Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (884)

Search Parameters:
Keywords = crop spraying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

21 pages, 2608 KiB  
Article
Quality and Quantity Losses of Tomatoes Grown by Small-Scale Farmers Under Different Production Systems
by Tintswalo Molelekoa, Edwin M. Karoney, Nazareth Siyoum, Jarishma K. Gokul and Lise Korsten
Horticulturae 2025, 11(8), 884; https://doi.org/10.3390/horticulturae11080884 (registering DOI) - 1 Aug 2025
Viewed by 182
Abstract
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess [...] Read more.
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess postharvest tomato losses under different production systems within the small-scale supply chain using the indirect assessment (questionnaires and interviews) and direct quantification of losses. Farmers reported tomato losses due to insects (82.35%), cracks, bruises, and deformities (70.58%), and diseases (64.71%). Chemical sprays were the main form of pest and disease control reported by all farmers. The direct quantification sampling data revealed that 73.07% of the tomatoes were substandard at the farm level, with 47.92% and 25.15% categorized as medium-quality and poor-quality, respectively. The primary contributors to the losses were decay (39.92%), mechanical damage (31.32%), and blotchiness (27.99%). Postharvest losses were significantly higher under open-field production systems compared to closed tunnels. The fungi associated with decay were mainly Geotrichum, Fusarium spp., and Alternaria spp. These findings demonstrate the main drivers behind postharvest losses, which in turn highlight the critical need for intervention through training and support, including the use of postharvest loss reduction technologies to enhance food security. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

30 pages, 8037 KiB  
Review
A Review of Multiscale Interaction Mechanisms of Wind–Leaf–Droplet Systems in Orchard Spraying
by Yunfei Wang, Zhenlei Zhang, Ruohan Shi, Shiqun Dai, Weidong Jia, Mingxiong Ou, Xiang Dong and Mingde Yan
Sensors 2025, 25(15), 4729; https://doi.org/10.3390/s25154729 - 31 Jul 2025
Viewed by 170
Abstract
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent [...] Read more.
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent and site-specific spraying operations. This review systematically examines the synergistic dynamics across three hierarchical scales: Droplet–leaf surface wetting and adhesion at the microscale; leaf cluster motion responses at the mesoscale; and the modulation of airflow and spray plume diffusion by canopy architecture at the macroscale. Key variables affecting spray performance—such as wind speed and turbulence structure, leaf biomechanical properties, droplet size and electrostatic characteristics, and spatial canopy heterogeneity—are identified and analyzed. Furthermore, current advances in multiscale modeling approaches and their corresponding experimental validation techniques are critically evaluated, along with their practical boundaries of applicability. Results indicate that while substantial progress has been made at individual scales, significant bottlenecks remain in the integration of cross-scale models, real-time acquisition of critical parameters, and the establishment of high-fidelity experimental platforms. Future research should prioritize the development of unified coupling frameworks, the integration of physics-based and data-driven modeling strategies, and the deployment of multimodal sensing technologies for real-time intelligent spray decision-making. These efforts are expected to provide both theoretical foundations and technological support for advancing precision and intelligent orchard spraying systems. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

24 pages, 17213 KiB  
Review
Empowering Smart Soybean Farming with Deep Learning: Progress, Challenges, and Future Perspectives
by Huihui Sun, Hao-Qi Chu, Yi-Ming Qin, Pingfan Hu and Rui-Feng Wang
Agronomy 2025, 15(8), 1831; https://doi.org/10.3390/agronomy15081831 - 28 Jul 2025
Viewed by 419
Abstract
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies [...] Read more.
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies (e.g., model lightweighting, transfer learning), and sensor data fusion techniques, the review identifies their roles and performances in complex agricultural environments. It also highlights key challenges including data quality limitations, difficulties in real-world deployment, and the lack of standardized evaluation benchmarks. In response, promising directions such as reinforcement learning, self-supervised learning, interpretable AI, and multi-source data fusion are proposed. Specifically for soybean automation, future advancements are expected in areas such as high-precision disease and weed localization, real-time decision-making for variable-rate spraying and harvesting, and the integration of deep learning with robotics and edge computing to enable autonomous field operations. This review provides valuable insights and future prospects for promoting intelligent, efficient, and sustainable development in soybean production through deep learning. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

