Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (239)

Search Parameters:
Keywords = curve skeleton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6457 KB  
Article
Experimental Study on Seismic Performance of Prestressed CFRP Tendon–Steel-Reinforced Concrete Transfer Story Structure with Inclined-Web Trusses
by Yu Deng, Hualong Mu and Yihui Ying
Buildings 2026, 16(3), 522; https://doi.org/10.3390/buildings16030522 - 27 Jan 2026
Viewed by 164
Abstract
The truss transfer story serves as a critical structural zone connecting different structural systems in high-rise buildings. This component incorporates numerous inclined-web trusses, which are prone to cracking and failure under seismic events. To enhance the seismic performance of long-span transfer structures and [...] Read more.
The truss transfer story serves as a critical structural zone connecting different structural systems in high-rise buildings. This component incorporates numerous inclined-web trusses, which are prone to cracking and failure under seismic events. To enhance the seismic performance of long-span transfer structures and address the tensile cracking vulnerability of inclined-web trusses in conventional truss transfer stories, this study investigates the seismic behavior of a novel composite system: a prestressed CFRP tendon–steel-reinforced concrete transfer story structure with inclined-web trusses and two specimens of inclined-web truss transfer story frames—with and without prestressed CFRP tendons—were designed and fabricated. These specimens were subjected to horizontal low-cycle reversed loading to examine seismic performance indicators, including crack propagation patterns, failure modes, hysteretic curves, skeleton curves, stiffness degradation, ductility, and energy dissipation capacity. The results demonstrate that incorporating prestressed CFRP tendons into the inclined-web trusses did not alter the failure mode of the steel-reinforced concrete transfer story structure. The primary failure morphology consistently manifested as flexural-shear failure in the bottom chord columns. During the loading process, tensile cracking failure manifested in the inclined-web members of both specimens, with and without prestressing. Crack distribution remained uniform in all cases. The inclined-web trusses incorporating prestressed strands exhibited an 80% increase in cracking load compared to the non-prestressed specimen. Furthermore, the prestressed specimen demonstrated superior resistance to performance degradation and enhanced energy dissipation capacity. Both configurations exhibited significant deformation capacity and satisfactory seismic performance. The prestressed CFRP tendons enhance the crack resistance and deformation capacity of a transfer story structure with inclined-web trusses, providing novel insights for seismic design of truss transfer story structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 7160 KB  
Article
Evaluation of the Seismic Behavior of Carbon-Grid-Reinforced Walls with Varying Anchorage and Axial Load Ratios
by Kyung-Min Kim, Sung-Woo Park, Bhum-Keun Song, Kyung-Jae Min and Seon-Hee Yoon
Polymers 2026, 18(1), 144; https://doi.org/10.3390/polym18010144 - 5 Jan 2026
Viewed by 290
Abstract
Fiber-reinforced polymers (FRPs) are being increasingly used to replace rebars as reinforcements for concrete. This study evaluated the seismic behavior of concrete walls reinforced with grid-type carbon FRP (CFRP; carbon grid) through quasi-static cyclic tests and compared the results with that of the [...] Read more.
Fiber-reinforced polymers (FRPs) are being increasingly used to replace rebars as reinforcements for concrete. This study evaluated the seismic behavior of concrete walls reinforced with grid-type carbon FRP (CFRP; carbon grid) through quasi-static cyclic tests and compared the results with that of the reinforced concrete (RC) wall. The experimental variables were the ratio of the carbon-grid anchorage length in the foundation to the wall length and the axial force ratio. Based on the results of the quasi-static cyclic tests, the ratio of the equivalent stiffness at the crushing of the compression-edge cover concrete to the initial stiffness of the carbon-grid-reinforced concrete specimens was 0.14 on average. This indicates that the specimens reached their maximum load due to the crushing of the compression-edge cover concrete after a significant reduction in stiffness due to cracking. The skeleton curve for the carbon-grid-reinforced concrete specimens was found to be bilinear, with reduced stiffness due to cracking and failure due to the crushing of the compression-edge cover concrete, making it definable and predictable. Additionally, in specimens with a high axial force or small ratio of the anchorage length in the foundation to the wall length, some of the longitudinal CFRP strands fractured at the same time as they reached the failure load. Moreover, the load at the crushing of the compression-edge cover concrete of the carbon-grid-reinforced concrete specimen increased by 1.10 times with the increase in the axial force ratio and decreased by 0.96 times with the decrease in the ratio of the anchorage length in the foundation to the wall length. It was found to be 0.73–0.80 times the flexural strength based on the assumption of plane sections remaining plane. In comparison with RC specimen, the cumulative absorbed energy of the carbon-grid-reinforced concrete specimen began to decrease after a story drift ratio of 1%, and the cumulative absorbed energy up to the target story drift ratio of 3.0% was found to be 0.60–0.62 times that of the RC specimen. Full article
(This article belongs to the Special Issue Polymer Composites in Construction Materials)
Show Figures

