Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (253)

Search Parameters:
Keywords = current distortion compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 336
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

25 pages, 7875 KiB  
Article
A Comparative Study of Direct Power Control Strategies for STATCOM Using Three-Level and Five-Level Diode-Clamped Inverters
by Diyaa Mustaf Mohammed, Raaed Faleh Hassan, Naseer M. Yasin, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Energies 2025, 18(13), 3582; https://doi.org/10.3390/en18133582 - 7 Jul 2025
Viewed by 376
Abstract
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, [...] Read more.
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, such as Virtual Synchronous Generator (VSG) and Static Compensator (STATCOM) configurations. DPC accomplishes several significant goals by avoiding the inner current control loops and doing away with coordinating transformations. The application of STATCOM based on three- and five-level diode-clamped inverters is covered in this work. The study checks the abilities of DPC during power control adjustments during diverse grid operation scenarios while detailing how multilevel inverters affect system stability and power reliability. Proportional Integral (PI) controllers are used to control active and reactive power levels as part of the control approach. This study shows that combining DPC with Sinusoidal Pulse Width Modulation (SPWM) increases the system’s overall electromagnetic performance and control accuracy. The performance of STATCOM systems in power distribution and transient response under realistic operating conditions is assessed using simulation tools applied to three-level and five-level inverter topologies. In addition to providing improved voltage quality and accurate reactive power control, the five-level inverter structure surpasses other topologies by maintaining a total harmonic distortion (THD) below 5%, according to the main findings. The three-level inverter operates efficiently under typical grid conditions because of its straightforward design, which uses less processing power and computational complexity. Full article
Show Figures

Figure 1

16 pages, 3101 KiB  
Article
Enhanced High-Resolution and Long-Range FMCW LiDAR with Directly Modulated Semiconductor Lasers
by Luís C. P. Pinto and Maria C. R. Medeiros
Sensors 2025, 25(13), 4131; https://doi.org/10.3390/s25134131 - 2 Jul 2025
Viewed by 579
Abstract
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. [...] Read more.
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. Integrating LiDARs into electronic and photonic semiconductor chips can lower their cost, size, and power consumption, making them affordable for cost-sensitive applications. Additionally, simple designs are required, such as FMCW signal generation by the direct modulation of the current of a semiconductor laser. However, semiconductor lasers are inherently nonlinear, and the driving waveform needs to be optimized to generate linear FMCW signals. In this paper, we employ pre-distortion techniques to compensate for chirp nonlinearity, achieving frequency nonlinearities of 0.0029% for the down-ramp and the up-ramp at 55 kHz. Experimental results demonstrate a highly accurate LiDAR system with a resolution of under 5 cm, operating over a 210-m range through single-mode fiber, which corresponds to approximately 308 m in free space, towards meeting the requirements for long-range autonomous driving. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

15 pages, 2925 KiB  
Article
Estimation and Application for Line Impedance Between IBR and POM
by Woo-Hyun Kim, Ye-Chan Kim and Seung-Ho Song
Energies 2025, 18(12), 3135; https://doi.org/10.3390/en18123135 - 14 Jun 2025
Viewed by 306
Abstract
With the increasing integration of Inverter-Based Resources (IBRs) into power grids, accurate estimation of line impedance between the Point of Connection (POC) and the Point of Measurement (POM) has become critical to ensure stable and efficient reactive power control. However, conventional impedance estimation [...] Read more.
With the increasing integration of Inverter-Based Resources (IBRs) into power grids, accurate estimation of line impedance between the Point of Connection (POC) and the Point of Measurement (POM) has become critical to ensure stable and efficient reactive power control. However, conventional impedance estimation methods often face challenges such as power quality degradation and sensitivity to voltage unbalance. This paper presents a method to improve the reactive power control performance of Inverter-Based Resources (IBRs) by estimating the line impedance between the Point of Connection (POC) and the Point of Measurement (POM) and utilize the estimated impedance into control. The impact of voltage drop caused by line impedance on reactive power delivery is analyzed, and a compensation method is designed to mitigate the resulting control errors. The line impedance is estimated through a negative-sequence current injection technique, under the condition that the voltage phases at the two measurement points are synchronized. To address potential voltage unbalance issues that may arise during the injection process, a dedicated compensation algorithm is also proposed. The proposed algorithm is validated through both simulations and lab-scale experiments, demonstrating that the line impedance can be estimated with an error of less than 2%, while effectively compensating for reactive power distortion at the POM. Full article
Show Figures

