Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,694)

Search Parameters:
Keywords = current density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

13 pages, 5204 KiB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

18 pages, 5418 KiB  
Article
Effect and Mechanism Analysis of Process Parameters and Penetration State on Pore Defects of 1060/2A12 Dissimilar Aluminum Alloy Electron Beam Welding Joints
by Guolong Ma, Gangqing Li, Xiaohui Han, Chenghui Jiang, Zengci Cheng, Wangzhan Diao and Houqin Wang
Materials 2025, 18(15), 3477; https://doi.org/10.3390/ma18153477 - 24 Jul 2025
Abstract
Pore defects are one of the most common defects in the aluminum alloy electron beam welding process. In this paper, research on the pore defects and related mechanisms of the electron beam welding of dissimilar aluminum alloys was carried out with 1060 and [...] Read more.
Pore defects are one of the most common defects in the aluminum alloy electron beam welding process. In this paper, research on the pore defects and related mechanisms of the electron beam welding of dissimilar aluminum alloys was carried out with 1060 and 2A12 aluminum alloys. Under the test conditions, the pore defects of the aluminum alloy joint were related to the penetration status, the porosity of the critically penetrated joint was low, and the porosity of the beam joint increased when it was slightly penetrated. When the welding speed changed from 300 mm/min to 1200 mm/min, the porosity in the critically penetrated joint first increased and then decreased. When the welding speed was set to 300 mm/min and the beam current was set to 26 mA, the porosity of the joints reached its minimum value at 0.23%. Based on the actual process of electron beam welding, a flow simulation model was established to study the aluminum alloy welding process. The stability of the keyhole was related to the electron beam energy density reaching the inner keyhole, so increasing the electron beam for the fully penetrated joints was advantageous for reducing the pore defects. Full article
Show Figures

Figure 1

25 pages, 1329 KiB  
Review
Research Progress and Prospects of Flavonoids in the Treatment of Hyperlipidemia: A Narrative Review
by Xingtong Chen, Jinbiao Yang, Yunyue Zhou, Qiao Wang, Shuang Xue, Yukun Zhang and Wenying Niu
Molecules 2025, 30(15), 3103; https://doi.org/10.3390/molecules30153103 - 24 Jul 2025
Abstract
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty [...] Read more.
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty liver disease, obesity, diabetes, atherosclerosis, and cardiovascular and cerebrovascular diseases. Statistics show that the prevalence of dyslipidemia among Chinese adults is as high as 35.6%, and it has shown a trend of younger onset in recent years, posing a serious threat to public health. Therefore, the prevention and treatment of dyslipidemia carry significant social significance. The pathogenesis of hyperlipidemia is complex and diverse, and currently used medications are often accompanied by side effects during treatment, making the research and development of new therapeutic approaches a current focus. Numerous studies have shown that flavonoids, which are abundant in most medicinal plants, fruits, and vegetables, exert effects on regulating lipid homeostasis and treating hyperlipidemia through a multi-target mechanism. These compounds have demonstrated significant effects in inhibiting lipid synthesis, blocking lipid absorption, promoting cholesterol uptake, enhancing reverse cholesterol transport, and suppressing oxidative stress, inflammation, and intestinal microbiota disorders. This article reviews the latest progress in the mechanisms of flavonoids in the treatment of hyperlipidemia, providing a theoretical basis for future research on drugs for hyperlipidemia. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