Figure 1

21 pages, 23506 KB  
Article
Experimental and Numerical Analysis of a Bolted Angle Connector Beam-to-Column Joint with a Stiffener
by Zongmin Zhang, Lanhua Chen and Peng Yuan
Buildings 2026, 16(1), 180; https://doi.org/10.3390/buildings16010180 - 31 Dec 2025
Viewed by 288
Abstract
The seismic performance of a proposed bolted angle connector beam-to-column joint with a stiffener (hereinafter referred to as a BACS joint) was investigated utilizing quasi-static tests on six specimens with H-shaped steel members. The failure modes, hysteretic curves, skeleton curves, stiffness degradation, and [...] Read more.
The seismic performance of a proposed bolted angle connector beam-to-column joint with a stiffener (hereinafter referred to as a BACS joint) was investigated utilizing quasi-static tests on six specimens with H-shaped steel members. The failure modes, hysteretic curves, skeleton curves, stiffness degradation, and energy dissipation capacity were analyzed. The test results indicated that the BACS joint exhibited a 28.1% higher moment resistance and a 12.6% greater equivalent viscous damping coefficient compared to a welded connection with the same specifications. Furthermore, when compared to a short-beam spliced connection with comparable steel consumption, the BACS joint demonstrated advantages in both the load-bearing capacity and the energy dissipation. The numerical analysis results based on ABAQUS software demonstrated that increasing the stiffener height could not only enhance the bending capacity and stiffness of the connection, but also promote the relocation of the plastic hinge towards the beam end, thereby improving the failure mode. The increase in the stiffener thickness led to a minor improvement in the bending capacity of the connection, yet the influence of the stiffener thickness on the connection stiffness was limited. Furthermore, the use of steel with a higher strength grade could substantially increase the bending capacity of the BACS joint, while the enhancement in stiffness was relatively modest. Therefore, economic considerations should be integrated into the engineering design process. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 7314 KB  
Article
Experimental Study on Seismic Performance of Rammed Earth and Rubble Masonry Walls
by Yang Liu, Zhenchao Zhou, Ming Chang and Zuan Pei
Buildings 2026, 16(1), 149; https://doi.org/10.3390/buildings16010149 - 29 Dec 2025
Viewed by 314
Abstract
Rammed earth and rubble masonry walls are constructed using raw stones as aggregate and native soil as binding material. To investigate the impact of different configurations on the seismic performance of rammed earth and rubble masonry wall, four wall specimens were subjected to [...] Read more.
Rammed earth and rubble masonry walls are constructed using raw stones as aggregate and native soil as binding material. To investigate the impact of different configurations on the seismic performance of rammed earth and rubble masonry wall, four wall specimens were subjected to quasi-static testing. Through comparative analysis of hysteresis curves, skeleton curves, stiffness degradation curves, and energy dissipation capacity, the failure modes and seismic performance of the walls were elucidated. Research indicates that under horizontal low-cycle cyclic loading, rammed earth and rubble masonry walls undergo three stages of failure: microcrack initiation and propagation, macrocrack formation and local failure, and ultimate collapse. The arched counter-arch joint wall exhibits the highest energy dissipation capacity and maximum shear bearing capacity, demonstrating an 18.7% improvement over the standard wall. Timber reinforcement walls exhibited lower energy dissipation capacity than curved joint walls but higher than standard walls, with shear bearing capacity being 1.3% greater than standard walls. The opening wall demonstrated the poorest energy dissipation capacity, with shear bearing capacity being 35% lower than standard walls and having the weakest seismic performance. These findings provide theoretical support for optimizing the seismic design of traditional rammed earth and rubble masonry dwellings. Full article
Show Figures

