Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = coupled CFD-DEM simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6125 KB  
Article
Experimental Study on Optimization of Gravel Packing Parameters for Sand Control in Unconsolidated Sandstone Reservoirs
by Peng Du, Hairui Guo, Youkeren An and Yiqun Zhang
J. Mar. Sci. Eng. 2026, 14(2), 139; https://doi.org/10.3390/jmse14020139 - 9 Jan 2026
Viewed by 101
Abstract
Offshore unconsolidated sandstone reservoirs suffer from severe sand production, which impairs wellbore stability and productivity. This study evaluates gravel packing in light-oil unconsolidated sandstone reservoirs in the Weizhou field. This paper conducts visual sand-control experiments to compare screens and gravel packs, and to [...] Read more.
Offshore unconsolidated sandstone reservoirs suffer from severe sand production, which impairs wellbore stability and productivity. This study evaluates gravel packing in light-oil unconsolidated sandstone reservoirs in the Weizhou field. This paper conducts visual sand-control experiments to compare screens and gravel packs, and to quantify the effects of gravel size, packing thickness, packing density, and clay content on sand-retention behavior. On this basis, a coupled CFD–DEM model was developed to simulate sand transport and plugging within the gravel pack. Results show that gravel packing rapidly forms a stable bridging structure, reaching stabilized production 38.1% earlier than the screen and reducing sand production by 74.4%, while maintaining a stable pressure difference and limiting fine-sand breakthrough. Low-viscosity oil enhances sand carrying, increasing the stabilized pressure difference by 12% relative to water. For the low-clay fine reservoir, gravel sizes of 3–6 times the median sand size, packing thickness ≥ 25 mm, and packing density of 90–95% provide a balance between permeability and sand control. Numerical simulations identify a four-stage plugging process—initiation, surface accumulation, deep filling, and equilibrium—offering pore-scale support for the experimental observations. This study offers technical and theoretical guidance for the optimization of gravel-pack sand control in offshore light-oil unconsolidated sandstone reservoirs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 5532 KB  
Article
Numerical Investigation of Horizontal Wellbore Hole Cleaning with a Flexible Drill Pipe Using the CFD–DEM
by Qizhong Tian, Yusha Fan, Yuan Lin, Peiwen Lin, Xinghui Tan, Haojie Si and Haocai Huang
Processes 2026, 14(2), 211; https://doi.org/10.3390/pr14020211 - 7 Jan 2026
Viewed by 163
Abstract
Efficient cutting transport is crucial in challenging drilling environments such as ultra-short-radius horizontal wells. Flexible drill pipes, designed for complex wellbore geometries, offer a potential solution. However, the cutting transport behavior within them remains poorly understood. To improve wellbore cleaning and drilling efficiency, [...] Read more.
Efficient cutting transport is crucial in challenging drilling environments such as ultra-short-radius horizontal wells. Flexible drill pipes, designed for complex wellbore geometries, offer a potential solution. However, the cutting transport behavior within them remains poorly understood. To improve wellbore cleaning and drilling efficiency, this study investigates the underlying transport mechanisms. The investigation employs a coupled CFD-DEM approach to model cutting transport in flexible drill pipes. This method combines fluid dynamics and particle motion simulations to analyze the interaction between drilling fluid and cuttings, evaluating the impact of factors such as rotational speed, flow rate, and fluid properties on cleaning efficiency. The results indicate that increasing the flow rate at a constant rotational speed significantly reduces the cutting concentration. Nevertheless, beyond a critical flow rate of 1.5 m/s, further increases yield diminishing returns in cleaning efficiency due to transport capacity saturation. In contrast, increasing the rotational speed at a fixed flow rate of 1.42 m/s has a less pronounced effect on cutting transport and increases frictional torque, thereby reducing energy efficiency. Higher rotational speeds primarily enhance the suspension of fine cuttings, with minimal impact on larger particles. Additionally, the rheological properties of the drilling fluid play a key role. A higher flow behavior index increases viscosity near the wellbore, improving transport performance. Conversely, a higher consistency index enhances the fluid’s carrying capacity but increases annular pressure drop, which imposes greater demands on pump capacity. Thus, optimal drilling performance requires balancing pressure losses and cleaning efficiency through comprehensive parameter optimization. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