Figure 1

33 pages, 10838 KiB  
Article
A Novel Control Method for Current Waveform Reshaping and Transient Stability Enhancement of Grid-Forming Converters Considering Non-Ideal Grid Conditions
by Tengkai Yu, Jifeng Liang, Shiyang Rong, Zhipeng Shu, Cunyue Pan and Yingyu Liang
Energies 2025, 18(11), 2834; https://doi.org/10.3390/en18112834 - 29 May 2025
Viewed by 332
Abstract
The proliferation of next-generation renewable energy systems has driven widespread adoption of electronic devices and nonlinear loads, causing grid distortion that degrades waveform quality in grid-forming (GFM) converters. Additionally, unbalanced grid faults exacerbate overcurrent risks and transient stability challenges when employing conventional virtual [...] Read more.
The proliferation of next-generation renewable energy systems has driven widespread adoption of electronic devices and nonlinear loads, causing grid distortion that degrades waveform quality in grid-forming (GFM) converters. Additionally, unbalanced grid faults exacerbate overcurrent risks and transient stability challenges when employing conventional virtual impedance strategies. While existing studies have separately examined these challenges, few have comprehensively addressed non-ideal grid conditions. To bridge this gap, a novel control strategy is proposed that reshapes the output current waveforms and enhances transient stability in GFM converters under such conditions. First, a sliding mode controller with an improved composite reaching law to achieve rapid reference tracking while eliminating chattering is designed. Second, a multi-quasi-resonance controller incorporating phase compensation is introduced to suppress harmonic distortion in the converter output current. Third, an individual-phase fuzzy adaptive virtual impedance strategy dynamically reshapes the current amplitude during unbalanced faults and improves the system’s transient stability. Validated through PSCAD/EMTDC simulations and hardware-in-the-loop experiments, the proposed strategy demonstrates superior transient stability and fault ride-through capability compared to state-of-the-art methods, ensuring reliable GFM converter operation under severe harmonic and unbalanced grid conditions. Full article
(This article belongs to the Special Issue Technology for Analysis and Control of Power Quality)
Show Figures

