Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (587)

Search Parameters:
Keywords = cyclin-dependent kinase 4/6 inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2353 KiB  
Article
Repurposing a Lipid-Lowering Agent to Inhibit TNBC Growth Through Cell Cycle Arrest
by Yi-Chiang Hsu, Kuan-Ting Lee, Sung-Nan Pei, Kun-Ming Rau and Tai-Hsin Tsai
Curr. Issues Mol. Biol. 2025, 47(8), 622; https://doi.org/10.3390/cimb47080622 - 5 Aug 2025
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor for hyperlipidemia—has garnered interest for its potential anticancer effects. This study investigates the therapeutic potential of Simvastatin in triple-negative breast cancer (TNBC). The results demonstrate that Simvastatin significantly inhibits the proliferation of TNBC cells, particularly MDA-MB-231, in a dose- and time-dependent manner. Mechanistically, Simvastatin primarily induces G1 phase cell cycle arrest to exert its antiproliferative effects, with no significant evidence of apoptosis or necrosis. These findings support the potential repositioning of Simvastatin as a therapeutic agent to suppress TNBC cell growth. Further analysis shows that Simvastatin downregulates cyclin-dependent kinase 4 (CDK4), a key regulator of the G1/S cell cycle transition and a known marker of poor prognosis in breast cancer. These findings highlight a novel, apoptosis-independent mechanism of Simvastatin’s anticancer action in TNBC. Importantly, given that many breast cancer patients also suffer from hyperlipidemia, Simvastatin offers dual therapeutic benefits—managing both lipid metabolism and tumor cell proliferation. Thus, Simvastatin holds promise as an adjunctive therapy in the treatment of TNBC and warrants further clinical investigation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

29 pages, 1351 KiB  
Review
Molecular Targets for Pharmacotherapy of Head and Neck Squamous Cell Carcinomas
by Robert Sarna, Robert Kubina, Marlena Paździor-Heiske, Adrianna Halama, Patryk Chudy, Paulina Wala, Kamil Krzykawski and Ilona Nowak
Curr. Issues Mol. Biol. 2025, 47(8), 609; https://doi.org/10.3390/cimb47080609 - 1 Aug 2025
Viewed by 145
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold standard but is limited by toxicity and tumor resistance. Immunotherapy, particularly immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand (PD-L1), has improved overall survival, especially in patients with high PD-L1 expression. In parallel, targeted therapies such as poly (ADP-ribose) polymerase 1 (PARP1) inhibitors—which impair DNA repair and increase replication stress—have shown promising activity in HNSCC. Cyclin-dependent kinase (CDK) inhibitors are also under investigation due to their potential to correct dysregulated cell cycle control, a hallmark of HNSCC. This review aims to summarize current and emerging pharmacotherapies for HNSCC, focusing on chemotherapy, immunotherapy, and PARP and CDK inhibitors. It also discusses the evolving role of targeted therapies in improving clinical outcomes. Future research directions include combination therapies, nanotechnology-based delivery systems to enhance treatment specificity, and the development of diagnostic tools such as PARP1-targeted imaging to better guide personalized treatment approaches. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 448
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

20 pages, 1400 KiB  
Review
Novel Therapeutics and the Path Toward Effective Immunotherapy in Malignant Peripheral Nerve Sheath Tumors
by Joshua J. Lingo, Elizabeth C. Elias and Dawn E. Quelle
Cancers 2025, 17(14), 2410; https://doi.org/10.3390/cancers17142410 - 21 Jul 2025
Viewed by 502
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor [...] Read more.
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor size and location and/or the presence of metastases. Radiation or chemotherapy may be combined with surgery, but patient responses are poor. Targeted treatments, including small-molecule inhibitors of oncogenic proteins such as mitogen-activated protein kinase kinase (MEK), cyclin-dependent kinases 4 and 6 (CDK4/6), and Src-homology 2 domain-containing phosphatase 2 (SHP2), are promising therapeutics for MPNSTs, especially when combined together, but they have yet to gain approval. Immunotherapeutic approaches have been revolutionary for the treatment of some other cancers, but their utility as single agents in sarcoma is limited and not approved for MPNSTs. The immunosuppressive niche of MPNSTs is thought to confer inherent treatment resistance, particularly to immunotherapies. Remodeling an inherently “cold” tumor microenvironment into a “hot” immune milieu to bolster the anti-tumor activity of immunotherapies is of great interest throughout the cancer community. This review focuses on novel therapeutics that target dysregulated factors and pathways in MPNSTs, as well as different types of immunotherapies currently under investigation for this disease. We also consider how certain therapeutics may be combined to remodel the MPNST immune microenvironment and thereby generate a durable anti-tumor immune response to immunotherapy. Full article
(This article belongs to the Special Issue Next-Generation Cancer Therapies)
Show Figures