23 pages, 5151 KB  
Article
Adaptive Pneumatic Separation Based on LGDNet Visual Perception for a Representative Fibrous–Granular Mixture
by Shan Jiang, Rifeng Wang, Sichuang Yang, Lulu Li, Hengchi Si, Xiulong Gao, Xuhong Chen, Lin Chen and Haihong Pan
Machines 2026, 14(1), 66; https://doi.org/10.3390/machines14010066 - 5 Jan 2026
Viewed by 167
Abstract
Pneumatic separation can exhibit unstable performance when the feed composition fluctuates while operating parameters remain fixed. This work investigates a perception-informed airflow regulation approach, demonstrated on a representative fibrous–granular mixture case study. We propose LGDNet, a lightweight visual ratio estimation network (0.08 M [...] Read more.
Pneumatic separation can exhibit unstable performance when the feed composition fluctuates while operating parameters remain fixed. This work investigates a perception-informed airflow regulation approach, demonstrated on a representative fibrous–granular mixture case study. We propose LGDNet, a lightweight visual ratio estimation network (0.08 M parameters) built with Ghost-based operations and learned grouped channel convolution (LGCC), to estimate mixture composition from dense images. A dedicated 21-class dataset (0–100% in 5% increments) containing approximately 21,000 augmented images was constructed for training and evaluation. LGDNet achieves a Top-1 accuracy of 66.86%, an interval accuracy of 74.10% within a ±5% tolerance, and an MAE of 4.85, with an average inference latency of 28.25 ms per image under the unified benchmark settings. To assess the regulation mechanism, a coupled CFD–DEM simulation model of a zigzag air classifier was built and used to compare a regime-dependent airflow policy with a fixed-velocity baseline under representative prescribed inlet ratios. Under high impurity loading (r=70%), the dynamic policy improves product purity by approximately 1.5 percentage points in simulation. Together, the real-image perception evaluation and the mechanism-level simulation study suggest the feasibility of using visual ratio estimation to inform airflow adjustment; broader generalization and further on-site validation on real equipment will be pursued in future work. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 4153 KB  
Article
A CFD–DEM Study on Non-Spherical Cutting Transport in Extended-Reach Wells Under Rotary Drilling
by Zhaoyu Pang, Yanhan Liu, Bingxuan Li, Mengmeng Zhou, Yi Wu, Yi Sun and Xianzhi Song
Processes 2026, 14(1), 165; https://doi.org/10.3390/pr14010165 - 4 Jan 2026
Viewed by 140
Abstract
To investigate the accumulation and transport behavior of non-spherical particles during rotary drilling in extended-reach horizontal wells, a CFD–DEM numerical simulation study was carried out based on actual field drilling parameters. The effects of flow rate, drillpipe rotation speed, drilling fluid viscosity, and [...] Read more.
To investigate the accumulation and transport behavior of non-spherical particles during rotary drilling in extended-reach horizontal wells, a CFD–DEM numerical simulation study was carried out based on actual field drilling parameters. The effects of flow rate, drillpipe rotation speed, drilling fluid viscosity, and particle shape on cutting transport were systematically analyzed in terms of spatial distribution of particle concentration, microscopic movement velocity of particles, and annular pressure drop. A dimensionless pressure-drop–flow-pattern chart was then constructed to characterize the coupled flow–particle transport behavior. The results indicate that flow rate, rotation speed, viscosity, and cutting shape all markedly affect the transition from a stationary cutting bed to suspended transport. Increasing the flow rate, rotation speed, and viscosity promotes hole cleaning. However, once these parameters exceed a certain threshold, further improvements in cutting removal are accompanied by a sharp increase in annular pressure drop. The final Π–DPD dimensionless chart was developed, which can be used for rotary drilling parameter optimization in extended-reach wells, and Π ≈ (2.5–3.1) × 104 is recommended as the preferred range. Full article
Show Figures