Figure 1

24 pages, 18474 KB  
Article
Experimental and Numerical Study on Seismic Performance of Steel Reinforced Concrete Inclined Column Under Cyclic Loading
by Ming Zhu, Daxin Geng and Yonghu Huang
Buildings 2026, 16(1), 126; https://doi.org/10.3390/buildings16010126 - 26 Dec 2025
Viewed by 226
Abstract
As the requirements for structural functionality increase, designers frequently opt for inclined columns instead of traditional vertical columns. This choice enhances the spatial dynamics, esthetic appeal, and lighting effects of the structure. However, the research on the failure mechanism and seismic performance of [...] Read more.
As the requirements for structural functionality increase, designers frequently opt for inclined columns instead of traditional vertical columns. This choice enhances the spatial dynamics, esthetic appeal, and lighting effects of the structure. However, the research on the failure mechanism and seismic performance of inclined columns under cyclic loading is not systematic. To promote the application of inclined columns in earthquake-prone areas, quasi-static tests were conducted on steel-reinforced concrete inclined columns (SRCIC). The study analyzed the elastic and elastic-plastic development trend, failure mechanism, second-order effect, deformation and energy dissipation of the inclined columns. Traditional vertical columns often experience bending or shear failure, while SRCIC exhibited a new failure pattern characterized by bending failure on one side and compression failure on the other. Based on the experimental design, the nonlinear finite element analysis model of SRCIC is established. The finite element model was validated for horizontal peak load, ductility coefficient, and damage area at various inclination angles, providing a foundation for further parameter analysis. In the numerical analysis section, the effects of inclination angle, steel ratio, reinforcement ratio, and stirrup ratio on the skeleton curve and ductility coefficient were studied in detail, leading to the application of SRCIC. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 14285 KB  
Article
Seismic Performance of Concrete Square Column Confined by Five-Spiral Composite Stirrups
by Shanshan Sun, Tao Yu, Xiangyu Gao, Zhaoqiang Zhang, Tian Su and Zhixing Hao
Coatings 2025, 15(12), 1499; https://doi.org/10.3390/coatings15121499 - 18 Dec 2025
Viewed by 348
Abstract
In order to solve the problem of inadequate confinement provided by traditional rectangular stirrups in concrete square columns under stringent seismic fortification requirements, a spiral stirrup with a better constraint effect was used in the square columns in this study. Through a comprehensive [...] Read more.
In order to solve the problem of inadequate confinement provided by traditional rectangular stirrups in concrete square columns under stringent seismic fortification requirements, a spiral stirrup with a better constraint effect was used in the square columns in this study. Through a comprehensive analysis of test results, numerical simulations, and theoretical derivations, the seismic performance and shear capacity calculation methods of concrete square columns confined with five-spiral composite stirrups were investigated. This study provides pertinent technical data to facilitate the engineering application of such columns. The existing low-cycle repeated loading tests of 13 concrete square columns confined with five-spiral composite stirrups were collected and analyzed; some of these specimens were selected for finite element numerical simulation, and the simulation results were compared with the test results. The results indicate that the hysteresis curves and skeleton curves obtained from the numerical simulation agree well with the experimental curves, which verifies the rationality of the numerical simulation model proposed in this paper; post-peak load behavior reveals a pronounced compound confinement effect attributable to the five-spiral stirrups; during mid-to-late loading stages, the tensile stress in small spiral stirrups at intersections with larger spirals escalates rapidly, resulting in maximum transverse confinement within these areas. Based on the validated numerical simulation approach, a comprehensive analysis was performed to investigate the effects of axial compression ratio, shear-span ratio, spacing of small spiral stirrups, and diameter ratio of large-to-small spiral stirrups on the seismic performance of the specimens. The results demonstrate that when the spacing of large and small spiral stirrups is kept consistent, the specimens yield optimal strength and ductility. With the diameter of the central large-spiral stirrup fixed, either an increase or a decrease in the diameter of small spiral stirrups will induce varying degrees of reduction in both strength and ductility of the specimens. Furthermore, the five-spiral reinforced columns achieve the best overall seismic performance when the diameter of the central large spiral stirrup reaches the maximum allowable value for the cross-section, and the diameter of small spiral stirrups is set to one-third that of the large spiral stirrup. Finally, the shear mechanism and influencing factors of the shear capacity of the concrete square columns confined with five-spiral composite stirrups were discussed, and a practical formula for calculating the shear capacity of such columns was proposed. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