32 pages, 5201 KiB  
Review
Opportunities and Challenges for Next-Generation Thick Cathodes in Lithium-Ion Batteries
by Shengkai Li, Yuxuan Luo, Kangchen Wang, Lihan Zhang, Pengfei Yan and Manling Sui
Materials 2025, 18(15), 3464; https://doi.org/10.3390/ma18153464 - 24 Jul 2025
Abstract
Advancements in structural engineering are expected to enhance the wide-range commercial application of lithium-ion batteries by enabling the implementation of thicker cathode materials. Increasing the thickness of these cathodes can yield significant increasements in gravimetric energy density while concurrently lowering manufacturing costs. These [...] Read more.
Advancements in structural engineering are expected to enhance the wide-range commercial application of lithium-ion batteries by enabling the implementation of thicker cathode materials. Increasing the thickness of these cathodes can yield significant increasements in gravimetric energy density while concurrently lowering manufacturing costs. These improvements are pivotal to the successful commercial deployment of sustainable transport systems. However, several substantial barriers persist in the adoption of such microstructures, including performance degradation, manufacturing complexities, and scalability concerns, all of which remain open areas of investigation. This review delves into the obstacles associated with current modifying techniques in thick cathodes and explores the potential opportunities to develop more robust and thicker cathodes, while ensuring long-term performance and scalability. Finally, we provide suggestions on the future directions of thick cathodes to promote their large-scale application. Full article
Show Figures

Graphical abstract

22 pages, 4625 KiB  
Article
Multiphysics Modeling and Performance Optimization of CO2/H2O Co-Electrolysis in Solid Oxide Electrolysis Cells: Temperature, Voltage, and Flow Configuration Effects
by Rui Xue, Jinping Wang, Jiale Chen and Shuaibo Che
Energies 2025, 18(15), 3941; https://doi.org/10.3390/en18153941 - 24 Jul 2025
Abstract
This study developed a two-dimensional multiphysics-coupled model for co-electrolysis of CO2 and H2O in solid oxide electrolysis cells (SOECs) using COMSOL Multiphysics, systematically investigating the influence mechanisms of key operating parameters including temperature, voltage, feed ratio, and flow configuration on [...] Read more.
This study developed a two-dimensional multiphysics-coupled model for co-electrolysis of CO2 and H2O in solid oxide electrolysis cells (SOECs) using COMSOL Multiphysics, systematically investigating the influence mechanisms of key operating parameters including temperature, voltage, feed ratio, and flow configuration on co-electrolysis performance. The results demonstrate that increasing temperature significantly enhances CO2 electrolysis, with the current density increasing over 12-fold when temperature rises from 923 K to 1423 K. However, the H2O electrolysis reaction slows beyond 1173 K due to kinetic limitations, leading to reduced H2 selectivity. Higher voltages simultaneously accelerate all electrochemical reactions, with CO and H2 production at 1.5 V increasing by 15-fold and 13-fold, respectively, compared to 0.8 V, while the water–gas shift reaction rate rises to 6.59 mol/m3·s. Feed ratio experiments show that increasing CO2 concentration boosts CO yield by 5.7 times but suppresses H2 generation. Notably, counter-current operation optimizes reactant concentration distribution, increasing H2 and CO production by 2.49% and 2.3%, respectively, compared to co-current mode, providing critical guidance for reactor design. This multiscale simulation reveals the complex coupling mechanisms in SOEC co-electrolysis, offering theoretical foundations for developing efficient carbon-neutral technologies. Full article
Show Figures

Figure 1

5 pages, 1506 KiB  
Proceeding Paper
Electrocoagulation as a Revived Method for Industrial Wastewater Pre-Treatment
by Dimitris V. Vayenas, Christina Vasiliki Lazaratou, Maria Gourniezaki, Maria Kakkou, Stavros Koutroupis, Michael Mageiras, Athanasios Iliopoulos and Alexandros Zolotas
Proceedings 2025, 121(1), 9; https://doi.org/10.3390/proceedings2025121009 - 23 Jul 2025
Abstract
This study investigates the efficiency of electrocoagulation–flotation (EC) as a pre-treatment method for industrial wastewater with a high chemical oxygen demand (COD), high levels of suspended solids (TSS), and different colors. Real wastewater from a brewery, dairy, winery, and marine oil processing industry [...] Read more.
This study investigates the efficiency of electrocoagulation–flotation (EC) as a pre-treatment method for industrial wastewater with a high chemical oxygen demand (COD), high levels of suspended solids (TSS), and different colors. Real wastewater from a brewery, dairy, winery, and marine oil processing industry was treated using aluminum electrodes under various current densities. Laboratory-scale experiments demonstrated significant COD, TSS, and color removal, with marine oils and dairy wastewater showing the highest COD removal efficiencies (up to 88.6%), while for all the examined wastewater samples, the TSSs removal exceeded 95%. The results confirm EC’s effectiveness and adaptability across diverse wastewater types, supporting its potential as a sustainable, low-cost alternative as a industrial wastewater pre-treatment process. Full article
Show Figures