Figure 1

40 pages, 2429 KiB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 707
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

19 pages, 9060 KiB  
Article
Targeting CDK4/6 in Cancer: Molecular Docking and Cytotoxic Evaluation of Thottea siliquosa Root Extract
by Maruthamuthu Rathinam Elakkiya, Mohandas Krishnasreya, Sureshkumar Tharani, Muthukrishnan Arun, L. Vijayalakshmi, Jiseok Lim, Ayman A. Ghfar and Balasundaramsaraswathy Chithradevi
Biomedicines 2025, 13(7), 1658; https://doi.org/10.3390/biomedicines13071658 - 7 Jul 2025
Viewed by 441
Abstract
Background: Cyclin-dependent kinases 4 and 6 (CDK4/6) are pivotal regulators of the cell cycle, whose dysregulation is closely linked to cancer progression. While synthetic CDK4/6 inhibitors such as Palbociclib and Ribociclib are clinically effective, their use is limited by significant adverse effects. [...] Read more.
Background: Cyclin-dependent kinases 4 and 6 (CDK4/6) are pivotal regulators of the cell cycle, whose dysregulation is closely linked to cancer progression. While synthetic CDK4/6 inhibitors such as Palbociclib and Ribociclib are clinically effective, their use is limited by significant adverse effects. Methods: In this study, the aqueous root extract of Thottea siliquosa, a traditionally used medicinal plant, was evaluated for its potential as a natural CDK4/6 inhibitor. Phytochemical profiling using GC-MS identified bioactive compounds, which were subsequently subjected to molecular docking, ADME prediction, and in vitro cell-based assays using HCT116 and L929 cells. Results: The docking results revealed that Isocorydine (−7.4 kcal/mol for CDK4 and −7.2 kcal/mol for CDK6) and Thunbergol (−6.5 kcal/mol for CDK4 and −7.0 kcal/mol for CDK6) exhibited promising binding affinities comparable to standard CDK inhibitors, Palbociclib (−7.2, −8.3 kcal/mol) and Ribociclib (−7.1, −8.1 kcal/mol). Among the other tested natural compounds, Squalene (−7.1 kcal/mol for CDK4) and 2-palmitoylglycerol (−5.2 kcal/mol for CDK4, −4.9 kcal/mol for CDK6) demonstrated moderate binding affinities. ADME analysis confirmed favorable drug-like properties with minimal toxicity alerts. The extract displayed dose-dependent cytotoxicity with an IC50 of 140 μg/mL and reduced cell migration in HCT116 cells, indicating potential anti-proliferative effects. These findings suggest that T. siliquosa root extract, through synergistic phytochemical interactions, holds promise as a multi-targeted, plant-based therapeutic candidate for CDK4/6-associated cancers, warranting further in vitro and in vivo validation. Full article
(This article belongs to the Special Issue Progress in Cytotoxicity of Biomaterials)
Show Figures