Figure 1

17 pages, 4009 KiB  
Article
Modeling and Control of Grid-Forming Active Power Filters for Harmonic Suppression and Enhanced Power Quality
by Muhammad Waqas Qaisar, Jiang Lai and Jingyang Fang
Appl. Sci. 2025, 15(11), 5927; https://doi.org/10.3390/app15115927 - 24 May 2025
Viewed by 492
Abstract
Grid-forming converters (GFMCs) have gained significant attention for their functionality in grid voltage formation and grid-supportive services. However, managing harmonic distortions caused by nonlinear loads remains a critical challenge in weak grids. This paper presents a novel grid-forming active power filter (GFMC APF) [...] Read more.
Grid-forming converters (GFMCs) have gained significant attention for their functionality in grid voltage formation and grid-supportive services. However, managing harmonic distortions caused by nonlinear loads remains a critical challenge in weak grids. This paper presents a novel grid-forming active power filter (GFMC APF) that integrates voltage and frequency regulation with effective harmonic control. The proposed control method generates harmonic voltage commands by detecting voltage at the point of common coupling. The GFMC APF compensates harmonic voltages by creating a near short-circuit impedance path for harmonics, thereby preventing harmonic currents from propagating into the grid. In addition to improving harmonic performances, the system enhances grid stability by enhancing inertia, damping, and short-circuit capacity while suppressing wide-frequency oscillations. The proposed method avoids complex parameter tuning, ensuring simplicity and scalability. Simulation results validate the effectiveness of the GFMC APF in delivering precise harmonic control, improved power quality, and enhanced grid-forming capabilities. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 5681 KiB  
Article
Reactive Power Compensation for Single-Phase AC Motors Using Integral Power Theory
by Grzegorz Kosobudzki, Daniel Dusza, Marek Pawel Ciurys and Aleksander Leicht
Energies 2025, 18(10), 2641; https://doi.org/10.3390/en18102641 - 20 May 2025
Viewed by 489
Abstract
The paper investigates an alternative approach to measuring and compensating reactive power in electric machines, particularly under non-sinusoidal voltage and current waveforms. Traditional power definitions, such as those introduced by Budeanu and Fryze, as well as the power triangle, are discussed alongside integral [...] Read more.
The paper investigates an alternative approach to measuring and compensating reactive power in electric machines, particularly under non-sinusoidal voltage and current waveforms. Traditional power definitions, such as those introduced by Budeanu and Fryze, as well as the power triangle, are discussed alongside integral definitions of reactive power, which account for waveform distortions. This approach is novel and has not been previously applied in the context of electric machines. A digital algorithm for reactive power calculation, based on the integral definition, is proposed. It requires minimal computational resources and is easy to implement. Experimental measurements conducted on a single-phase induction motor demonstrate the impact of capacitive compensation on current waveforms. The results confirm the validity of the adopted definition of reactive power. With full reactive power compensation, the RMS value of the current drawn by the motor is minimized, which is not always the case with the classical approach to improving the power factor. The findings highlight the importance of accurate reactive power measurement and compensation in enhancing the performance and energy efficiency of electrical machines. The proposed approach is applicable not only to single-phase motors but also more broadly in determining the reactive power drawn by electric machines and in measuring electric energy, particularly in the presence of distorted voltages and currents. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

22 pages, 4858 KiB  
Article
Research on the Double Frequency Suppression Strategy of DC Bus Voltage on the Rectification Side of a Power Unit in a New Type of Same Phase Power Supply System
by Jinghua Zhou and Yuchen Li
Electronics 2025, 14(10), 2047; https://doi.org/10.3390/electronics14102047 - 17 May 2025
Viewed by 324
Abstract
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic [...] Read more.
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic distortion and negative sequence in the power supply system. In view of the shortcomings of the traditional in-phase power supply system in DC bus voltage stability control, a new in-phase power supply topology based on a back-to-back H-bridge power supply unit is proposed in this study. By establishing the iterative analysis model of the rectifier side double closed-loop control system, the internal correlation mechanism between the DC bus voltage second harmonic fluctuation and the grid side current harmonic is deeply revealed. On this basis, a rectifier-side disturbance compensation control strategy with a second harmonic suppression function is designed. Through real-time detection and compensation of second harmonic components, the active stability control of DC bus voltage is realized. The simulation model of the new cophase power supply system based on the experimental platform shows that the strategy can reduce the ripple coefficient of the DC bus voltage and the total harmonic distortion of the grid side current, which effectively verifies the superiority of the second harmonic suppression strategy in improving the power quality of the cophase power supply system. This work provides a new solution for a high-power quality traction power system. Full article
Show Figures

