Due to scheduled maintenance work on our database systems, there may be short service disruptions on this website between 10:00 and 11:00 CEST on June 14th.
ijms-logo

Journal Browser

Journal Browser

Molecular Research and Treatment of Breast Cancer: 3rd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: closed (20 May 2025) | Viewed by 6715

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
Interests: apoptosis; chemoresistance; cell signaling; natural compounds; anticancer drugs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Breast cancer is one of the most frequently diagnosed malignancies in the female population. Due to its heterogeneity, the molecular mechanisms governing breast cancer development and progression are complex and impact prognosis and treatment efficacy. Advances in the field of molecular research have offered insight into the cellular mechanisms and genetic changes that characterize breast cancer subtypes. This has enabled the identification of key driver genes and aberrations that initiate tumor development and the delineation of signaling pathway alterations underlying breast tumor growth. Furthermore, the characterization of novel cellular targets has significantly contributed to the development of improved therapeutic and diagnostic strategies.

This Special Issue of IJMS will welcome original research and review articles with the aim of providing an overview of advances on the molecular bases of breast cancer. Research within this Issue will focus on the molecular aspects of breast cancer development, progression and invasion. The development and discovery of therapeutic agents, as well as strategies that increase the efficacy of standard therapy, will also be covered. Additionally, research related to therapy resistance and approaches that target tumor escape mechanisms will be included in the scope of this Issue.

More published papers can be found in the closed special issue:

Dr. Anna Kawiak
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomarkers
  • breast cancer
  • cancer stem cells
  • cell signaling
  • circulating tumor cells
  • drug discovery
  • molecular diagnostics
  • molecular profiling
  • targeted therapy
  • therapy resistance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2790 KiB  
Article
Effective Targeting of Glutamine Synthetase with Amino Acid Analogs as a Novel Therapeutic Approach in Breast Cancer
by Shimaa Abdelsattar, Hiba S. Al-Amodi, Hala F. Kamel, Ahood A. Al-Eidan, Marwa M. Mahfouz, Kareem El khashab, Amany M. Elshamy, Mohamed S. Basiouny, Mohamed A. Khalil, Khaled A. Elawdan, Shorouk Elsaka, Salwa E. Mohamed and Hany Khalil
Int. J. Mol. Sci. 2025, 26(1), 78; https://doi.org/10.3390/ijms26010078 - 25 Dec 2024
Cited by 2 | Viewed by 1477
Abstract
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs. [...] Read more.
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs. Some of these analogs disrupt cellular nucleotide synthesis, thereby inhibiting the formation of DNA and RNA in cancer cells. In the present study, we investigated the anticancer properties of Acivicin and Azaserine in the breast cancer MCF-7 cell line, comparing their effects to those on the non-tumorigenic MCF-10 epithelial cell line in vitro. Interestingly, at lower concentrations, both Acivicin and Azaserine showed potent inhibition of MCF-7 cell proliferation, as assessed by the MTT assay, without detectable toxicity to normal cells. In contrast, Sorafenib (Nexavar), a commonly used drug for solid tumors, showed harmful effects on normal cells, as indicated by increased lactate dehydrogenase (LDH) production in treated cells. Furthermore, unlike Sorafenib, treatment with Acivicin and Azaserine significantly affected apoptotic signaling in treated cells, indicating the role of both amino acid analogs in activating programmed cell death (PCD), as assessed by the Annexin-V assay, DAPI staining, and the relative expression of tumor suppressor genes PTEN and P53. ELISA analysis of MCF-7 cells revealed that both Acivicin and Azaserine treatments promoted the production of anti-inflammatory cytokines, including IL-4 and IL-10, while significantly reducing the production of tumor necrosis factor alpha (TNF-α). Mechanistically, both Acivicin and Azaserine treatment led to a significant reduction in the expression of glutamine synthetase (GS) at both the RNA and protein levels, resulting in a decrease in intracellular glutamine concentrations over time. Additionally, both treatments showed comparable effects on Raf-1 gene expression and protein phosphorylation when compared with Sorafenib, a Raf-1 inhibitor. Moreover, docking studies confirmed the strong binding affinity between Acivicin, Azaserine, and glutamine synthetase, as evidenced by their docking scores and binding interactions with the enzyme crystal. Collectively, these findings provide evidence for the anticancer activity of the two amino acid analogs Acivicin and Azaserine as antagonists of glutamine synthetase, offering novel insights into potential therapeutic strategies for breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