Figure 1

18 pages, 776 KiB  
Article
First-Line Chemotherapy Versus CDK4/6 Inhibitors in HR-Positive, HER2-Negative Breast Cancer with Liver Metastases: A Multicenter Real-World Data
by Mehmet Cem Fidan, Ahmet Emin Öztürk, Okan Aydın, Goncagül Akdağ, Ezgi Türkoğlu, Rumeysa Çolak, Nargiz Majidova, Tanju Kapağan, Murad Guliyev, Emir Çelik, Hatice Odabaş, Mesut Yılmaz, İbrahim Vedat Bayoğlu, Nilüfer Bulut, Nebi Serkan Demirci and Özkan Alan
J. Clin. Med. 2025, 14(13), 4568; https://doi.org/10.3390/jcm14134568 - 27 Jun 2025
Viewed by 739
Abstract
Background: Hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer frequently involves liver metastases, which are linked to poor outcomes. The optimal first-line treatment strategy in this subgroup remains unclear. Methods: This multicenter, retrospective study evaluated 121 [...] Read more.
Background: Hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer frequently involves liver metastases, which are linked to poor outcomes. The optimal first-line treatment strategy in this subgroup remains unclear. Methods: This multicenter, retrospective study evaluated 121 patients with HR-positive, HER2-negative breast cancer and liver metastasis who had not received prior systemic chemotherapy or cyclin-dependent kinase (CDK) 4/6 inhibitors (e.g., palbociclib, ribociclib). Patients were classified based on their initial treatment during the liver metastatic phase (CDK4/6 inhibitors or chemotherapy). Clinical characteristics, treatment patterns, and survival outcomes were assessed. Cox regression analysis identified independent prognostic factors. Results: The median age was 53 years; 62% were postmenopausal. Chemotherapy was administered to 36.4%, and CDK4/6 inhibitors to 63.6% of patients. Most cases (59.5%) were recurrent disease. Baseline characteristics were comparable, except for the use of local liver-directed therapies. Progression-free survival favored CDK4/6 inhibitors (10.9 vs. 4.8 months; p < 0.01), while overall survival favored chemotherapy (42.2 vs. 25.9 months; p = 0.042). In multivariate analysis, initial treatment modality, local liver-directed therapy, hormonal status, and the size of the largest liver lesion were independent predictors of survival. Conclusions: In patients with HR-positive, HER2-negative breast cancer and liver metastasis, first-line chemotherapy was associated with improved overall survival compared to CDK4/6 inhibitors. Local liver-directed therapies contributed to longer survival, while larger liver lesions and endocrine-resistant disease correlated with worse outcomes. These findings support considering chemotherapy as first-line treatment in selected patients with aggressive liver metastatic disease. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

31 pages, 5062 KiB  
Article
Functional Analysis of the PI3K/AKT/mTOR Pathway Inhibitor, Gedatolisib, Plus Fulvestrant with and Without Palbociclib in Breast Cancer Models
by Aaron Broege, Stefano Rossetti, Adrish Sen, Ann De La Forest, Laura Davis, Megan Seibel, Arul S. Menon, Sydney Stokke, Allison Macaulay, Jhomary Molden and Lance Laing
Int. J. Mol. Sci. 2025, 26(12), 5844; https://doi.org/10.3390/ijms26125844 - 18 Jun 2025
Viewed by 879
Abstract
Treatment with endocrine therapy (ET) in combination with CDK4/6 inhibitors has improved the outcome of patients with hormone receptor (HR)+/HER2- advanced breast cancer (ABC), but most patients eventually experience disease progression. Since the PI3K-AKT-mTOR (PAM), estrogen receptor (ER), and cyclin-dependent kinase (CDK) pathways [...] Read more.
Treatment with endocrine therapy (ET) in combination with CDK4/6 inhibitors has improved the outcome of patients with hormone receptor (HR)+/HER2- advanced breast cancer (ABC), but most patients eventually experience disease progression. Since the PI3K-AKT-mTOR (PAM), estrogen receptor (ER), and cyclin-dependent kinase (CDK) pathways are interdependent drivers of HR+/HER2- breast cancer (BC), the simultaneous inhibition of these pathways is expected to enhance anti-tumor control. Here we investigated the molecular and cellular effects of gedatolisib, a multi-target kinase inhibitor of the PAM pathway currently being evaluated in Phase 3 clinical trials, combined with fulvestrant and/or palbociclib in BC cell models. We found that the gedatolisib/fulvestrant/palbociclib triplet inhibited BC cell growth significantly more than the single agents or the palbociclib/fulvestrant doublet, both in vitro and vivo. Specifically, the triplet combination counteracted adaptive responses associated with single drug treatment, such as the reactivation of the CDK-RB-E2F pathway after palbociclib treatment, and inhibited multiple cellular functions, such as cell cycle progression, cell survival, protein synthesis, and glucose metabolism. The triplet combination was effective in treatment-naïve BC cell lines as well as in cell lines adapted to palbociclib and/or fulvestrant, regardless of PIK3CA/PTEN genetic alterations. Our findings provide a mechanistic rationale for conducting clinical studies evaluating gedatolisib in combination with CDK4/6 inhibitors and ET in HR+/HER2- ABC. Full article
(This article belongs to the Special Issue The Role of Protein Kinase in Health and Diseases)
Show Figures