Figure 1

18 pages, 10471 KiB  
Article
Robust Current Sensing in Rectangular Conductors: Elliptical Hall-Effect Sensor Array Optimized via Bio-Inspired GWO-BP Neural Network
by Yue Tang, Jiajia Lu and Yue Shen
Sensors 2025, 25(10), 3116; https://doi.org/10.3390/s25103116 - 15 May 2025
Viewed by 415
Abstract
Accurate current sensing in rectangular conductors is challenged by mechanical deformations, including eccentricity (X/Y-axis shifts) and inclination (Z-axis tilt), which distort magnetic field distributions and induce measurement errors. To address this, we propose a bio-inspired error compensation strategy integrating an elliptically configured Hall [...] Read more.
Accurate current sensing in rectangular conductors is challenged by mechanical deformations, including eccentricity (X/Y-axis shifts) and inclination (Z-axis tilt), which distort magnetic field distributions and induce measurement errors. To address this, we propose a bio-inspired error compensation strategy integrating an elliptically configured Hall sensor array with a hybrid Grey Wolf Optimizer (GWO)-enhanced backpropagation neural network. The eccentric displacement and tilt angle of the conductor are quantified via a three-dimensional magnetic field reconstruction and current inversion modeling. A dual-stage optimization framework is implemented: first, establishing a BP neural network for real-time conductor state estimations, and second, leveraging the GWO’s swarm intelligence to refine network weights and thresholds, thereby avoiding local optima and enhancing the robustness against asymmetric field patterns. The experimental validation under extreme mechanical deformations (X/Y-eccentricity: ±8 mm; Z-tilt: ±15°) demonstrates the strategy’s efficacy, achieving a 65.07%, 45.74%, and 76.15% error suppression for X-, Y-, and Z-axis deviations. The elliptical configuration reduces the installation footprint by 72.4% compared with conventional circular sensor arrays while maintaining a robust suppression of eccentricity- and tilt-induced errors, proving critical for space-constrained applications, such as electric vehicle powertrains and miniaturized industrial inverters. This work bridges bio-inspired algorithms and adaptive sensing hardware, offering a systematic solution to mechanical deformation-induced errors in high-density power systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

27 pages, 13146 KiB  
Article
Underwater-Image Enhancement Based on Maximum Information-Channel Correction and Edge-Preserving Filtering
by Wei Liu, Jingxuan Xu, Siying He, Yongzhen Chen, Xinyi Zhang, Hong Shu and Ping Qi
Symmetry 2025, 17(5), 725; https://doi.org/10.3390/sym17050725 - 9 May 2025
Viewed by 776
Abstract
The properties of light propagation underwater typically cause color distortion and reduced contrast in underwater images. In addition, complex underwater lighting conditions can result in issues such as non-uniform illumination, spotting, and noise. To address these challenges, we propose an innovative underwater-image enhancement [...] Read more.
The properties of light propagation underwater typically cause color distortion and reduced contrast in underwater images. In addition, complex underwater lighting conditions can result in issues such as non-uniform illumination, spotting, and noise. To address these challenges, we propose an innovative underwater-image enhancement (UIE) approach based on maximum information-channel compensation and edge-preserving filtering techniques. Specifically, we first develop a channel information transmission strategy grounded in maximum information preservation principles, utilizing the maximum information channel to improve the color fidelity of the input image. Next, we locally enhance the color-corrected image using guided filtering and generate a series of globally contrast-enhanced images by applying gamma transformations with varying parameter values. In the final stage, the enhanced image sequence is decomposed into low-frequency (LF) and high-frequency (HF) components via side-window filtering. For the HF component, a weight map is constructed by calculating the difference between the current exposedness and the optimum exposure. For the LF component, we derive a comprehensive feature map by integrating the brightness map, saturation map, and saliency map, thereby accurately assessing the quality of degraded regions in a manner that aligns with the symmetry principle inherent in human vision. Ultimately, we combine the LF and HF components through a weighted summation process, resulting in a high-quality underwater image. Experimental results demonstrate that our method effectively achieves both color restoration and contrast enhancement, outperforming several State-of-the-Art UIE techniques across multiple datasets. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