19 pages, 5967 KiB  
Article
Chitosan Application Improves the Growth and Physiological Parameters of Tomato Crops
by Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Wilmer Tezara, Víctor Reynel, Luis Guillermo Hernández-Montiel and Antonio Juárez-Maldonado
Horticulturae 2025, 11(8), 878; https://doi.org/10.3390/horticulturae11080878 - 28 Jul 2025
Viewed by 341
Abstract
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan [...] Read more.
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan (500, 1000, and 2000 mg L−1) on plant growth, yield, fruit quality, and physiological performance in two tomato varieties (Floradade and Candela F1) was studied. Physiological traits such as photosynthesis, chlorophyll content, and leaf area index of the plants were positively affected by chitosan, an effective compound that biostimulates growth, with increases in biomass of organs with respect to the control treatment. Chitosan also improved tomato quality, such as increases in polyphenols, antioxidant capacity, flavonoids, carotenoids, vitamin C, and total soluble solids in both tomato varieties. Finally, yield increased by 76.4% and 65.4% in Floradade and Candela F1, respectively. The responses of tomato plants to chitosan application were different depending on the variety evaluated, indicating a differential response to the biostimulant. The use of chitosan in agriculture is a tool that has no negative effects on plants and the environment and can increase the productive capacity of tomato plants. Full article
Show Figures

Figure 1

14 pages, 1439 KiB  
Article
Effects of Pre-Emergence Application of Organic Acids on Seedling Establishment of Weeds and Crops in Controlled Environments
by Mattia Alpi, Anne Whittaker, Elettra Frassineti, Enrico Toschi, Giovanni Dinelli and Ilaria Marotti
Agronomy 2025, 15(8), 1820; https://doi.org/10.3390/agronomy15081820 - 28 Jul 2025
Viewed by 274
Abstract
Within the framework of organic acid alternatives to chemical herbicides, pre-emergence weed control research is scarce. Citric acid (CA) and lactic acid (LA), considered significantly less effective than pelargonic acid (PA) and acetic acid (AA) from post-emergence (foliar spraying) studies, have largely been [...] Read more.
Within the framework of organic acid alternatives to chemical herbicides, pre-emergence weed control research is scarce. Citric acid (CA) and lactic acid (LA), considered significantly less effective than pelargonic acid (PA) and acetic acid (AA) from post-emergence (foliar spraying) studies, have largely been disregarded. This in vitro study was aimed at comparing the effects of 5–20% AA, AA + essential oils, PA, CA, and LA on radicle emergence inhibition (direct spraying of seeds) and shoot emergence inhibition (application to peat) on both weeds (perennial ryegrass, green foxtail, common vetch and chicory) and crops (soft wheat, alfalfa and millet). All tested compounds demonstrated concentration-dependent and species-specific effects on shoot emergence inhibition, with CA and LA (IC50 range: 3.4–19.3%) showing a comparable efficacy to PA and AA (IC50 range: 3.1–35.9%). The results also showed that CA and, to a lesser extent, LA were less inhibitory to soft wheat (CA IC50 = 62.5%; LA IC50 = 35.9%) and alfalfa (CA IC50 = 57.8%; LA IC50 = 44.1%) shoot emergence. CA and LA show potential promise for pre-emergence weed control in field testing, either on a stale seedbed in pre-crop sowing or concurrently with soft wheat and alfalfa sowing. Investigating organic compound herbicidal effects on crops of interest warrants attention. Full article
Show Figures