Figure 1

22 pages, 10305 KiB  
Article
Selective Dual Inhibition of TNKS1 and CDK8 by TCS9725 Attenuates STAT1/β-Catenin/TGFβ1 Signaling in Renal Cancer
by Majed Saad Al Fayi and Mishari Alshyarba
Curr. Issues Mol. Biol. 2025, 47(6), 463; https://doi.org/10.3390/cimb47060463 - 17 Jun 2025
Viewed by 445
Abstract
Background: Tankyrase (TNKS1) regulates the WNT/β-catenin pathway, while CDK8 is a transcriptional regulator overexpressed in renal cell carcinoma (RCC). This study aims to identify novel dual inhibitors of tankyrase and Cyclin-dependent kinase 8 (CDK8), utilizing bioinformatics and in vitro methods and to assess [...] Read more.
Background: Tankyrase (TNKS1) regulates the WNT/β-catenin pathway, while CDK8 is a transcriptional regulator overexpressed in renal cell carcinoma (RCC). This study aims to identify novel dual inhibitors of tankyrase and Cyclin-dependent kinase 8 (CDK8), utilizing bioinformatics and in vitro methods and to assess their efficiency in renal cancer cells. Methods: To identify leads, the ChemBridge library was screening using high-throughput virtual screening (HTVS), which was followed by protein–ligand interaction analysis, Molecular Dynamics (MD) simulation, and Gibbs binding free energy estimation. A-498, Caki-1, and HK-2 cells were employed to validate in vitro efficacy. Results: TCS9725 was discovered by HTVS with binding affinities of −8.1 kcal/mol and −8.2 kcal/mol for TNKS1 and CDK8, respectively. TCS9725 had robust binding interactions with root mean square deviation values of 0.00 nm. The ΔG binding estimate was −27.45 for TNKS1 and −27.88 for CDK8, respectively. ADME predictions favored specific small-molecule inhibition profiles. TCS9725 reduced TNKS1 and CDK8 activities with IC50s of 243 nM and 403.6 nM, respectively. The compound efficiently inhibited the growth of A-498 and Caki-1 cells with GI50 values of 385.9 nM and 243.6 nM, respectively, with high selectivity compared to the non-cancerous kidney cells. TCS9725 decreased STAT1 and β-catenin positivity in A-498 and Caki-1 cells. The compound induced apoptosis and reduced TGFβ-stimulated trans-endothelial migration and p-smad2/3 signaling in both RCC cells. Conclusions: This work provides valuable insights into the therapeutic potential of TCS9725, a dual inhibitor of TNKS1 and CDK8. Further developments of this molecule could lead to new and effective treatments for this devastating disease. Full article
(This article belongs to the Special Issue Molecular Research of Urological Diseases)
Show Figures

Graphical abstract

19 pages, 3804 KiB  
Article
Peptide-Engineered Seliciclib Nanomedicine for Brain-Targeted Delivery and Neuroprotection
by Guan Zhen He and Wen Jen Lin
Int. J. Mol. Sci. 2025, 26(12), 5768; https://doi.org/10.3390/ijms26125768 - 16 Jun 2025
Viewed by 326
Abstract
Seliciclib, a cyclin-dependent kinase 5 (CDK5) inhibitor, has demonstrated neuroprotective potential. However, its therapeutic application is limited by poor permeability across the blood–brain barrier (BBB). In this study, polymeric nanoparticles (NPs) modified with a BBB-targeting peptide ligand (His-Ala-Ile-Tyr-Pro-Arg-His) were employed to encapsulate seliciclib. [...] Read more.
Seliciclib, a cyclin-dependent kinase 5 (CDK5) inhibitor, has demonstrated neuroprotective potential. However, its therapeutic application is limited by poor permeability across the blood–brain barrier (BBB). In this study, polymeric nanoparticles (NPs) modified with a BBB-targeting peptide ligand (His-Ala-Ile-Tyr-Pro-Arg-His) were employed to encapsulate seliciclib. In vitro transport studies showed that the peptide-modified NPs exhibited significantly greater translocation across a bEnd.3 cell monolayer compared to unmodified NPs. Furthermore, in vivo biodistribution analysis revealed that the brain accumulation of peptide-modified NPs was 3.38-fold higher than that of unmodified NPs. Notably, the peptide-conjugated, seliciclib-loaded NPs demonstrated a significant neuroprotective effect against the neurotoxin 1-methyl-4-phenylpyridinium (MPP⁺) in differentiated SH-SY5Y cells. Full article
(This article belongs to the Special Issue Multifunctional Nanocomposites for Bioapplications)
Show Figures