37 pages, 6316 KiB  
Article
Using CPC-Based Minimizing Balancing Compensation to Reduce the Budeanu Reactive Currents Described in Extended Budeanu Theory
by Zbigniew Sołjan
Energies 2025, 18(6), 1476; https://doi.org/10.3390/en18061476 - 17 Mar 2025
Viewed by 232
Abstract
This article presents principles for matching reactance parameters for minimizing balancing compensation, whose mathematical origins come from the Currents’ Physical Components (CPC) theory developed by Czarnecki. The construction of minimizing balancing compensators was considered by applying it to the concept of the extended [...] Read more.
This article presents principles for matching reactance parameters for minimizing balancing compensation, whose mathematical origins come from the Currents’ Physical Components (CPC) theory developed by Czarnecki. The construction of minimizing balancing compensators was considered by applying it to the concept of the extended Budeanu theory. It focuses on the possibility of compensating the Budeanu reactive current, Budeanu complemented reactive current, and both currents at the same time. In addition, the compensator also has the potential to balance the load, that is, to reduce the unbalanced current. In order to precisely illustrate the difference in the effectiveness of compensation and balancing the load, each approach to minimizing balancing compensation has its equivalent in the case of ideal compensation. The analysis of the results achieved is a comparison of the three-phase RMS values of the respective components and the current of the load at the primary load and using three approaches, with each approach divided into ideal compensation and minimizing balancing compensation. For all approaches, calculations and simulations were carried out, in which the numerical values and generated waveforms of each quantity were compiled and analyzed. The Matlab/Simulink R2023a application environment was used as computational and simulation software. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 2612 KiB  
Article
Adaptive Optics for Aberration Control in Einstein Telescope
by Maria Cifaldi, Claudia Taranto, Lorenzo Aiello and Diana Lumaca
Galaxies 2025, 13(2), 18; https://doi.org/10.3390/galaxies13020018 - 5 Mar 2025
Viewed by 871
Abstract
Optical aberrations represent a critical issue for gravitational wave interferometers, as they impact the stability and controllability of the experiment. In the next generation of detectors, the circulating power in the cavity arms is expected to increase by up to a factor of [...] Read more.
Optical aberrations represent a critical issue for gravitational wave interferometers, as they impact the stability and controllability of the experiment. In the next generation of detectors, the circulating power in the cavity arms is expected to increase by up to a factor of 20 compared to current ones. This significant increase makes the mitigation of power-dependent optical aberrations extremely challenging. In this paper, we describe the problem of absorption in the optics and its role in generating some of the most important wavefront distortions, along with the present compensation strategy. To meet the new stringent requirements, new technologies must be designed, and existing ones upgraded. We present a review of the strategies and concepts in the field of aberration control in gravitational wave detectors and discuss the challenges for future detectors like the high-power operation of the Einstein Telescope. Full article
Show Figures

Figure 1

19 pages, 26378 KiB  
Article
2D to 3D Human Skeleton Estimation Based on the Brown Camera Distortion Model and Constrained Optimization
by Lan Ma and Hua Huo
Electronics 2025, 14(5), 960; https://doi.org/10.3390/electronics14050960 - 27 Feb 2025
Viewed by 1378
Abstract
In the rapidly evolving field of computer vision and machine learning, 3D skeleton estimation is critical for applications such as motion analysis and human–computer interaction. While stereo cameras are commonly used to acquire 3D skeletal data, monocular RGB systems attract attention due to [...] Read more.
In the rapidly evolving field of computer vision and machine learning, 3D skeleton estimation is critical for applications such as motion analysis and human–computer interaction. While stereo cameras are commonly used to acquire 3D skeletal data, monocular RGB systems attract attention due to benefits including cost-effectiveness and simple deployment. However, persistent challenges remain in accurately inferring depth from 2D images and reconstructing 3D structures using monocular approaches. The current 2D to 3D skeleton estimation methods overly rely on deep training of datasets, while neglecting the importance of human intrinsic structure and the principles of camera imaging. To address this, this paper introduces an innovative 2D to 3D gait skeleton estimation method that leverages the Brown camera distortion model and constrained optimization. Utilizing the Azure Kinect depth camera for capturing gait video, the Azure Kinect Body Tracking SDK was employed to effectively extract 2D and 3D joint positions. The camera’s distortion properties were analyzed, using the Brown camera distortion model which is suitable for this scenario, and iterative methods to compensate the distortion of 2D skeleton joints. By integrating the geometric constraints of the human skeleton, an optimization algorithm was analyzed to achieve precise 3D joint estimations. Finally, the framework was validated through comparisons between the estimated 3D joint coordinates and corresponding measurements captured by depth sensors. Experimental evaluations confirmed that this training-free approach achieved superior precision and stability compared to conventional methods. Full article
(This article belongs to the Special Issue 3D Computer Vision and 3D Reconstruction)
Show Figures

