Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams
Abstract
1. Introduction
2. Experiments and Methods
2.1. Samples and Experiments
2.1.1. Sample Collection and Experimental Design
2.1.2. Pore Structure Test
2.1.3. Methane Adsorption Test
2.2. Methods
2.2.1. Fractal Calculation of Pore Structure
2.2.2. Calculation Model of Supercritical Methane Adsorption Capacity
3. Results and Discussion
3.1. Analysis of Pore Structure Characteristics of Coal
3.1.1. Analysis of Surface Morphology and Mineral Elements of Coal
3.1.2. Pore Size Distribution and Fractal Characteristics of Coal
3.2. Adsorption Characteristics of Deep Coal Rock and Supercritical Methane
3.3. Verification of Supercritical Methane Adsorption Capacity Prediction Model
3.4. Supercritical Methane Adsorption Characteristics and Their Implications for Deep CBM Development
3.4.1. Pore Structure of Deep Coal Rock and Supercritical Methane Adsorption Behavior
3.4.2. Prediction and Application of Supercritical Methane Adsorption in Deep Coal Rock
4. Conclusions
- (1)
- The coal exhibits good pore structure integrity, with the following four types of pores developed in the coal: beaded nanopores, gas pores, cell cavities, and friction pores. The sample contains sulfides (such as pyrite) and clay minerals (such as kaolinite), as well as quartz filling the pores and fractures. The deep coal rock exhibits well-developed micro-porosity, but the porosity connectivity is generally poor, with most pores being narrow-necked or semi-closed, and it contains a certain proportion of open pores.
- (2)
- The fractal dimension Dm of the pore structure of micro-porous coal samples ranges from 2.0447 to 2.2439. The micro-porous pores have high roughness and a high specific surface area, providing excellent sites for methane adsorption. For pores larger than 100 nm, the fractal values range from 2.6459 to 2.8833. The pore surfaces in deep coal layers approach a three-dimensional pore space, with relatively rough surfaces, indicating that the gas diffusion-seepage pore space is relatively complex.
- (3)
- The supercritical methane adsorption characteristics of coal samples from the Tuhai Basin can be categorized into the following two types: low-pressure zones (<15 MPa) and high-pressure zones (>15 MPa). In low-pressure zones, the adsorption potential is relatively high (>700 J/mol), and the adsorption capacity is strong. For the high-pressure zone (>15 MPa), however, the actual adsorption amount may be dominated by external adsorption forces, pore compression effects, or micro-porous filling, and overpressure phenomena suppress the methane adsorption capacity; understanding the pore–adsorption coupling mechanism is beneficial for targeted deep coalbeds to enhance the permeability and storage capacity.
- (4)
- The adsorption model has extremely low deviation (1.11–1.25%) and high accuracy. The average deviation between predicted and actual values ranges from 0.44 cm3/g to 0.48 cm3/g, with minimal error fluctuations, and the range of RE shows no significant deviation. This paper analyzes the key scientific issues in deep CBM development (burial depth less than 3900 m) from the perspectives of temperature–pressure coupled adsorption characteristics and adsorption capacity prediction models, thereby advancing the efficient development of deep unconventional natural gas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, H.; Sang, S.; Li, X.; Yan, Z.; Zhou, X.; Liu, S.; Han, S.; Cai, J. Competitive adsorption-penetration characteristics of multi-component gases in micro-nano pore of coal. Chem. Eng. J. 2025, 506, 159965. [Google Scholar] [CrossRef]