Figure 1

24 pages, 2487 KiB  
Review
Targeting WEE1 Kinase for Breast Cancer Therapeutics: An Update
by Zhao Zhang, Ritika Harish, Naveed Elahi, Sawanjit Saini, Aamir Telia, Manjit Kundlas, Allexes Koroleva, Israel N. Umoh, Manpreet Lota, Meha Bilkhu, Aladdin Kawaiah, Manogna R. Allala, Armelle Leukeu, Emmanuel Nebuwa, Nadiya Sharifi, Anthony W. Ashton, Xuanmao Jiao and Richard G. Pestell
Int. J. Mol. Sci. 2025, 26(12), 5701; https://doi.org/10.3390/ijms26125701 - 13 Jun 2025
Viewed by 1691
Abstract
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between [...] Read more.
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between WEE family kinases and CDC25C phosphatases restricts CDK1/CycB activity. The WEE kinase family consists of WEE1, PKMYT1, and WEE2 (WEE1B). WEE1 and PKMYT1 regulate entry into mitosis during cell cycle progression, whereas WEE2 governs cell cycle progression during meiosis. Recent studies have identified WEE1 as a potential therapeutic target in several cancers, including therapy-resistant triple-negative breast cancer. Adavosertib’s clinical promise was challenged by inter-individual variations in response and side effects. Because of these promising preclinical outcomes, other WEE1 kinase inhibitors (Azenosertib, SC0191, IMP7068, PD0407824, PD0166285, WEE1-IN-5, Zedoresertib, WEE1-IN-8, and ATRN-1051) are being developed, with several currently being evaluated in clinical trials or as an adjuvant to chemotherapies. Preclinical studies show WEE1 inhibitors induce MHC class 1 antigens and STING when given as combination therapies, suggesting potential additional therapeutic opportunities. Reliable predictors of clinical responses based on mechanistic insights remain an important unmet need. Herein, we review the role of WEE1 inhibition therapy in breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

16 pages, 2213 KiB  
Article
XMU-MP-1, Inhibitor of STE20-like MST1/2 Kinases of the Hippo Signaling Pathway, Suppresses the Cell Cycle, Activates Apoptosis and Autophagy, and Induces Death of Hematopoietic Tumor Cells
by Alexander G. Stepchenko, Sofia G. Georgieva and Elizaveta V. Pankratova
Pharmaceuticals 2025, 18(6), 874; https://doi.org/10.3390/ph18060874 - 12 Jun 2025
Viewed by 590
Abstract
Background/Objectives: Currently, there is limited knowledge on the molecular mechanisms of the “non-canonical” Hippo signaling pathway in hematopoietic tumor cells. We have shown that targeting the MST1/2 kinases, which are the key molecules in this signaling pathway, may be an effective approach [...] Read more.
Background/Objectives: Currently, there is limited knowledge on the molecular mechanisms of the “non-canonical” Hippo signaling pathway in hematopoietic tumor cells. We have shown that targeting the MST1/2 kinases, which are the key molecules in this signaling pathway, may be an effective approach to the treatment of hematologic tumors. Methods: The methods used in this study include cell growth assays, caspase assays, Western blot hybridizations, flow cytometry, and whole-transcriptome analyses. These methods allowed us to better understand the molecular pathways at play. Results: Our results showed that XMU-MP-1, an inhibitor of MST1/2 kinase, specifically reduces the viability of hematopoietic cancer cells but not breast cancer cells. It effectively inhibits the growth of the tumor B- and T-cell lines by blocking cell cycle progression, mainly during the G2/M phase, inducing apoptosis and autophagy. XMU-MP-1 treatment led to increased caspase 3/7 activity and increased levels of the cleaved PARP protein. Levels of the LC3-II protein were also shown to be increased, while the level of p62 decreased. These changes are associated with apoptosis and autophagy, respectively. RNA-seq analysis has demonstrated that XMU-MP-1 suppressed the expression of cell cycle regulators, such as E2F, and cell division cycle genes CDC6,7,20,25,45; cyclins A2,B1,B2, and cyclin-dependent kinases. At the same time, it increased the expression of genes involved in apoptosis, autophagy, and necroptosis. Conclusions: Combinations of growth assays, caspase assays, Western blotting, and RNA-seq have shown that the dramatic reduction in the number of hematopoietic tumor cells after treatment with XMU-MP-1 is due to both cytostatic and cytotoxic effects. The use of MST1/2 kinase inhibitors could be highly promising for complex therapy of hematological tumors. Full article
(This article belongs to the Special Issue Advances in the Treatment of Leukemia and Lymphomas)
Show Figures