Figure 1

13 pages, 966 KiB  
Article
Comparative Toxicity and P450-Mediated Detoxification of Flonicamid in Lygus lineolaris and Lygus hesperus
by Yuzhe Du, Shane Scheibener, Yu-Cheng Zhu, Calvin Pierce, Omaththage P. Perera and Maribel Portilla
Insects 2025, 16(8), 757; https://doi.org/10.3390/insects16080757 - 23 Jul 2025
Viewed by 293
Abstract
The tarnished plant bug, Lygus lineolaris (TPB), (Palisot de Beauvois), and the western tarnished plant bug (WTPB), Lygus hesperus, Knight, are major agricultural pests that cause significant damage to a wide range of crops in the southeastern and southwestern United States. Flonicamid [...] Read more.
The tarnished plant bug, Lygus lineolaris (TPB), (Palisot de Beauvois), and the western tarnished plant bug (WTPB), Lygus hesperus, Knight, are major agricultural pests that cause significant damage to a wide range of crops in the southeastern and southwestern United States. Flonicamid (commercial name: Carbine 50WG) is generally effective against various sap-feeding pests, including both L. hesperus and L. lineolaris. This study evaluated the toxicity of flonicamid on third-instar nymphs and adults of both Lygus species under laboratory conditions. Two bioassay methods were used: spray application to assess both contact and oral toxicity, and dipping to evaluate oral toxicity. Results showed that L. hesperus was significantly more susceptible to flonicamid than L. lineolaris across both bioassay methods. While no significant differences in toxicity were observed between spray and dipping assays, third-instar nymphs exhibited significantly higher sensitivity than adults in both species. The addition of piperonyl butoxide (PBO), a known inhibitor of cytochrome P450-monooxygenases (P450s), significantly enhanced the toxicity of flonicamid, suggesting that P450 enzyme plays a critical role in its detoxification. Sublethal exposure to flonicamid also induced increased P450 activity in both species. These findings provide valuable insights into the differences in susceptibility between L. lineolaris and L. hesperus to flonicamid and indicate that P450-mediated detoxification is critical for flonicamid metabolism. Such insights are valuable for early resistance monitoring and optimizing flonicamid application in integrated pest management programs. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

12 pages, 933 KiB  
Article
Foliar Application of Zinc Improves Safflower Yields More than Glycine Betaine
by Jianglong Liu, Guiqing Hu, Wentai Zhang, Jinghu Wu and Qingyun Geng
Agronomy 2025, 15(8), 1770; https://doi.org/10.3390/agronomy15081770 - 23 Jul 2025
Viewed by 274
Abstract
In arid regions, yields from safflower plants are appreciably lower than normal. Foliar application of zinc or glycine betaine has been reported to increase yields in other grown crops. A field experiment was conducted to compare the specific effects and mechanisms of foliar-applied [...] Read more.
In arid regions, yields from safflower plants are appreciably lower than normal. Foliar application of zinc or glycine betaine has been reported to increase yields in other grown crops. A field experiment was conducted to compare the specific effects and mechanisms of foliar-applied zinc or glycine betaine on safflower yield in this study. Seven foliar spraying treatments were implemented, including a control (spraying water), three concentrations of zinc sulfate (Zn1: 0.6 g L−1, Zn2: 0.8 g L−1, Zn3: 1.0 g L−1), and three concentrations of glycine betaine (GB1: 0.23 g L−1, GB2: 0.47 g L−1, GB3: 0.70 g L−1). Results showed that Zn1 treatment had the highest grain yield at 2197 kg ha−1, which was 45.4% higher than the control. GB3 treatment resulted in a grain yield at 2127 kg ha−1, which was 40.8% higher than the control. The yield increase mechanism for the zinc treatment was primarily due to optimized plant morphology and improved photosynthetic performance, while glycine betaine improved yield mainly through antioxidant regulation. This study has important implications for water-saving and sustainable agriculture development in arid regions. Full article
(This article belongs to the Special Issue Role of Mineral Nutrition in Alleviation of Abiotic Stress in Crops)
Show Figures

Figure 1

17 pages, 6432 KiB  
Article
Intelligent Battery-Designed System for Edge-Computing-Based Farmland Pest Monitoring System
by Chung-Wen Hung, Chun-Chieh Wang, Zheng-Jie Liao, Yu-Hsing Su and Chun-Liang Liu
Electronics 2025, 14(15), 2927; https://doi.org/10.3390/electronics14152927 - 22 Jul 2025
Viewed by 232
Abstract
Cruciferous vegetables are popular in Asian dishes. However, striped flea beetles prefer to feed on leaves, which can damage the appearance of crops and reduce their economic value. Due to the lack of pest monitoring, the occurrence of pests is often irregular and [...] Read more.
Cruciferous vegetables are popular in Asian dishes. However, striped flea beetles prefer to feed on leaves, which can damage the appearance of crops and reduce their economic value. Due to the lack of pest monitoring, the occurrence of pests is often irregular and unpredictable. Regular and quantitative spraying of pesticides for pest control is an alternative method. Nevertheless, this requires manual execution and is inefficient. This paper presents a system powered by solar energy, utilizing batteries and supercapacitors for energy storage to support the implementation of edge AI devices in outdoor environments. Raspberry Pi is utilized for artificial intelligence image recognition and the Internet of Things (IoT). YOLOv5 is implemented on the edge device, Raspberry Pi, for detecting striped flea beetles, and StyleGAN3 is also utilized for data augmentation in the proposed system. The recognition accuracy reaches 85.4%, and the results are transmitted to the server through a 4G network. The experimental results indicate that the system can operate effectively for an extended period. This system enhances sustainability and reliability and greatly improves the practicality of deploying smart pest detection technology in remote or resource-limited agricultural areas. In subsequent applications, drones can plan routes for pesticide spraying based on the distribution of pests. Full article
(This article belongs to the Special Issue Battery Health Management for Cyber-Physical Energy Storage Systems)
Show Figures