22 pages, 8876 KB  
Article
Seismic Performance of the Full-Scale Prefabricated Concrete Column Connected in Half-Height: Experimental Study and Numerical Analysis
by Tingting Peng, Jijun Miao, Jiaqi Zhang, Bochen Song, Yanchun Liu and Sumeng Song
Buildings 2025, 15(24), 4491; https://doi.org/10.3390/buildings15244491 - 11 Dec 2025
Viewed by 269
Abstract
To improve the seismic performance of prefabricated structures, this study suggested putting grouted sleeves at the half-height of the column (at the point of contraflexure). A quasi-static test under constant axial load was conducted on the full-scale cast-in-place column and the full-scale prefabricated [...] Read more.
To improve the seismic performance of prefabricated structures, this study suggested putting grouted sleeves at the half-height of the column (at the point of contraflexure). A quasi-static test under constant axial load was conducted on the full-scale cast-in-place column and the full-scale prefabricated column connected in half-height. The hysteresis loops, skeleton curves, ductility, stiffness degradation, and energy dissipation capacity were compared. The test results indicate that the prefabricated column connected in half-height exhibited reliable seismic performance. Compared with the cast-in-place specimen, the bearing capacity of the prefabricated column decreased by only 1.45%, the energy dissipation decreased by 5.61%, and the initial secant stiffness and ductility coefficient increased by 8.88% and 9.09%, respectively. ABAQUS finite element software was used to establish finite-element models based on the experimental results. The damage pattern and seismic performance indicators of the two types of columns were verified by resolving issues related to the bonding interface model of sleeve-connected columns and the convergence of the multidimensional constitutive model. The formula for calculating the shear bearing capacity was put forward to evaluate the failure pattern. The study provides a basis for further investigation of the seismic performance of sleeve-connected columns with different connection positions under extreme conditions. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures—2nd Edition)
Show Figures

Figure 1

22 pages, 7997 KB  
Article
Experimental Study on Dynamic Characteristics of Cemented Tailings Backfill Under Different Tailings Gradation
by Deqing Gan, Hongbao Li and Zhiyi Liu
Appl. Sci. 2025, 15(23), 12778; https://doi.org/10.3390/app152312778 - 2 Dec 2025
Viewed by 355
Abstract
The stability of cemented tailings backfill (CTB) is influenced by mining disturbance. As a property of CTB, tailings gradation (TG) is one of the factors that change its mechanical properties. Taking tailings gradation, impact amplitude, and curing age as variables, this paper focuses [...] Read more.
The stability of cemented tailings backfill (CTB) is influenced by mining disturbance. As a property of CTB, tailings gradation (TG) is one of the factors that change its mechanical properties. Taking tailings gradation, impact amplitude, and curing age as variables, this paper focuses on the characteristics of the influence of curing age on the failure deformation, strength evolution, failure mode, and microstructure of CTB. The results show that with the average particle size of the tailings from coarse to fine, the peak stress and elastic modulus of CTB first decrease and then increase. The increase in curing age and impact amplitude can improve the elastic deformation capacity of CTB. During the post-peak phase, the stress–strain curve undergoes sequential morphological transitions, evolving from the initial “stress drop” characteristics through “post-peak plasticity” manifestations before ultimately demonstrating “post-peak ductility” behavior. This progression corresponds to CTB’s material transformation pathway, commencing as a rigid substance that first transitions into a plastic-brittle composite, subsequently develops plastic properties, and finally attains ductile material characteristics. The TG changes from T1 to T4, and the failure mode of CTB gradually changes from composite failure and shear failure to tension failure and composite failure. A CTB strength prediction model based on TG is proposed. The R2 of the model is 0.997, F = 12,855, and p < 0.001, which has high applicability. As tailings vary from T1/T2 to T4, AFt content progressively decreases, the C-S-H gel transitions from a 3D network to a flocculent structure, and the skeleton shifts from coarse to fine particles, leading to increased porosity but smaller pores. Full article
Show Figures