Figure 1

12 pages, 1910 KiB  
Article
Diagnostic Utility of Intratumoral Susceptibility Signals in Adult Diffuse Gliomas: Tumor Grade Prediction and Correlation with Molecular Markers Within the WHO CNS5 (2021) Classification
by José Ignacio Tudela Martínez, Victoria Vázquez Sáez, Guillermo Carbonell, Héctor Rodrigo Lara, Florentina Guzmán-Aroca and Juan de Dios Berna Mestre
J. Clin. Med. 2025, 14(11), 4004; https://doi.org/10.3390/jcm14114004 - 5 Jun 2025
Viewed by 670
Abstract
Background/Objectives: This study evaluates intratumoral susceptibility signals (ITSS) as imaging markers for glioma grade prediction and their association with molecular and histopathologic features, in the context of the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous [...] Read more.
Background/Objectives: This study evaluates intratumoral susceptibility signals (ITSS) as imaging markers for glioma grade prediction and their association with molecular and histopathologic features, in the context of the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5). Methods: We retrospectively analyzed patients with adult diffuse gliomas who underwent pretreatment magnetic resonance imaging. ITSS were semiquantitatively graded by two radiologists: grade 0 (no signal), grade 1 (1–5), grade 2 (6–10), and grade 3 (≥11). Relative cerebral blood volume (rCBV) and tumor volume were also obtained. Histopathologic features included tumor grade, Ki-67, mitotic count, necrosis, microvascular proliferation, and molecular alterations (isocitrate dehydrogenase [IDH], 1p/19q, cyclin-dependent kinase inhibitors 2A and 2B [CDKN2A/B], and p53). Regression models predicted tumor grade (low: 1–2, high: 3–4) using ITSS, tumor volume, and rCBV. ROC curves and diagnostic performance metrics were analyzed. Results: 99 patients were included. ITSS grading correlated with rCBV, tumor volume, mitotic count, Ki-67, and tumor grade (p < 0.001). ITSS grades 0–1 were associated with oligodendrogliomas and astrocytomas (p < 0.001), IDH mutations (p < 0.001), and 1p/19q co-deletions (p = 0.01). ITSS grades 2–3 were linked to glioblastomas (p < 0.001), necrosis (p < 0.001), microvascular proliferation (p < 0.001), and CDKN2A/B homozygous deletions (p = 0.02). Models combining ITSS with rCBV and volume showed AUC of 0.94 and 0.96 (p < 0.001), outperforming univariate models. Conclusions: Semiquantitative ITSS grading correlates with key histopathologic and molecular glioma features. Combined with perfusion and volumetric parameters, ITSS enhance non-invasive glioma grading, in alignment with WHO CNS5. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Graphical abstract