Figure 1

26 pages, 6559 KB  
Article
Effects of Short, Flexible Fibers on Clogging and Erosion in a Sewage Pump
by Shuihua Zheng, Yiliang Li, Liuming Wang, Zenan Sun, Xueyan Zhao and Cheng Zhang
Water 2026, 18(1), 114; https://doi.org/10.3390/w18010114 - 2 Jan 2026
Viewed by 238
Abstract
Sewage pumps often handle complex multiphase flows containing rigid solid particles and flexible fibrous debris. These fibers can deform, entangle, and alter the flow, leading to clogging and the uneven erosion of pump components. In this study, we use coupled CFD–DEM simulations (validated [...] Read more.
Sewage pumps often handle complex multiphase flows containing rigid solid particles and flexible fibrous debris. These fibers can deform, entangle, and alter the flow, leading to clogging and the uneven erosion of pump components. In this study, we use coupled CFD–DEM simulations (validated by experiments) to analyze how short flexible fibers move within a model sewage pump and how they influence pump erosion. We show that fibers injected near the inlet center tend to remain in the impeller region longer, especially as fiber diameter increases, causing greater contact with the impeller surface. When fibers coexist with sand-like particles, fibers become trapped near the impeller inlet and deflect incoming particles, creating additional collisions and irregular erosion patterns. In general, fibers alone induce minimal erosion, but their interaction with particles substantially amplifies impeller wear, producing more random pitting as fiber concentration rises. These findings highlight how fiber–particle interactions must be considered for reliable pump operation and design. Full article
(This article belongs to the Special Issue Hydrodynamics in Pumping and Hydropower Systems, 2nd Edition)
Show Figures

Figure 1

37 pages, 2985 KB  
Review
Multiphysics Modelling and Optimization of Hydrogen-Based Shaft Furnaces: A Review
by Yue Yu, Feng Wang, Xiaodong Hao, Heping Liu, Bin Wang, Jianjun Gao and Yuanhong Qi
Processes 2026, 14(1), 138; https://doi.org/10.3390/pr14010138 - 31 Dec 2025
Viewed by 473
Abstract
Hydrogen-based direct reduction (H-DR) represents an environmentally benign and energy-efficient alternative in ironmaking that has significant industrial potential. This study reviews the current status of H-DR shaft furnaces and accompanying hydrogen-rich reforming technologies (steam and autothermal reforming), assessing the three dominant numerical frameworks [...] Read more.
Hydrogen-based direct reduction (H-DR) represents an environmentally benign and energy-efficient alternative in ironmaking that has significant industrial potential. This study reviews the current status of H-DR shaft furnaces and accompanying hydrogen-rich reforming technologies (steam and autothermal reforming), assessing the three dominant numerical frameworks used to analyze these processes: (i) porous medium continuum models, (ii) the Eulerian two-fluid model (TFMs), and (iii) coupled computational fluid dynamics (CFD)–discrete element method (DEM) models. The respective trade-offs in terms of computational cost and model accuracy are critically compared. Recent progress is evaluated from an engineering standpoint in four key areas: optimization of the pellet bed structure and gas distribution, thermal control of the reduction zone, sensitivity analysis of operating parameters, and industrial-scale model validation. Current limitations in predictive accuracy, computational efficiency, and plant-level transferability are identified, and possible mitigation strategies are discussed. Looking forward, high-fidelity multi-physics coupling, advanced mesoscale descriptions, AI-accelerated surrogate models, and rigorous uncertainty quantification can facilitate effective scalable and intelligent application of hydrogen-based shaft furnace simulations. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