Figure 1

24 pages, 12893 KB  
Article
Seismic Performance of T-Shaped Aluminum Alloy Beam–Column Bolted Connections: Parametric Analysis and Design Implications Based on a Mixed Hardening Model
by Bangzheng Rao, Zhongmin Wang, Weiguo Rao, Zhongping Que, Fengzeng Li, Jin Wang and Wenyuan Gao
Buildings 2025, 15(23), 4324; https://doi.org/10.3390/buildings15234324 - 28 Nov 2025
Viewed by 375
Abstract
The seismic design of aluminum alloy structures requires specific attention due to the material’s distinct mechanical properties compared to steel, which renders direct application of steel joint design methods inappropriate. This study investigates the seismic behavior of T-shaped aluminum alloy beam–column bolted connections, [...] Read more.
The seismic design of aluminum alloy structures requires specific attention due to the material’s distinct mechanical properties compared to steel, which renders direct application of steel joint design methods inappropriate. This study investigates the seismic behavior of T-shaped aluminum alloy beam–column bolted connections, which consist of 6061-T6 aluminum alloy beams and columns connected by S304 stainless steel connectors via high-strength bolts. A finite element model, incorporating a mixed hardening constitutive model for accurate cyclic response, is established and validated against low-cycle cyclic loading tests. Parametric analyses evaluated the influence of L-shaped connector dimensions on hysteresis response, skeleton curves, stiffness degradation, energy dissipation, and ductility. Results demonstrate that increasing the thickness of the short leg of the L-shaped connector between the beam flange and column flange significantly enhances the ultimate bending moment, with an increase of up to 36.7% per 2 mm increment, alongside improved energy dissipation and ductility. Stiffness degradation follows a natural exponential decay, with residual stiffness between 23.85% and 32.57% at ultimate deformation. An efficiency analysis identifies the most cost-effective measures for seismic design. The primary novelty of this work lies in the successful application and validation of a mixed hardening model for simulating the complex cyclic behavior of T-shaped aluminum alloy connections, coupled with a systematic efficiency-oriented parametric study. The findings offer practical, quantitative guidelines for designing aluminum alloy bolted connections in seismic-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 7403 KB  
Article
Partitioned Nonlinearity Soil–Structure Interaction Analysis for Nuclear Power Plant Structures with Pile Foundations
by Lei Gao and Shaolin Chen
Buildings 2025, 15(23), 4250; https://doi.org/10.3390/buildings15234250 - 25 Nov 2025
Viewed by 440
Abstract
Accurate seismic safety assessment of nuclear power plant (NPP) structures with pile foundations on soft soil sites requires consideration of soil nonlinearity and pile–soil–structure interaction (PSSI). This study develops an efficient partitioned SSI framework, where the nonlinear soil response is simulated using the [...] Read more.
Accurate seismic safety assessment of nuclear power plant (NPP) structures with pile foundations on soft soil sites requires consideration of soil nonlinearity and pile–soil–structure interaction (PSSI). This study develops an efficient partitioned SSI framework, where the nonlinear soil response is simulated using the Davidenkov skeleton curve combined with a modified Masing rule and solved by an explicit time integration scheme, while the structural dynamics are evaluated using the modal superposition method. The framework is applied to a pile-supported CAP1400 NPP model on deep soft soil, with both piles and the superstructure modeled as elastic. Two computational schemes are examined: (a) explicit integration of the soil while treating the piles and structure as an integrated system analyzed via modal superposition; and (b) explicit integration of both soil and piles, with the structure analyzed using modal superposition. Under pulse excitation, both schemes yield comparable dynamic responses, whereas scheme (b) improves computational efficiency by over threefold (88 h vs. 293 h). Results using scheme (b) under RG1.60 excitation show that soil nonlinearity reduces and delays structural responses but increases pile bending moments and stress concentration, demonstrating the framework’s effectiveness and practicality for nonlinear SSI analysis of NPP structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 7819 KB  