Figure 1

23 pages, 4385 KiB  
Article
Melatonin Enhances Tomato Salt Tolerance by Improving Water Use Efficiency, Photosynthesis, and Redox Homeostasis
by Chen Ru, Yuxuan Liu, Xingjiao Yu, Chuanliu Xie and Xiaotao Hu
Agronomy 2025, 15(7), 1746; https://doi.org/10.3390/agronomy15071746 - 20 Jul 2025
Viewed by 281
Abstract
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance [...] Read more.
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance by integrating physiological processes remain unclear. This study investigated the effects of varying MT concentrations on photosynthetic performance, plant water relations, water-use efficiency, and stress-responsive physiological parameters in tomatoes, aiming to identify the key physiological pathways for MT-mediated salt stress mitigation. The results showed that salt stress significantly reduced the leaf relative water content and root hydraulic conductivity, suppressed the photosynthetic rate, and ultimately caused significant reductions in the aboveground and root biomass. MT spraying effectively improved leaf water status and root water uptake capacity, enhancing the photosynthetic rate and water-use efficiency, thereby providing material and energy support for plant growth. Furthermore, MT spraying increased the total antioxidant capacity in leaves and promoted the synthesis of phenolic and flavonoid compounds, thereby reducing oxidative damage. Simultaneously, it stimulated the accumulation of osmolytes to enhance cellular osmotic adjustment capacity and optimized ion uptake to maintain cellular ion homeostasis. Among the tested concentrations, 100 μM MT showed the most significant alleviative effects. This concentration comprehensively enhanced the salt tolerance and growth performance of tomato plants by synergistically optimizing water use, photosynthetic function, antioxidant defense, and ion balance. In conclusion, these findings provide experimental evidence for elucidating the physiological mechanisms underlying MT-mediated salt tolerance in tomatoes and offer theoretical references for the rational application of MT in crop production under saline conditions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1393 KiB  
Article
Mitigating Water Stress and Enhancing Aesthetic Quality in Off-Season Potted Curcuma cv. ‘Jasmine Pink’ via Potassium Silicate Under Deficit Irrigation
by Vannak Sour, Anoma Dongsansuk, Supat Isarangkool Na Ayutthaya, Soraya Ruamrungsri and Panupon Hongpakdee
Horticulturae 2025, 11(7), 856; https://doi.org/10.3390/horticulturae11070856 - 20 Jul 2025
Viewed by 394
Abstract
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality [...] Read more.
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality presents a key challenge for horticulturists. Potassium silicate (PS) has been proposed as a foliar spray to alleviate plant water stress. This study aimed to evaluate the effects of PS on growth, ornamental traits, and photosynthetic parameters of off-season potted Curcuma cv. ‘Jasmine Pink’ under deficit irrigation (DI). Plants were subjected to three treatments in a completely randomized design: 100% crop evapotranspiration (ETc), 50% ETc, and 50% ETc with 1000 ppm PS (weekly sprayed on leaves for 11 weeks). Both DI treatments (50% ETc and 50% ETc + PS) reduced plant height by 7.39% and 9.17%, leaf number by 16.99% and 7.03%, and total biomass by 21.13% and 20.58%, respectively, compared to 100% ETc. Notably, under DI, PS-treated plants maintained several parameters equivalent to the 100% ETc treatment, including flower bud emergence, blooming period, green bract number, effective quantum yield of PSII (ΔF/Fm′), and electron transport rate (ETR). In addition, PS application increased leaf area by 8.11% and compactness index by 9.80% relative to untreated plants. Photosynthetic rate, ΔF/Fm′, and ETR increased by 31.52%, 13.63%, and 9.93%, while non-photochemical quenching decreased by 16.51% under water-limited conditions. These findings demonstrate that integrating deficit irrigation with PS foliar application can enhance water use efficiency and maintain ornamental quality in off-season potted Curcuma, promoting sustainable water management in horticulture. Full article
Show Figures