Figure 1

9 pages, 3725 KiB  
Article
A Strain-Compensated InGaAs/InGaSb Type-II Superlattice Grown on InAs Substrates for Long-Wavelength Infrared Photodetectors
by Hao Zhou, Chang Liu and Yiqiao Chen
Nanomaterials 2025, 15(15), 1143; https://doi.org/10.3390/nano15151143 - 23 Jul 2025
Abstract
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize [...] Read more.
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize the As and Sb flux growth conditions. The quality of the epitaxial layer was characterized using multiple analytical techniques, including differential interference contrast microscopy, atomic force microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy. The high-quality superlattice structure, with a total thickness of 1.5 μm, exhibited exceptional surface morphology with a root-mean-square roughness of 0.141 nm over a 5 × 5 μm2 area. Single-element devices with PIN architecture were fabricated and characterized. At 77 K, these devices demonstrated a 50% cutoff wavelength of approximately 12.1 μm. The long-wavelength infrared PIN devices exhibited promising performance metrics, including a dark current density of 7.96 × 10−2 A/cm2 at −50 mV bias and a high peak responsivity of 4.90 A/W under zero bias conditions, both measured at 77 K. Furthermore, the devices achieved a high peak quantum efficiency of 65% and a specific detectivity (D*) of 2.74 × 1010 cm·Hz1/2/W at the peak responsivity wavelength of 10.7 µm. These results demonstrate the viability of this material system for long-wavelength infrared detection applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

36 pages, 11148 KiB  
Article
Research on Construction of Suzhou’s Historical Architectural Heritage Corridors and Cultural Relics-Themed Trails Based on Current Effective Conductance (CEC) Model
by Yao Wu, Yonglan Wu, Mingrui Miao, Muxian Wang, Xiaobin Li and Antonio Candeias
Buildings 2025, 15(15), 2605; https://doi.org/10.3390/buildings15152605 - 23 Jul 2025
Abstract
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel [...] Read more.
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel density estimation, this study identifies 15 kernel density groups, along with the Analytic Hierarchy Process (AHP), to pinpoint clusters of historical architectural heritage and assess the involved resistance factors. Current Effective Conductance (CEC) theory is further applied to model spatial flow relationships among heritage nodes, leading to the delineation of 27 heritage corridors and revealing a spatial structure characterized by one primary core, one secondary core, and multiple peripheral zones. Based on 15 source points, six cultural relics-themed routes are proposed—three land-based and three waterfront routes—connecting historical sites, towns, and ecological areas. The study further recommends a resource management strategy centered on departmental collaboration, digital integration, and community co-governance. By integrating historical architectural types, settlement forms, and ecological patterns, the research builds a multi-scale narrative and experience system that addresses fragmentation while improving coordination and sustainability. This framework delivers practical advice on heritage conservation and cultural tourism development in Suzhou and the broader Jiangnan region. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Use of Phalaris canariensis Extract as CO2 Corrosion Inhibitor of Brass
by Edgar Salazar-Salazar, Dante Guillermo Gutierrez-Granda, Earvin Galvan, Ana Karen Larios-Galvez, America Maria Ramirez-Arteaga, Roy Lopez-Sesenes, Alfredo Brito-Franco, Jesus Porcayo-Calderon and Jose Gonzalo Gonzalez-Rodriguez
Materials 2025, 18(15), 3449; https://doi.org/10.3390/ma18153449 - 23 Jul 2025
Abstract
In this study, the corrosion inhibition of a Phalaris canariensis extract on brass in a CO2-saturated 3.5% NaCl solution is evaluated with the aid of potentiodynamic polarization curves and electrochemical impedance spectroscopy tests. The results indicate that the Phalaris canariensis extract [...] Read more.
In this study, the corrosion inhibition of a Phalaris canariensis extract on brass in a CO2-saturated 3.5% NaCl solution is evaluated with the aid of potentiodynamic polarization curves and electrochemical impedance spectroscopy tests. The results indicate that the Phalaris canariensis extract is an excellent CO2 corrosion inhibitor with an efficiency that increases with its concentration, reaching its maximum value of 99% with an inhibitor concentration of 100 ppm, decreasing the corrosion current density by more than two orders of magnitude. The addition of the Phalaris canariensis extract increased the pitting potential, decreased the passive current density values, and affected cathodic reactions, behaving as a mixed type of inhibitor. The corrosion process was under charge transfer control, and it was neither affected by the addition of the inhibitor nor by the elapsing time. The main compounds found in the Phalaris canariensis extract included antioxidants such as palmitic and oleic acids. Full article
Show Figures