Figure 1

20 pages, 3067 KiB  
Article
Improved Deadbeat Predictive Direct Power Control for Three-Phase PWM Rectifier Based on LADRC
by He Ma, Xuliang Yao, Jingfang Wang, Xinghong Luo and Shengqi Huang
J. Mar. Sci. Eng. 2025, 13(3), 402; https://doi.org/10.3390/jmse13030402 - 21 Feb 2025
Viewed by 586
Abstract
In modern marine vessels equipped with electric propulsion systems, rectifiers are commonly used as part of the setup. However, the conventional deadbeat predictive direct power control strategy for three-phase voltage source pulse-width modulation (PWM) rectifiers tends to underperform when subjected to load variations [...] Read more.
In modern marine vessels equipped with electric propulsion systems, rectifiers are commonly used as part of the setup. However, the conventional deadbeat predictive direct power control strategy for three-phase voltage source pulse-width modulation (PWM) rectifiers tends to underperform when subjected to load variations and external disturbances. To address these limitations, this paper proposes an enhanced linear active disturbance rejection control (LADRC), incorporating virtual capacitance and an improved equivalent input disturbance strategy. The integration of virtual capacitance in the LADRC is specifically applied during load transitions. Virtual capacitance is a capacitor element simulated through the control strategy. It enhances voltage stability and dynamic response capability by compensating for voltage fluctuations and power deficits in the system. By providing a virtual active power, this approach substantially improves power tracking performance, reducing the DC voltage drop and settling time by 60% and 74%, respectively. In addition, the proposed strategy is easy to implement and does not add complexity to the LADRC. Moreover, the equivalent input disturbance is refined through virtual capacitance, enabling accurate disturbance estimation. As a result, the active power ripple and current total harmonic distortion under disturbances are reduced by 44% and 40%, respectively. The stability of the proposed strategy is comprehensively analyzed, and experimental results from a prototype system validate its effectiveness and accuracy. Full article
(This article belongs to the Special Issue Optimization and Control of Marine Renewable Energy Systems)
Show Figures

Figure 1

17 pages, 4090 KiB  
Article
Grid Current Distortion Suppression Based on Harmonic Voltage Feedforward for Grid-Forming Inverters
by Baojin Liu, Bing Yu and Feng Zheng
Electronics 2025, 14(5), 839; https://doi.org/10.3390/electronics14050839 - 20 Feb 2025
Viewed by 605
Abstract
A grid-forming converter (GFM) controls power output by adjusting the phase angle and amplitude of its output voltage, providing voltage and frequency support to the power system and effectively enhancing system stability. However, it has limitations in current control, influencing the current only [...] Read more.
A grid-forming converter (GFM) controls power output by adjusting the phase angle and amplitude of its output voltage, providing voltage and frequency support to the power system and effectively enhancing system stability. However, it has limitations in current control, influencing the current only indirectly through voltage regulation, which results in weaker control over current waveform quality. In the context of a large number of renewable energy generation units being connected to the grid, harmonics in the grid voltage can lead to excessively high harmonic content in the grid current, exceeding standard limits and causing oscillations. To solve this problem, this paper proposes a control strategy of harmonic voltage feedforward compensation to suppress grid current distortion. The proposed control strategy extracts harmonic voltages from the output port of the GFM converter through a harmonic extraction module, processes them via a feedforward factor, and introduces the resulting signals into the converter’s control loop as feedforward compensation terms. This allows the converter’s output voltage to compensate for the harmonic components in the grid, achieving the improvement of grid current and reducing the total harmonic distortion (THD) value. The effectiveness of the proposed control strategy is verified by simulation results. Full article
(This article belongs to the Special Issue Smart Converters/Inverters for Microgrid Applications)
Show Figures

Figure 1

Back to TopTop