32 pages, 15541 KB  
Article
Coupled CFD–DEM Modeling of Sinkhole Development Due to Exfiltration from Buried Pipe Defects
by Jun Xu, Bryce Vaughan and Fei Wang
Eng 2025, 6(12), 365; https://doi.org/10.3390/eng6120365 - 14 Dec 2025
Viewed by 248
Abstract
Leakage from defective buried pipelines can lead to progressive soil erosion and void formation, ultimately resulting in ground collapse or sinkhole development. To better understand the underlying mechanisms of this process, this research utilizes a coupled computational fluid dynamics (CFD)–discrete element method (DEM) [...] Read more.
Leakage from defective buried pipelines can lead to progressive soil erosion and void formation, ultimately resulting in ground collapse or sinkhole development. To better understand the underlying mechanisms of this process, this research utilizes a coupled computational fluid dynamics (CFD)–discrete element method (DEM) modeling approach to investigate soil erosion processes driven by water leakage from defective underground pipelines. The numerical model captures fluid–particle interactions at both macroscopic and microscopic scales, providing detailed insights into erosion initiation, void zone evolution, and particle transport dynamics under varying hydraulic and geometric conditions. Parametric studies were conducted to evaluate the effects of exfiltration pressure, defect size, and particle diameter on erosion behavior. Results show that erosion intensity and particle migration increase with hydraulic pressure up to a threshold, beyond which compaction and particle bridging reduce sustained transport. The intermediate defect size (12.7 mm) consistently produced the most continuous and stable erosion channels, while smaller and larger defects exhibited localized or asymmetric detachment patterns. Particle size strongly influenced erosion susceptibility, with finer grains mobilized more readily under the same flow conditions. The CFD–DEM simulations successfully reproduce the nonlinear and self-reinforcing nature of internal erosion, revealing how hydraulic gradients and particle rearrangement govern the transition from local detachment to large-scale cavity development. These findings advance the understanding of subsurface instability mechanisms around leaking pipelines and provide a physically consistent CFD–DEM framework that aligns well with published studies. The model effectively reproduces the key stages of erosion observed in the literature, offering a valuable tool for assessing erosion-induced risks and for designing preventive measures to protect buried infrastructure. Full article
(This article belongs to the Special Issue Fluid-Structure Interaction in Civil Engineering)
Show Figures

Figure 1

24 pages, 4686 KB  
Article
Parameter Calibration and Experimentation of the Discrete Element Model for Mixed Seeds of Vetch (Vicia villosa) and Oat (Avena sativa) in a Pneumatic Seed Drilling System
by Yu Fu, Dewei Wang, Xufeng Wang, Long Wang, Jianliang Hu, Xingguang Chi and Mao Ji
Appl. Sci. 2025, 15(24), 13048; https://doi.org/10.3390/app152413048 - 11 Dec 2025
Viewed by 191
Abstract
This paper focuses on mixed seeds of Vicia villosa and Avena sativa, with their discrete element model and contact parameters being systematically calibrated and validated to provide reliable theoretical support for the structural design and parameter optimization of the air-assisted seed delivery [...] Read more.
This paper focuses on mixed seeds of Vicia villosa and Avena sativa, with their discrete element model and contact parameters being systematically calibrated and validated to provide reliable theoretical support for the structural design and parameter optimization of the air-assisted seed delivery system. The physical properties of both seed types, including triaxial dimensions, density, moisture content, Poisson’s ratio, and shear modulus, were first measured. The Hertz–Mindlin (no slip) contact model and the multi-sphere aggregation method were employed to construct the discrete element models of Vicia villosa and Avena sativa, with preliminary calibration of the intrinsic model parameters. Poisson’s ratio, elastic modulus, collision restitution coefficient, static friction coefficient, and rolling friction coefficient between the seeds and PLA plastic plate were determined through uniaxial compression, free fall, inclined sliding, and inclined rolling tests. Each test was repeated five times, and the calibration criterion for contact parameters was based on minimizing the relative error between simulation and experimental results. Based on this, experiments on the packing angle of mixed seeds, steepest slope, and a three-factor quadratic rotational orthogonal combination were conducted. The inter-seed collision restitution coefficient, static friction coefficient, and rolling friction coefficient were set as the experimental factors. A total of 23 treatments were designed with repetitions at the center point, and a regression model was established for the relative error of the packing angle with respect to each factor. Based on the measured packing angle of 28.01° for the mixed seeds, the optimal contact parameter combination for the mixed seed pile was determined to be: inter-seed collision restitution coefficient of 0.312, static friction coefficient of 0.328, and rolling friction coefficient of 0.032. The relative error between the simulated packing angle and the measured value was 1.32%. The calibrated inter-seed contact parameters were further coupled into the EDEM–Fluent gas–solid two-phase flow model. Simulations and bench verification tests were carried out under nine treatment combinations, corresponding to three fan speeds (20, 25, and 30 m·s−1) and three total transport efficiencies (12.5, 17.5, and 22.5 g·s−1), with the consistency coefficient of seed distribution in each row being the main evaluation variable. The results showed that the deviation in the consistency coefficient of seed distribution between the simulation and experimental measurements ranged from 1.24% to 3.94%. This indicates that the calibrated discrete element model for mixed seeds and the EDEM–Fluent coupled simulation can effectively reproduce the air-assisted seed delivery process under the conditions of Vicia villosa and Avena sativa mixed sowing, providing reliable parameters and methodological support for the structural design of seeders and DEM-CFD coupled simulations in legume–grass mixed sowing systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