Figure 1

20 pages, 2341 KiB  
Article
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
by Hiromichi Fukui, Norihiro Minami, Masatoshi Tanezaki, Shinichi Muroya and Chiyoji Ohkubo
Electronics 2025, 14(15), 2936; https://doi.org/10.3390/electronics14152936 - 23 Jul 2025
Abstract
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), [...] Read more.
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), hybrid electric vehicles (HEVs), and internal combustion engine vehicles (ICEVs). However, those 2013 measurements were conducted using a chassis dynamometer, and no measurements were taken during actual driving. In recent years, with the rapid global spread of EVs and plug-in hybrid electric vehicles (PHEVs), the international standard IEC 62764-1:2022, which defines methods for measuring magnetic fields (MF) in vehicles, has been issued. In response, and for the first time, we conducted new MF measurements on current Japanese vehicle models in accordance with the international standard IEC 62764-1:2022, identifying the MFD levels and their sources at various positions within EVs, PHEVs, and ICEVs. The measured MFD values in all vehicle types were below the reference levels recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for public exposure. Furthermore, we performed comparative measurements with the MF data obtained in 2013 and confirmed that the MF levels remained similar. These findings are expected to provide valuable insights for risk communication with the public regarding electromagnetic fields, particularly for those concerned about MF exposure inside electrified vehicles. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

17 pages, 5746 KiB  
Article
The Influence of Hydrogen-Charging Current Density and Temperature on Hydrogen Permeation and Hydrogen Embrittlement Susceptibility of 4130X Steel
by Caijun Xu, Fang Wang and Jiaqing Li
Materials 2025, 18(15), 3448; https://doi.org/10.3390/ma18153448 - 23 Jul 2025
Abstract
Chromium-molybdenum steels are extensively used in manufacturing large-volume seamless hydrogen storage vessels, but they still suffer from the hydrogen embrittlement problem. In this study, electrochemical cathodic hydrogen charging is utilized to investigate the hydrogen embrittlement of 4130X steels, with emphasis on the influence [...] Read more.
Chromium-molybdenum steels are extensively used in manufacturing large-volume seamless hydrogen storage vessels, but they still suffer from the hydrogen embrittlement problem. In this study, electrochemical cathodic hydrogen charging is utilized to investigate the hydrogen embrittlement of 4130X steels, with emphasis on the influence of charging current density and temperature on hydrogen permeation and hydrogen embrittlement susceptibility. The hydrogen penetration rate and hydrogen diffusion coefficient of 4130X steel both increase with an increase in hydrogen-charging current density and temperature. The results demonstrate that the degree of hydrogen-induced degradation in tensile ductility is more marked with increasing hydrogen-charging current density, while the hydrogen embrittlement index exhibits a peak at a temperature of 308 K, in which brittle patterns like quasi-cleavage surfaces and crack formations occur. These findings are crucial for understanding hydrogen-induced embrittlement and determining test temperatures of hydrogen-related engineering material applications. Full article
Show Figures

Figure 1

19 pages, 3113 KiB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

Back to TopTop