Article
Experimental Analysis of Seismic Behavior of Squat Shear Walls with Different Axial Load Ratios
by Hong Chang, Wei Zhou, Zhibo Bao, Changhai Zhai and Dongmei Wang
Buildings 2025, 15(23), 4233; https://doi.org/10.3390/buildings15234233 - 24 Nov 2025
Cited by 1 | Viewed by 471
Abstract
The majority of existing experimental studies on the seismic performance of squat shear walls have primarily focused on small-scale specimens with low axial load ratios. To investigate the seismic behavior of squat reinforced concrete shear walls subjected to high axial load ratios, quasi-static [...] Read more.
The majority of existing experimental studies on the seismic performance of squat shear walls have primarily focused on small-scale specimens with low axial load ratios. To investigate the seismic behavior of squat reinforced concrete shear walls subjected to high axial load ratios, quasi-static tests were conducted on six large-scale squat shear walls with varying axial load ratios. The failure modes, hysteresis curves, skeleton curves, energy dissipation characteristics, stiffness degradation, and crack widths of these specimens were thoroughly analyzed. A numerical simulation of the experimental process was carried out using ABAQUS, and the validity of the finite element model and the accuracy of the numerical analysis results were verified through comparison with the experimental measurements. From the experimental results, it is determined that the axial load ratio is an important parameter affecting the specimens and that the squat shear walls show obvious shear slip failure. Furthermore, the axial load ratio is inversely proportional to the horizontal bearing capacity, stiffness, and ductility. ABAQUS is shown to simulate the stress state of the squat shear wall well, providing a reasonable theoretical analysis model and calculation parameters. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 16681 KB  
Article
Seismic Performance Testing and Damage Analysis of Reinforced T-Stub Connections
by Yifei Chen, Xin Bu, Bing Shen, Xufeng Yin, Xinwu Wang, Qiang Huang and Zhiwei Zhang
Buildings 2025, 15(22), 4112; https://doi.org/10.3390/buildings15224112 - 14 Nov 2025
Cited by 1 | Viewed by 329
Abstract
To improve the seismic performance of semi-rigid steel frame beam–column joints connected by T-stubs, reinforced T-stubs formed via wedge-shaped and thickening modifications are proposed. Taking the middle column joints in steel frames as the research objects, three types of beam–column joints are designed [...] Read more.
To improve the seismic performance of semi-rigid steel frame beam–column joints connected by T-stubs, reinforced T-stubs formed via wedge-shaped and thickening modifications are proposed. Taking the middle column joints in steel frames as the research objects, three types of beam–column joints are designed by adopting ordinary, wedge-shaped, and thickened wedge-shaped T-stubs. To conduct a comparative analysis of the seismic performance of the test specimens, this study imposes low-cycle cyclic loads on the column ends of each specimen along their major-axis and minor-axis in-planes. This loading protocol is adopted to simulate the dynamic responses of the specimens under bidirectional seismic action. Comparing the macroscopic failure phenomena of the specimens, the influence of reinforced T-stubs on the plastic development mode of the joints is analyzed. Based on seismic indicators such as hysteresis characteristics, skeleton curves, stiffness degradation, and energy dissipation capacity, the energy dissipation capacity of the specimens along the major-axis is greater than that along the minor-axis, but their deformation capacity is slightly reduced. The bearing capacity, energy dissipation, and rotational stiffness could be improved by reinforced T-stubs, but the deformation capacity is reduced to varying degrees. The stiffness degradation rate of the specimen adopting wedge-shaped T-stubs shows a more obvious accelerating trend. Through the comparative analysis of the three specimens based on the energy damage index, the results indicate that wedge-shaped T-stubs significantly increase the damage degree of the specimens, but thickened wedge-shaped T-stubs have a relatively small impact on the evolution of joint damage. Full article
Show Figures