24 pages, 11017 KiB  
Article
Altered Phenotypes of Breast Epithelial × Breast Cancer Hybrids after ZEB1 Knock-Out
by Alexander Merckens, Mareike Sieler, Silvia Keil and Thomas Dittmar
Int. J. Mol. Sci. 2023, 24(24), 17310; https://doi.org/10.3390/ijms242417310 - 9 Dec 2023
Cited by 5 | Viewed by 1883
Abstract
ZEB1 plays a pivotal role in epithelial-to-mesenchymal transition (EMT), (cancer) cell stemness and cancer therapy resistance. The M13HS tumor hybrids, which were derived from spontaneous fusion events between the M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg breast cancer cells, express ZEB1 and exhibit prospective [...] Read more.
ZEB1 plays a pivotal role in epithelial-to-mesenchymal transition (EMT), (cancer) cell stemness and cancer therapy resistance. The M13HS tumor hybrids, which were derived from spontaneous fusion events between the M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg breast cancer cells, express ZEB1 and exhibit prospective cancer stem cell properties. To explore a possible correlation between the ZEB1 and stemness/ EMT-related properties in M13HS tumor hybrids, ZEB1 was knocked-out by CRISPR/Cas9. Colony formation, mammosphere formation, cell migration, invasion assays, flow cytometry and Western blot analyses were performed for the characterization of ZEB1 knock-out cells. The ZEB1 knock-out in M13HS tumor cells was not correlated with the down-regulation of the EMT-related markers N-CADHERIN (CDH2) and VIMENTIN and up-regulation of miR-200c-3p. Nonetheless, both the colony formation and mammosphere formation capacities of the M13HS ZEB1 knock-out cells were markedly reduced. Interestingly, the M13HS-2 ZEB1-KO cells harbored a markedly higher fraction of ALDH1-positive cells. The Transwell/ Boyden chamber migration assay data indicated a reduced migratory activity of the M13HS ZEB1-knock-out tumor hybrids, whereas in scratch/ wound-healing assays only the M13SH-8 ZEB1-knock-out cells possessed a reduced locomotory activity. Similarly, only the M13HS-8 ZEB1-knock-out tumor hybrids showed a reduced invasion capacity. Although the ZEB1 knock-out resulted in only moderate phenotypic changes, our data support the role of ZEB1 in EMT and stemness. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 2180 KiB  
Review
Targeting WEE1 Kinase for Breast Cancer Therapeutics: An Update
by Zhao Zhang, Ritika Harish, Naveed Elahi, Sawanjit Saini, Aamir Telia, Manjit Kundlas, Allexes Koroleva, Israel N. Umoh, Manpreet Lota, Meha Bilkhu, Aladdin Kawaiah, Manogna R. Allala, Armelle Leukeu, Emmanuel Nebuwa, Nadiya Sharifi, Anthony W. Ashton, Xuanmao Jiao and Richard G. Pestell
Int. J. Mol. Sci. 2025, 26(12), 5701; https://doi.org/10.3390/ijms26125701 (registering DOI) - 13 Jun 2025
Abstract
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between [...] Read more.
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between WEE family kinases and CDC25C phosphatases restricts CDK1/CycB activity. The WEE kinase family consists of WEE1, PKMYT1, and WEE2 (WEE1B). WEE1 and PKMYT1 regulate entry into mitosis during cell cycle progression, whereas WEE2 governs cell cycle progression during meiosis. Recent studies have identified WEE1 as a potential therapeutic target in several cancers, including therapy-resistant triple-negative breast cancer. Adavosertib’s clinical promise was challenged by inter-individual variations in response and side effects. Because of these promising preclinical outcomes, other WEE1 kinase inhibitors (Azenosertib, SC0191, IMP7068, PD0407824, PD0166285, WEE1-IN-5, Zedoresertib, WEE1-IN-8, and ATRN-1051) are being developed, with several currently being evaluated in clinical trials or as an adjuvant to chemotherapies. Preclinical studies show WEE1 inhibitors induce MHC class 1 antigens and STING when given as combination therapies, suggesting potential additional therapeutic opportunities. Reliable predictors of clinical responses based on mechanistic insights remain an important unmet need. Herein, we review the role of WEE1 inhibition therapy in breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
17 pages, 1957 KiB  
Review
Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review
by Han Wang, Ruo Wang, Kunwei Shen, Renhong Huang and Zheng Wang
Int. J. Mol. Sci. 2024, 25(9), 4620; https://doi.org/10.3390/ijms25094620 - 24 Apr 2024
Cited by 5 | Viewed by 2575
Abstract
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; [...] Read more.
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

Back to TopTop