30 pages, 4260 KB  
Article
Numerical Investigation of Sediment Settling and Deposition Characteristics in Layered Backfilling Using a Trailing Suction Hopper Dredger
by Zhi Liu, Hongwen Zheng, Chuliang Wang, Mingjie Yu, Dongliang Meng, Tao Sun and Wei Wei
Processes 2025, 13(12), 3847; https://doi.org/10.3390/pr13123847 - 28 Nov 2025
Viewed by 396
Abstract
Trailing suction hopper dredgers (TSHDs) are widely used in port subgrade reinforcement and land reclamation layered backfilling, with construction quality relying on sediment settling paths and deposition characteristics. To tackle the lack of guidance on key parameters like bottom door opening, sailing speed, [...] Read more.
Trailing suction hopper dredgers (TSHDs) are widely used in port subgrade reinforcement and land reclamation layered backfilling, with construction quality relying on sediment settling paths and deposition characteristics. To tackle the lack of guidance on key parameters like bottom door opening, sailing speed, and related problems, a multiphase settling model based on coupled CFD–DEM is developed. This model analyzes sediment particle settling trajectories, distribution patterns, and uniformity responses under different conditions. Through orthogonal simulations of bottom door openings (22%, 50%, 100%) and sailing speeds (0.02, 0.045, 0.07 kn), the coupling relationships among particle settling velocity, main deposition layer thickness, and spatial extension are revealed, clarifying how parameter variations affect deposition uniformity and coverage. The results indicate that, relative to a small opening (22%), a moderate bottom door opening (50%) simultaneously increases layer thickness and markedly improves deposition uniformity (minimum uniformity index), whereas a very large opening (100%) further increases thickness at the expense of a modest loss of uniformity relative to the moderate case; higher sailing speeds cause long-range migration and local deposition irregularities. Engineering validation using field data from the Junyang 1 TSHD in the Manila Pasay project shows that a moderate bottom door opening of about 15% (selected based on the 22–50% simulation trend), combined with a medium sailing speed of about 0.4 kn, achieves a good balance between thickness control and uniformity. A coupled multi-physics analysis framework and a parameter–response map are established, systematically revealing the influence of operational parameters on sediment settling and deposition uniformity and providing quantitative support for TSHD backfilling operations. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

24 pages, 5039 KB  
Article
Study of the Formation Mechanism of Velocity Differences Among Paddy Grains Within Centrifugal Hullers Using CFD-DEM Coupling
by Hao Li, Haonan Gao, Dan Zhao, Ze Sun, Xinlei Wang, Xianle Li and Hanlin Yu
Agriculture 2025, 15(22), 2380; https://doi.org/10.3390/agriculture15222380 - 18 Nov 2025
Viewed by 453
Abstract
The impact velocity of the grains is a critical factor affecting the hulling efficiency in centrifugal hullers. However, significant differences in velocity are observed among paddy grains following acceleration by the impeller. Therefore, elucidating the mechanism responsible for these velocity differences is essential [...] Read more.
The impact velocity of the grains is a critical factor affecting the hulling efficiency in centrifugal hullers. However, significant differences in velocity are observed among paddy grains following acceleration by the impeller. Therefore, elucidating the mechanism responsible for these velocity differences is essential for improving hulling performance. This study employed coupled CFD-DEM simulations to analyse the kinematic behaviour of paddy grains. The results demonstrate that velocity differences among grains are prevalent within centrifugal hullers and adversely affect hulling efficiency. These differences primarily arise from tangential collisions between grains and blades prior to acceleration, as well as axial collisions during the acceleration phase. The jumping degree (Sv) quantifies the relative motion between paddy grains and blades in the normal direction. Velocity differences decrease significantly as the jumping degree approaches unity. Furthermore, a tilted curvature blade was developed to mitigate velocity differences. Computational analysis and simulation determined that a blade curvature of 300 mm combined with a 20° tilt angle achieved the most substantial reduction in velocity differences. This optimised configuration improves hulling efficiency by 4.5% compared to the original blade design. This modification is expected to substantially facilitate the optimisation of centrifugal huller designs. Full article
Show Figures