Figure 1

21 pages, 7886 KB  
Article
Identification and Posture Evaluation of Effective Tea Buds Based on Improved YOLOv8n
by Pan Wang, Tingting He, Luxin Xie, Wenyu Yi, Lei Zhao, Chunxia Wang, Jiani Wang, Zhiye Bai and Song Mei
Processes 2025, 13(11), 3658; https://doi.org/10.3390/pr13113658 - 11 Nov 2025
Viewed by 550
Abstract
Aiming at the low qualification rate and high damage caused by the lack of identification, localization, and posture estimation of tea buds in the mechanical harvesting process of famous tea, a framework of lightweight detection + PCA-skeleton fusion posture estimation was proposed. Based [...] Read more.
Aiming at the low qualification rate and high damage caused by the lack of identification, localization, and posture estimation of tea buds in the mechanical harvesting process of famous tea, a framework of lightweight detection + PCA-skeleton fusion posture estimation was proposed. Based on the YOLOv8n model, the StarNet backbone network was introduced to enable lightweight detection, and the ASF-YOLO multi-scale attention module was embedded to improve the feature fusion ability. Based on the detection frame, the GrabCut-Watershed fusion segmentation was employed to obtain the bud mask. Combined with PCA and skeleton extraction algorithms, the main direction deviations of bent buds and clasped leaves were solved by Bézier curve fitting, and the morphology–posture dual-factor scoring model was thereby constructed to realize the picking ranking. Compared with the original YOLOv8n model, the results showed that the detection accuracy and mAP50 of the Improved model decreased to 85.6% and 90.5%, respectively, and the recall rate increased to 81.7%. Meanwhile, the calculation load of the improved model was reduced by 23.6%, reaching 6.8 GFLOPs, indicating a significant improvement in lightweight. The morphology–posture dual-factor scoring model achieved a score of 0.88 for a single bud in vertical direction (θ ≈ 90°), a score of approximately 0.66–0.71 for buds with partially unfolded leaves and slightly bent buds, and a score of 0.48–0.53 for severely bent and overlapped buds. The results of this study have the potential to guide the picking robotic arms to preferentially pick tea buds with high adaptability and provide a reliable visual solution for low-loss and high-efficiency mechanized harvesting of famous tea in complex tea gardens. Full article
Show Figures

Figure 1

14 pages, 3975 KB  
Article
Seismic Performance and Buckling Length Calculation Method of Concrete-Filled Steel Tube Columns
by Yulong Zhou, Haifang He, Shu Cao, Tong Zhu, Zhixuan Fei, Min Wu and Xiang Tian
Buildings 2025, 15(21), 4007; https://doi.org/10.3390/buildings15214007 - 6 Nov 2025
Viewed by 431
Abstract
This study establishes a refined numerical model of circular concrete-filled steel tube (CFST) columns using finite element software, and its effectiveness was verified through simulation of low-cycle reciprocating load tests. Based on this, a systematic analysis was conducted to investigate the effects of [...] Read more.
This study establishes a refined numerical model of circular concrete-filled steel tube (CFST) columns using finite element software, and its effectiveness was verified through simulation of low-cycle reciprocating load tests. Based on this, a systematic analysis was conducted to investigate the effects of three key parameters—axial compression ratio (0.1–0.3), slenderness ratio (22.2–46.8), and confinement coefficient (0.65–1.56)—on the seismic performance of CFST columns, including failure modes, hysteretic behavior, skeleton curves, ductility, and energy dissipation capacity. The local buckling behavior was also studied. The results indicate that increasing the axial compression ratio slightly enhances the bearing capacity but reduces ductility, increasing the slenderness ratio significantly reduces the bearing capacity but improves ductility, and increasing the confinement coefficient substantially improves the bearing capacity, ductility, and energy dissipation capacity simultaneously. Based on the parametric analysis, the existing calculation formula for the local buckling length of circular CFST columns was modified. The average error between the predicted and simulated values is only 10%, demonstrating high engineering applicability. This research provides a theoretical basis and a practical calculation method for the seismic design and performance evaluation of CFST building and bridge columns. Full article
Show Figures