18 pages, 2994 KiB  
Article
Altered Expression of Cell Cycle Regulators and Factors Released by Aged Cells in Skeletal Muscle of Patients with Bone Fragility: A Pilot Study on the Potential Role of SIRT1 in Muscle Atrophy
by Angela Falvino, Roberto Bonanni, Beatrice Gasperini, Ida Cariati, Angela Chiavoghilefu, Amarildo Smakaj, Virginia Veronica Visconti, Annalisa Botta, Riccardo Iundusi, Elena Gasbarra, Virginia Tancredi and Umberto Tarantino
Biomedicines 2025, 13(6), 1350; https://doi.org/10.3390/biomedicines13061350 - 31 May 2025
Viewed by 887
Abstract
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at [...] Read more.
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at the tissue level remains limited. Our pilot study aimed to characterize the expression profile of cell cycle regulators, factors released by aged cells, and sirtuin 1 (SIRT1) in the muscle tissue of 26 elderly patients undergoing hip arthroplasty, including 13 with low-energy fracture and 13 with osteoarthritis (OA). Methods: The mRNA expression levels of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), cyclin-dependent kinase inhibitor 2A (CDKN2A), p53, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-15 (IL-15), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3), growth differentiation factor 15 (GDF15), and SIRT1 were evaluated in muscle tissue by qRT-PCR. In addition, immunohistochemistry and Western blotting analysis were conducted to measure the protein levels of SIRT1. Results: A marked muscle atrophy was observed in fractured patients compared to the OA group, in association with an up-regulation of cell cycle regulators and factors released by the aged cells. The expression of matrix metallopeptidase 3 (MMP3), plasminogen activator inhibitor 1 (PAI-1), and fas cell surface death receptor (FAS) was also investigated, although no significant differences were observed between the two experimental groups. Notably, SIRT1 expression was significantly higher in OA patients, confirming its role in maintaining muscle health during aging. Conclusions: Further studies will be needed to clarify the role of SIRT1 in the senescence characteristic of age-related musculoskeletal disorders, counteracting the muscle atrophy that predisposes to fragility fractures. Full article
Show Figures

Figure 1

22 pages, 5276 KiB  
Article
Protein Biomarkers Enable Sensitive and Specific Cervical Intraepithelial Neoplasia (CIN) II/III+ Detection: One Step Closer to Universal Cervical Cancer Screening
by Samrin F. Habbani, Sayeh Dowlatshahi, Nathanael Lichti, Meaghan Broman, Lucy Tecle, Scott Bolton, Lisa Flowers, Rafael Guerrero-Preston, Jacqueline C. Linnes and Sulma I. Mohammed
Cancers 2025, 17(11), 1763; https://doi.org/10.3390/cancers17111763 - 24 May 2025
Viewed by 1726
Abstract
Background/Objectives: Cervical cancer (CC) is a significant global health challenge, particularly in low- and middle-income countries (LMICs), where limited access to human papillomavirus (HPV) vaccination and effective CC screening results in a majority of cases and fatalities among women. Moreover, existing vaccines do [...] Read more.
Background/Objectives: Cervical cancer (CC) is a significant global health challenge, particularly in low- and middle-income countries (LMICs), where limited access to human papillomavirus (HPV) vaccination and effective CC screening results in a majority of cases and fatalities among women. Moreover, existing vaccines do not target HPV-independent cancers. Current screening methods are expensive and time-consuming, with a limited emphasis on CC protein biomarkers. Therefore, we aimed to validate critical markers that allow the development of affordable point-of-care screening tests for resource-limited settings. Methods: This study first optimized a cell lysis and protein extraction protocol for CC cell lines and clinical cervical swabs. Subsequently, four proteins—topoisomerase II alpha (TOP2A), minichromosome maintenance complex component 2 (MCM2), valosin-containing protein (VCP), and cyclin-dependent kinase inhibitor 2A (p16INK4a)—were quantified in the resulting lysates using enzyme-linked immunosorbent assays, as well as in cervical tumors and squamous intraepithelial lesions (SILs) using immunohistochemistry for further validation. Results: Acetone precipitation allowed for efficient cell isolation, and radioimmunoprecipitation assay buffer yielded the highest protein recovery. VCP and p16INK4a were overexpressed across all cancer cell lines compared to primary cells. All four biomarkers were overexpressed in high-grade SIL (HSIL) swab specimens and tumor samples, including CC subtypes, G1–G3 tumor grades, and HSILs. Lastly, we showed that the proteins could accurately classify swabs and tissue specimens into clinically relevant groups. Conclusions: The quantitative analysis of these biomarkers, along with the subsequent sensitive and specific clinical classification, highlights their potential application in SIL early detection and CC prevention, particularly in LMICs. Full article
(This article belongs to the Special Issue Biomarkers for Gynecological Cancers)
Show Figures

Graphical abstract

Back to TopTop