynamic permeability updating algorithm was developed using FISH scripting language, embedding stress-dependent permeability models (R2 > 0.99) into FLAC3D to enable real-time coupling of stress–fracture–seepage fields during face advancement simulations. The key findings demonstrate four distinct evolutionary stages of pore water pressure: (1) static equilibrium (0–100 m advance), (2) fracture expansion (120–200 m, 484% permeability surge), (3) seepage channel formation (200–300 m, 81.67 mD peak permeability), and (4) high-risk water inrush (300–400 m, 23.72 mD stabilized permeability). The simulated fracture zone height reached 55 m, directly connecting with the overlying sandstone aquifer (9 m thick, 1 MPa pressure), validating field-observed water inrush thresholds. This methodology provides a quantitative framework for predicting water-conducting fracture zone development and optimizing real-time water hazard prevention strategies in similar deep mining conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

15 pages, 3261 KiB  
Article
Research on the Pressure Relief Mechanism of Gently Inclined Long-Distance Lower Protective Layer Mining and Cooperative Gas Control Technology
by Yanjun Tong, Qian Liu, Qinming Wang, Chuanjie Zhu and Yue’e Wu
Processes 2025, 13(6), 1656; https://doi.org/10.3390/pr13061656 - 25 May 2025
Viewed by 460
Abstract
This study investigates pressure relief mechanisms and gas migration control in gently inclined remote lower protective layer mining, using the Wu8-31220 working face of Pingdingshan Tianan Coal Industry’s No. 1 Mine as a prototype. The integrated approach combining theoretical modeling with multidimensional monitoring [...] Read more.
This study investigates pressure relief mechanisms and gas migration control in gently inclined remote lower protective layer mining, using the Wu8-31220 working face of Pingdingshan Tianan Coal Industry’s No. 1 Mine as a prototype. The integrated approach combining theoretical modeling with multidimensional monitoring systems yielded critical insights into pressure relief patterns. Analysis demonstrated dip-oriented pressure relief angles measuring 77° (intake side) and 83° (return side), collectively establishing a pressure relief zone spanning 160.5 m. Concurrently, horizontal pressure relief angles were determined to be 60° in both orientations, generating a pressure relief zone extending 1261 m. Mechanical monitoring revealed multistage “compression–expansion” responses in the Ding6 seam during protective seam extraction, achieving maximum expansion deformations of 9.89–13.55‰ within the boundary zone. By optimizing borehole spacing (20 m) and extraction duration (8 months), the Ding6-32070 working face extracted 1.18 million m3 of gas (31.22% reserves), resolving spatial coupling challenges between gas recovery efficiency and pressure relief dimensions. This work advances understanding of pressure relief and permeability enhancement in gently inclined remote lower protective layer mining. The findings provide both theoretical foundations and technical benchmarks for safe deep coal mining operations and efficient gas control strategies. Full article
Show Figures

Figure 1

21 pages, 11299 KiB  
Article
Fracture System Characteristics and Their Control on Permeability Anisotropy in Bright and Dull Coal
by Liheng Bian, Yanxiang He, Rui Shi, Liang Ji, Wei Zhang, Zhuang Ma, Peng Wu and Jian Shen
Processes 2025, 13(5), 1509; https://doi.org/10.3390/pr13051509 - 14 May 2025
Viewed by 403
Abstract
Coal permeability, a key parameter influencing coalbed methane production and geological storage, is strongly governed by the dual-porosity nature of coal and the stress-dependent evolution of its fracture network. This study investigates the development characteristics of filled and unfilled fractures, and the resulting [...] Read more.
Coal permeability, a key parameter influencing coalbed methane production and geological storage, is strongly governed by the dual-porosity nature of coal and the stress-dependent evolution of its fracture network. This study investigates the development characteristics of filled and unfilled fractures, and the resulting permeability anisotropy, in typical bright and dull coals from the deep 8# coal seam of the Ordos Basin. Utilizing CT scanning and permeability anisotropy testing, we analyze how fracture development impacts coal permeability and its evolution under stress. Bright coal exhibits a grid-like distribution of mineral-filled fractures with good vertical connectivity, and a complex network of unfilled fractures. In contrast, dull coal displays a scattered distribution of mineral-filled fractures with poor vertical connectivity and a limited number of unfilled fractures. Results indicate an exponential decay trend in permeability with increasing confining pressure, strongly correlated with fracture system development. Permeability also demonstrates significant heterogeneity (face cleat > butt cleat > vertical). Bright coal exhibits a greater permeability decay rate than dull coal, indicating heightened stress sensitivity, while its permeability anisotropy is weaker, aligning with the observed fracture development patterns. Full article
Show Figures

Figure 1

Back to TopTop