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Petrol Explor. Dev. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, L.; Wei, B.; Kadet, V. CO2 Utilization and Geological Storage in Unconventional Reservoirs After Fracturing. Engineering 2025, 48, 92–106. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Ding, R.; Tian, F.; Zhang, T.; Ma, Z.; Wang, D. Pore structure of deep coal of different ranks and its effect on coalbed methane adsorption. Int. J. Hydrog. Energy 2024, 59, 144–158. [Google Scholar] [CrossRef]
- Li, G.; Yan, D.; Zhuang, X.; Zhang, Z.; Fu, H. Implications of the pore pressure and in situ stress for the coalbed methane exploration in the southern Junggar Basin, China. Eng. Geol. 2019, 262, 105305. [Google Scholar] [CrossRef]
- Chang, Y.; Yao, Y.; Wang, L.; Zhang, K. High-Pressure adsorption of supercritical methane and carbon dioxide on Coal: Analysis of adsorbed phase density. Chem. Eng. J. 2024, 487, 150483. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Wang, X.; Lv, R.; Liu, H.; Lin, J.; Barakos, G.; Chang, P. A fractal Langmuir adsorption equation on coal: Principle, methodology and implication. Chem. Eng. J. 2024, 488, 150869. [Google Scholar] [CrossRef]
- Babatunde, K.A.; Negash, B.M.; Jufar, S.R.; Ahmed, T.Y.; Mojid, M.R. Adsorption of gases on heterogeneous shale surfaces: A review. J. Pet. Sci. Eng. 2022, 208, 109466. [Google Scholar] [CrossRef]
- Xu, A.; Han, S.; Wei, Y.; Zhou, P.; Zhang, J.; Guo, Z. Methane Adsorption During Pore Evolution and Its Microscale Impact on Coalbed Methane Recovery: A Case Study of Middle- and High-Rank Coals in the Western Guizhou. ACS Omega 2025, 10, 14439–14451. [Google Scholar] [CrossRef]
- Alafnan, S.; Awotunde, A.; Glatz, G.; Adjei, S.; Alrumaih, I.; Gowida, A. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. J. Pet. Sci. Eng. 2021, 207, 109172. [Google Scholar] [CrossRef]
- Tang, C.; Li, B.; Li, J.; Gao, Z.; Song, H.; Yang, J. A model characterising the fractal supercritical adsorption behaviour of methane in shale: Incorporating principles, methods, and applications. Chem. Eng. J. 2024, 500, 156812. [Google Scholar] [CrossRef]
- Zhao, F.; Han, S.; Sang, S.; Zhou, P.; Mondal, D.; Guo, Z.; Xu, A. Modified Method for Calculating Saturation Gas Content in Deep Coal and the Pore Size Effect of Methane Adsorption on Guizhou Middle- and High-Rank Coals. Nat. Resour. Res. 2023, 32, 1215–1233. [Google Scholar] [CrossRef]
- Feng, P.; Li, S.; Tang, S.; Tang, D.; Zhang, C.; Yang, J.; Liu, N.; Zhong, G. Estimation of Adsorption Isotherm for Deep Coalbed Methane: A Monolayer-Filling Model Based on Pore Fractal Dimension. Energy Fuel 2024, 38, 1987–2000. [Google Scholar] [CrossRef]
- Guo, F.; Liu, G.; Zhang, Z.; Lv, R.; Xian, B.; Lin, J.; Barakos, G.; Chang, P. A Fractal Adsorption Model on Methane in Coal with Temperature Effect Dependence. Fractal Fract. 2024, 8, 370. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Gao, D.; Fan, Z.; Xu, H.; Ding, H.; Fang, H.; Zhang, K. New insight into CH4 adsorption mechanism in coal based on modeling analysis of different adsorption theories. J. Environ. Chem. Eng. 2024, 12, 113174. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Zhang, D.; Yang, H.; Zhou, X.; Jiang, Z. Experimental study on methane adsorption and time-dependent dynamic diffusion coefficient of intact and tectonic coals: Implications for CO2-enhanced coalbed methane projects. Process Saf. Environ. 2021, 156, 568–580. [Google Scholar] [CrossRef]