Figure 1

13 pages, 266 KiB  
Article
Influence of Virginia Market-Type Cultivar and Fungicide Regime on Leaf Spot Disease and Peanut Yield in North Carolina
by Ethan Foote, David Jordan, LeAnn Lux, Jeffrey Dunne and Adrienne Gorny
Agronomy 2025, 15(7), 1731; https://doi.org/10.3390/agronomy15071731 - 18 Jul 2025
Viewed by 281
Abstract
Determining the effectiveness of fungicide programs based on cultivar resistance to pathogens, especially late leaf spot (caused by Nothopassalora personata (Berk. & M.A. Curtis) [U. Braun, C. Nakash., Videira & Crous]) is important in establishing recommendations to peanut (Arachis hypogaea L.) farmers. [...] Read more.
Determining the effectiveness of fungicide programs based on cultivar resistance to pathogens, especially late leaf spot (caused by Nothopassalora personata (Berk. & M.A. Curtis) [U. Braun, C. Nakash., Videira & Crous]) is important in establishing recommendations to peanut (Arachis hypogaea L.) farmers. Research was conducted in North Carolina during 2021 and 2022 at three locations to compare the incidence of late leaf spot (e.g., visual estimates of percent of peanut leaflets with lesions), percentage of the peanut canopy defoliated caused by this disease, and yield of the peanut cultivars Bailey II, Emery, and Sullivan when exposed to five fungicide regimens including a non-treated control. Peanut yield was not affected by the interaction of cultivar × fungicide regimens. While differences in leaf spot incidence and canopy defoliation were noted for cultivars, these differences did not translate into differences in peanut yield. All fungicides regimens protected peanut yield from leaf spot disease regardless of the number of sprays during the cropping cycle (e.g., three, four, or five sprays). Peanut yield in the absence of fungicides was 4410 kg/ha compared with a range of 5000 to 5390 kg/ha when fungicides were applied. Peanut yield was greater when fungicides were applied four or five times compared with only three sprays or non-treated peanut. The regimen with five consecutive sprays of chlorothalonil alone for the first and final spray in the regimen and when this fungicide was applied with tebuconazole for the second, third, and fourth sprays was as effective as fungicide regimens including combinations of pydiflumetofen plus azoxystrobin plus benzovindiflupyr, mefentrifluconazole plus pyraclostrobin plus fluxapyroxad, bixafen plus flutriafol, and prothioconazole plus tebuconazole. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
34 pages, 2459 KiB  
Review
Regulation of Plant Genes with Exogenous RNAs
by Alexandra S. Dubrovina, Andrey R. Suprun and Konstantin V. Kiselev
Int. J. Mol. Sci. 2025, 26(14), 6773; https://doi.org/10.3390/ijms26146773 - 15 Jul 2025
Viewed by 286
Abstract
Exogenous RNA application, also known as spray-induced gene silencing (SIGS), is a new approach in plant biotechnology that utilizes RNA interference (RNAi) to modify plant traits. This technique involves applying RNA solutions of double-stranded RNA (dsRNA), hairpin RNA (hpRNA), small interfering RNA (siRNA), [...] Read more.
Exogenous RNA application, also known as spray-induced gene silencing (SIGS), is a new approach in plant biotechnology that utilizes RNA interference (RNAi) to modify plant traits. This technique involves applying RNA solutions of double-stranded RNA (dsRNA), hairpin RNA (hpRNA), small interfering RNA (siRNA), or microRNA (miRNA) directly onto plant surfaces. This triggers RNAi-mediated silencing of specific genes within the plant or invading pathogens. While extensively studied for enhancing resistance to pathogens, the application of exogenous RNA to regulate plant endogenous genes remains less explored, creating a rich area for further research. This review summarizes and analyzes the studies reporting on the exogenously induced silencing of plant endogenes and transgenes using various RNA types. We also discuss the RNA production and delivery approaches, analyze the uptake and transport of exogenous RNAs, and the mechanism of action. The analysis revealed that SIGS/exoRNAi affects the expression of plant genes, which may contribute to crop improvement and plant gene functional studies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 1530 KiB  
Article
Synergistic Effects of Salt-Tolerant PGPR and Foliar Silicon on Pak Choi Antioxidant Defense Under Salt Stress
by Jieru Zhao, Qibiao Han, Bingjian Cui, Juan Wang, Chao Hu, Rui Li, Yanyu Lin, Ying Xu and Chuncheng Liu
Plants 2025, 14(13), 2065; https://doi.org/10.3390/plants14132065 - 6 Jul 2025
Viewed by 436
Abstract
Salinization severely impairs crop growth by inducing oxidative stress and disrupting cellular homeostasis. This study systematically investigates the synergistic effects of salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) and foliar silicon fertilizer spraying (FSFS) on antioxidant responses in Pak choi under salt stress. Two-season pot experiments [...] Read more.
Salinization severely impairs crop growth by inducing oxidative stress and disrupting cellular homeostasis. This study systematically investigates the synergistic effects of salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) and foliar silicon fertilizer spraying (FSFS) on antioxidant responses in Pak choi under salt stress. Two-season pot experiments were carried out to evaluate key indicators, including antioxidant enzyme activities (superoxide dismutase: SOD; peroxidase: POD; catalase: CAT), oxidative stress (malondialdehyde: MDA), osmolyte accumulation (proline, soluble protein), and hormones (Jasmonic Acid: JA; Salicylic Acid: SA; Abscisic acid: ABA). The results demonstrate that combining ST-PGPR with FSFS significantly enhances SOD (6.18–2353.85%), POD (3.44–153.29%), and CAT (25.71–319.29%) activities while reducing MDA content (8.12–35.87%). Proline and soluble protein levels increased by 1.56–15.71% and 5.03–188.87%, respectively. Hormonal regulation increased JA, SA, and ABA levels by 1.05–31.81%, 2.09–34.29%, and 3.18–30.09%, respectively. Notably, ST-PGPR treatments at 104 and 106 cfu·mL−1, combined with foliar silicon application, consistently ranked highest in overall antioxidant performance across both seasons based on a principal component analysis. These findings provide novel insights into microbial–mineral interactions for sustainable saline agriculture. Full article
Show Figures