Figure 1

16 pages, 3507 KB  
Article
Optimization of Flushing Fluid Plugging Theory Based on Plugging Experiments and Simulations
by Wei Shi, Shifeng Zhang, Chao Peng, Lian Zhang, Chenjing Dou, Xiaojian Zhang and Yan Zhuang
Processes 2025, 13(11), 3639; https://doi.org/10.3390/pr13113639 - 10 Nov 2025
Cited by 1 | Viewed by 325
Abstract
During sand cleanout operations in shale oil horizontal wells, severe wellbore leakage occurs due to incompatibility between plugging particles and the formation, resulting in a failure to establish circulation. This study determined the optimal plugging theory for the target formation characteristics through laboratory [...] Read more.
During sand cleanout operations in shale oil horizontal wells, severe wellbore leakage occurs due to incompatibility between plugging particles and the formation, resulting in a failure to establish circulation. This study determined the optimal plugging theory for the target formation characteristics through laboratory leakage sealing tests and numerical simulations such as fluid–discrete element coupling (CFD-DEM). The results show the following: Plugging experiments indicated that the Vickers criterion achieved the best performance, with an invasion depth of 9 mm, followed by the Ideal Packing Theory, at 12 mm, while the D90 rule performed the worst, with an invasion depth of 13 mm. The simulations results from the CFD-DEM coupling model demonstrated that the Vickers criterion achieves the most effective plugging performance, followed by the Ideal Packing Theory, with the D90 rule exhibiting the least effectiveness. This indirectly validates the rationality and effectiveness of the Vickers criterion in configuring particle sizes for plugging materials. Finally, sand-packed-tube displacement experiments demonstrate that the Vickers criterion yields the lowest permeability and optimal plugging performance, further validating its rationality and effectiveness in configuring particle sizes for plugging materials. This research provides crucial technical support for the safe and efficient development of shale oil horizontal wells, effectively reduces operational costs, and holds significant importance for advancing technological progress in shale oil extraction. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