- Niu, Q.; Pan, J.; Cao, L.; Ji, Z.; Wang, H.; Wang, K.; Wang, Z. The evolution and formation mechanisms of closed pores in coal. Fuel 2017, 200, 555–563. [Google Scholar] [CrossRef]
- Fu, C.; Kou, X.; Du, Y.; Jiang, L.; Sang, S.; Pan, Z. Experimental study of supercritical CO2-H2O-coal interactions and the effect on coal spontaneous imbibition characteristics. Fuel 2025, 383, 133888. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Xie, H.; Li, X.; Xia, T.; Chen, S. Dynamics change of coal methane adsorption/desorption and permeability under temperature and stress conditions. Phys. Fluids 2025, 37, 016605. [Google Scholar] [CrossRef]
- Liu, D.; Yao, Y.; Chang, Y. Measurement of adsorption phase densities with respect to different pressure: Potential application for determination of free and adsorbed methane in coalbed methane reservoir. Chem. Eng. J. 2022, 446, 137103. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Xue, F.; Sui, H.; Zhao, J.; Cai, J.; Feng, C. Influences of Evolution of Pore Structures in Tectonic Coal under Acidization on Methane Desorption. Acs Omega 2023, 8, 34059–34076. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Sang, S.; Duan, P.; Zhang, J.; Xiang, W.; Xu, A. The effect of the density difference between supercritical CO2 and supercritical CH4 on their adsorption capacities: An experimental study on anthracite in the Qinshui Basin. Petrol Sci. 2022, 19, 1516–1526. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Cai, J.; Xie, H.; Chen, S. Investigation of the impact of micro-nano pore geometry on CH4 adsorption. Chem. Eng. J. 2024, 500, 157162. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, S.; Jiang, Z.; Ma, T.; Ran, Q. Effect of silica nanofluid on coal wettability and its stability characterization. Phys. Fluids 2025, 37, 022015. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, S.; Chen, C.; Zhang, X.; Ma, T.; Ran, Q.; Luo, X. Research on the performance and application of nano-MgO modified ultrafine cement-based sealing materials. Case Stud. Constr. Mat. 2025, 22, e04694. [Google Scholar] [CrossRef]
- Li, H.; Kang, J.; Zhou, F.; Qiang, Z.; Li, G. Adsorption heat features of coalbed methane based on microcalorimeter. J. Loss Prev. Proc. 2018, 55, 437–449. [Google Scholar] [CrossRef]
- Chen, S.; Tang, D.; Tao, S.; Ji, X.; Xu, H. Fractal analysis of the dynamic variation in pore-fracture systems under the action of stress using a low-field NMR relaxation method: An experimental study of coals from western Guizhou in China. J. Pet. Sci. Eng. 2019, 173, 617–629. [Google Scholar] [CrossRef]
- Cui, J.; Niu, X.; Feng, G.; Han, Y.; Li, Z. Effect of Division Methods of the Adsorption Isotherm on the Fractal Dimension of Clay Minerals Calculated Based on the Frenkel-Halsey-Hill Model. Energy Fuel 2021, 35, 8786–8798. [Google Scholar] [CrossRef]
- Sun, F.; Liu, D.; Cai, Y.; Qiu, Y. Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs. Appl. Energy 2023, 349, 121605. [Google Scholar] [CrossRef]