Figure 1

21 pages, 1173 KiB  
Article
Impact of Drought and Biostimulant in Greenhouse Tomato: Agronomic and Metabolomic Insights
by Marzia Leporino, Mariateresa Cardarelli, Paolo Bonini, Simona Proietti, Stefano Moscatello and Giuseppe Colla
Plants 2025, 14(13), 2000; https://doi.org/10.3390/plants14132000 - 30 Jun 2025
Viewed by 356
Abstract
Widespread drought conditions have increasingly affected agricultural productivity, requiring the exploration of alternative approaches for improving crop tolerance, yield and quality, since plants adopt many physiological strategies to cope with challenging environments. This study evaluated the effects of a vegetal-derived protein hydrolysate (PH), [...] Read more.
Widespread drought conditions have increasingly affected agricultural productivity, requiring the exploration of alternative approaches for improving crop tolerance, yield and quality, since plants adopt many physiological strategies to cope with challenging environments. This study evaluated the effects of a vegetal-derived protein hydrolysate (PH), applied via foliar spray or root drench at a concentration of 3 mL L−1, on tomato plants (n = 96) under well-watered and drought-stressed conditions over a 136-day greenhouse experiment. Overall, sub-optimal irrigation significantly decreased plant dry biomass (−55.3%) and fruit production (−68.8% marketable yield), and enhanced fruit quality in terms of sugar concentration and antioxidant levels. PH treatments, regardless of the application method, did not notably influence above-ground dry biomass, yield, or fruit quality, suggesting that the intensity of drought might have limited PH effectiveness. Metabolomic analysis showed higher concentrations of stress- and quality-related metabolites in tomato fruits from plants under stress, with PH not exerting significant metabolic changes in the fruits. These findings revealed the diminished effectiveness of PHs under severe drought conditions, suggesting that drought stress level needs to be taken into consideration for optimizing biostimulant efficacy. Full article
(This article belongs to the Special Issue Protected Cultivation of Horticultural Crops)
Show Figures

Figure 1

Back to TopTop