Figure 1

23 pages, 6103 KB  
Article
Investigation into the Dynamic Performance of a Reverse-Rotation Locking Sleeve Connection Method
by Xue-Mei Tang, Ren-Guo Gu, Chuan-Hai Hong, Rui-Qing Liang, Kang Gao and Xiao-Feng Zhang
Buildings 2025, 15(20), 3790; https://doi.org/10.3390/buildings15203790 - 21 Oct 2025
Viewed by 456
Abstract
Joint connections are critical to the overall performance of prefabricated structures. This paper proposes a novel reverse-rotation locking sleeve connection method, designed to ensure the safety of joint engineering while optimizing construction processes, improving operational efficiency, and endowing the joints with excellent seismic [...] Read more.
Joint connections are critical to the overall performance of prefabricated structures. This paper proposes a novel reverse-rotation locking sleeve connection method, designed to ensure the safety of joint engineering while optimizing construction processes, improving operational efficiency, and endowing the joints with excellent seismic energy dissipation performance. To evaluate the performance of this connection method, quasi-static tests under displacement-controlled lateral loading were designed and conducted on three reinforced concrete column specimens (Specimen A: conventional reinforcement–cast-in-place monolithic; Specimen B: conventional reinforcement–reverse-rotation locking sleeve connected; Specimen C: enhanced reinforcement–reverse-rotation locking sleeve connected). The failure modes, hysteretic characteristics, skeleton curves, ductility, energy dissipation capacity, load-bearing capacity, and stiffness degradation patterns of the specimens were systematically examined. The results indicate that Specimen B exhibited the most severe damage extent, while Specimen A demonstrated the best integrity; in contrast, Specimen B showed significant and rapid degradation in energy dissipation capacity during the intermediate-to-late stages of testing; the hysteretic curves of Specimens B and C were full in shape, without obvious yield plateaus; the skeleton curves of all specimens exhibited S-shaped characteristics, and the peak loads of Specimens A and C corresponded to a lateral displacement of 21 mm, while that of Specimen B corresponded to a lateral displacement of 28 mm; compared to the cast-in-place monolithic Specimen A, the reverse-rotation locking sleeve–connected Specimens B and C showed increases in ultimate load under positive cyclic loading by 18.7% and 5.5%, respectively, and under negative cyclic loading by 40.8% and 2.0%, respectively; the ductility coefficients of all three specimens met the code requirement, being greater than 3.0 (Specimen A: 5.13; Specimen B: 3.56; Specimen C: 5.66), with Specimen C exhibiting a 10.3% improvement over Specimen A, indicating that the reverse-rotation locking sleeve–connected specimens possess favorable ductile performance; analysis revealed that the equivalent viscous damping coefficient of Specimen C was approximately 0.06 higher than that of Specimen A, meaning Specimen C had superior energy dissipation capacity compared to Specimen A, confirming that the reverse-rotation locking sleeve connection can effectively absorb seismic energy and enhance the seismic and energy dissipation characteristics of the specimens. The load-bearing capacity degradation coefficients of all specimens fluctuated between 0.83 and 1.01, showing an initial stable phase followed by a gradual declining trend; the stiffness degradation coefficients exhibited rapid initial decline, followed by a deceleration in the attenuation rate, and eventual stabilization. This indicates that the reverse-rotation locking sleeve-connected specimens can maintain relatively stable strength levels and favorable seismic performance during the plastic deformation stage. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

Back to TopTop