- Sun, F.; Liu, D.; Cai, Y.; Qiu, Y. Coal rank-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs. Energy 2023, 270, 126849. [Google Scholar] [CrossRef]
- Roslin, A.; Pokrajac, D.; Wu, K.; Zhou, Y. 3D pore system reconstruction using nano-scale 2D SEM images and pore size distribution analysis for intermediate rank coal matrix. Fuel 2020, 275, 117934. [Google Scholar] [CrossRef]
- Fu, C.; Du, Y.; Song, W.; Sang, S.; Pan, Z.; Wang, N. Application of automated mineralogy in petroleum geology and development and CO2 sequestration: A review. Mar. Pet. Geol. 2023, 151, 106206. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Sui, H.; Cai, J.; Xu, E.; Zhao, J. Acidification-Induced Micronano Mechanical Properties and Microscopic Permeability Enhancement Mechanism of Coal. Langmuir 2024, 40, 4496–4513. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Wang, F.; Li, S. Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation. Ind. Eng. Chem. Res. 1997, 36, 1598–1602. [Google Scholar] [CrossRef]
- Zhang, B.; Li, S. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry. Ind. Eng. Chem. Res. 1995, 34, 1383–1386. [Google Scholar] [CrossRef]
- Ozawa, S.; Kusumi, S.; Ogino, Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin—Astakhov adsorption equation. J. Colloid Interf. Sci. 1976, 56, 83–91. [Google Scholar] [CrossRef]
- Zhang, Q.; Tang, S.; Zhang, S.; Xi, Z.; Xin, D.; Jia, T.; Yang, X.; Zhang, K.; Li, J.; Wang, Z. Methane Adsorption Capacity of Deep Buried Coal Seam Based on Full-Scale Pore Structure. Nat. Resour. Res. 2025, 34, 1481–1505. [Google Scholar] [CrossRef]
- Zhou, L.; Yan, X.; Xiong, X.; Wang, F.; Liu, W.; Yang, Y.; Yang, Z.; Feng, Y. Characteristics of occurrence and distribution rule of deep coalbed methane in supercritical state. Coal Sci. Technol. 2025, 53, 73–90. [Google Scholar]
- Wang, X.; Hou, S.; Wang, X.; Yuan, Y.; Dang, Z.; Tu, M. Geological and hydrological controls on the pressure regime of coalbed methane reservoir in the Yanchuannan field: Implications for deep coalbed methane exploitation in the eastern Ordos Basin, China. Int. J. Coal Geol. 2024, 294, 104619. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.; Pan, Z.; Xu, H.; Tao, S.; Liu, Y.; Ren, P. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: Implications for coalbed methane development. J. Nat. Gas. Sci. Eng. 2018, 53, 394–402. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; Li, J.; Song, H.; Duan, S.; Jia, L. Theoretical Study of Shale Gas Adsorption under the Action of Moisture and Temperature, Including Analysis of the Relevant Adsorption Mechanisms and Thermodynamics. Ind. Eng. Chem. Res. 2024, 63, 17–635. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, Y.; Wang, L.; Dong, J.; Hao, C.; Jiang, J. Pore morphology characterization and its effect on methane desorption in water-containing coal: An exploratory study on the mechanism of gas migration in water-injected coal seam. J. Nat. Gas. Sci. Eng. 2020, 75, 103152. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, B.; Liu, T.; Liu, T.; Ma, S.; Tian, S. Mechanism of water adsorption and penetration at the coal interface under methane pressure and temperature. Phys. Fluids 2025, 37, 062018. [Google Scholar] [CrossRef]
- Cheng, M.; Fu, X.; Kang, J.; Chen, Z.; Tian, Z. Effect of water on methane diffusion in coal under temperature and pressure: A LF-NMR experimental study on successive depressurization desorption. Fuel 2022, 324, 124578. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.; Yan, X.; Zhou, G.; Wang, G.; Gao, W.; Liu, C.; Lu, B.; Liang, Y. Distribution Law of Occurrence State and Content Prediction of Deep CBM: A Case Study in the Ordos Basin, China. Nat. Resour. Res. 2024, 33, 1843–1869. [Google Scholar] [CrossRef]
Sample Source | Number | Industrial Analysis (%) | Microscopic Component (%) | Ro,max (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCad | Vitrinite | Inertinite | Exinite | |||
Dongshen 1 well | DS1 | 1.37 | 10.28 | 42.03 | 52.01 | 83.9 | 5.2 | 10.9 | 0.64 |
He 6 well | H6 | 0.42 | 26.10 | 45.47 | 40.30 | 81.3 | 18.2 | 0.5 | 1.04 |
Ke 191 well | K191 | 0.98 | 37.63 | 29.99 | 43.67 | 36.4 | 62.6 | 1.0 | 1.03 |
Number | LTCO2A | MIP | ||||
---|---|---|---|---|---|---|
Micro-Pore | Diffusion Pore | Seepage Pore | ||||
PV (cc/g) | SSA (m2/g) | PV (cc/g) | SSA (m2/g) | PV (cc/g) | SSA (m2/g) | |
DS1 | 0.025 | 63.565 | 0.0199 | 7.0449 | 0.0256 | 0.0257 |
H6 | 0.035 | 96.551 | 0.0095 | 2.9745 | 0.0371 | 0.0865 |
K191 | 0.038 | 118.76 | 0.0231 | 6.9452 | 0.0488 | 0.1488 |
Temperature/°C | Pressure/MPa | ||||||
---|---|---|---|---|---|---|---|
2 | 7 | 10 | 12 | 14 | 20 | 22 | |
50 | 0.9726 | 0.9018 | 0.8482 | 0.8124 | 0.7781 | 0.6763 | 0.6479 |
70 | 0.978 | 0.9226 | 0.8762 | 0.8444 | 0.8139 | 0.7224 | 0.6965 |
90 | 0.9826 | 0.9368 | 0.8952 | 0.8668 | 0.8396 | 0.7564 | 0.7326 |
100 | 0.9842 | 0.9256 | 0.8863 | 0.8571 | 0.8289 | 0.7426 | 0.7184 |
Number | Temperature/°C | Fitting Parameters | |||
---|---|---|---|---|---|
a | b | c | d | ||
DS1 | 50 | −8.0789 × 10−14 | 3.70299 × 10−10 | −1.51568 × 10−5 | 0.10258 |
70 | 4.11073 × 10−13 | −2.19398 × 10−9 | −1.65493 × 10−5 | 0.11104 | |
90 | 7.27385 × 10−13 | −6.64708 × 10−9 | 4.61749 × 10−7 | 0.10423 | |
100 | 5.04598 × 10−13 | −5.92749 × 10−9 | 5.54439 × 10−6 | 0.10254 | |
H6 | 50 | −4.20175 × 10−14 | 1.30841 × 10−10 | −1.49026 × 10−5 | 0.10179 |
70 | 4.1166 × 10−13 | −2.18352 × 10−9 | −1.65689 × 10−5 | 0.11006 | |
90 | 8.41813 × 10−13 | −7.60153 × 10−9 | 1.08001 × 10−6 | 0.10826 | |
100 | 5.23536 × 10−13 | −6.1083 × 10−9 | 5.93333 × 10−6 | 0.10166 | |
K191 | 50 | −1.27477 × 10−13 | 6.35561 × 10−10 | −1.52918 × 10−5 | 0.1032 |
70 | 1.34083 × 10−13 | −3.7993 × 10−10 | −1.73778 × 10−5 | 0.10901 | |
90 | 8.546 × 10−13 | −7.73916 × 10−9 | 2.7399 × 10−6 | 0.10219 | |
100 | 2.20385 × 10−13 | −3.55984 × 10−9 | 2.20385 × 10−6 | 0.10087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wu, C.; Zhang, H.; Liu, S.; Wang, X.; Li, H.; Yao, Z.; Wureyimu, K.; Huang, F.; Cao, Z. Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams. Processes 2025, 13, 2186. https://doi.org/10.3390/pr13072186
Chen X, Wu C, Zhang H, Liu S, Wang X, Li H, Yao Z, Wureyimu K, Huang F, Cao Z. Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams. Processes. 2025; 13(7):2186. https://doi.org/10.3390/pr13072186
Chicago/Turabian StyleChen, Xuan, Chao Wu, Hua Zhang, Shiqi Liu, Xinggang Wang, Hongwei Li, Zongsen Yao, Kaisaer Wureyimu, Fansheng Huang, and Zhongliang Cao. 2025. "Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams" Processes 13, no. 7: 2186. https://doi.org/10.3390/pr13072186
APA StyleChen, X., Wu, C., Zhang, H., Liu, S., Wang, X., Li, H., Yao, Z., Wureyimu, K., Huang, F., & Cao, Z. (2025). Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams. Processes, 13(7), 2186. https://doi.org/10.3390/pr13072186