31 pages, 7690 KB  
Article
CFD-DEM Analysis of Floating Ice Accumulation and Dynamic Flow Interaction in a Coastal Nuclear Power Plant Pump House
by Shilong Li, Chao Zhan, Qing Wang, Yan Li, Zihao Yang and Ziqing Ji
J. Mar. Sci. Eng. 2025, 13(11), 2122; https://doi.org/10.3390/jmse13112122 - 10 Nov 2025
Viewed by 507
Abstract
A coupled CFD-DEM model was adopted to investigate the floating ice accumulation mechanism and its disturbance to the flow field in the pump house of coastal nuclear power plants in cold regions. Based on numerical simulations, the motion, accumulation, and flow interaction characteristics [...] Read more.
A coupled CFD-DEM model was adopted to investigate the floating ice accumulation mechanism and its disturbance to the flow field in the pump house of coastal nuclear power plants in cold regions. Based on numerical simulations, the motion, accumulation, and flow interaction characteristics of floating ice under various release positions and heights were analyzed. The results indicate that the release height significantly governs the accumulation morphology and hydraulic response. The release height critically determines ice accumulation patterns and hydraulic responses. For inlet scenarios, lower heights induce a dense, wedge-shaped accumulation at the coarse trash rack, increasing thickness by 57.69% and shifting the accumulation 38.16% inlet-ward compared to higher releases. Conversely, higher releases enhance dispersion, expanding disturbances to the central pump house and intensifying flow heterogeneity. In bottom release cases, lower heights form wall-adhering accumulations, while higher releases cause ice to rise into mid-upper layers, thereby markedly intensifying local vortices (peak intensity 79.68, approximately 300% higher). Spatial release locations induce 2.7–4.8-fold variations in flow disturbance intensity across monitoring points. These findings clarify the combined impact of the release height and location on the ice accumulation and flow field dynamics, offering critical insights for the anti-ice design and flow safety assessment of pump houses. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 7801 KB  
Article
Effects of Laser Process Parameters on Melt Pool Thermodynamics, Surface Morphology and Residual Stress of Laser Powder Bed-Fused TiAl-Based Composites
by Xiaolong Xu, Ziwen Xie, Meiping Wu and Chenglong Ma
Metals 2025, 15(11), 1234; https://doi.org/10.3390/met15111234 - 9 Nov 2025
Cited by 1 | Viewed by 1141
Abstract
A coupled discrete element method and computational fluid dynamics (DEM-CFD) approach was utilized to systematically investigate the mesoscale dynamics of single-track melt pools in laser powder bed fusion (LPBF) of TiAl-based composites. It was found that the melt pool’s temporal evolution and flow [...] Read more.
A coupled discrete element method and computational fluid dynamics (DEM-CFD) approach was utilized to systematically investigate the mesoscale dynamics of single-track melt pools in laser powder bed fusion (LPBF) of TiAl-based composites. It was found that the melt pool’s temporal evolution and flow behavior are predominantly governed by recoil pressure and Marangoni convection. When lower laser power and higher scanning speeds are applied, the melt pool size is limited due to restricted energy input, resulting in increased cooling rates and steeper temperature gradients. Under these conditions, residual stresses are slightly elevated. However, crack initiation and propagation are partially suppressed by the refined microstructure formed during rapid cooling, unless a critical stress threshold is surpassed. In contrast, the use of higher laser power with lower scanning speeds leads to the formation of wider and deeper melt pools and an expanded heat-affected zone, where cooling rates and temperature gradients are reduced. Under these circumstances, significant recoil pressure induces interfacial instabilities and surface perturbations, thereby considerably increasing the likelihood of cracking. The reliability of the developed model was confirmed by the close agreement between the simulation results and experimental data. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

18 pages, 4517 KB  
Article
Research and Experimentation on Pneumatic Particle Transport in Confined Spaces of Offshore Oil and Gas Wells Based on DEM-CFD Coupling Method
by Jiming Song, Yuliang Lu, Dongtao Liu, Qiaogang Xiao, Kezheng Du, Xinjie Wei, Yajun Yu and Heng Zhang
Processes 2025, 13(11), 3599; https://doi.org/10.3390/pr13113599 - 7 Nov 2025
Viewed by 336
Abstract
To optimize the corrosion mitigation process in the annular space of oil and gas well pipelines, this study introduces a secondary acceleration pneumatic conveying device for particles within the confined spaces of offshore oil and gas wells. This approach addresses the limitations of [...] Read more.
To optimize the corrosion mitigation process in the annular space of oil and gas well pipelines, this study introduces a secondary acceleration pneumatic conveying device for particles within the confined spaces of offshore oil and gas wells. This approach addresses the limitations of traditional offshore hydraulic transportation, which can lead to corrosion failure of drug particles. The study investigates the motion mechanisms of drug particles within the pipeline and identifies the critical structural parameters that influence the smooth transport of these particles. A DEM-CFD coupled simulation methodology was employed to conduct single-factor experiments on the minimum air pressure and particle injection quantity required for stable transportation. The results demonstrate that at an air pressure of 0.25 MPa, no particle retention or accumulation occurs within the pipeline, thereby satisfying the engineering requirements. A Box–Behnken three-factor, three-level experimental design was used to perform response surface analysis on the pneumatic device. The findings reveal that the particle outlet velocity initially increases and then decreases with the air injection angle, while the outlet velocity progressively increases with the diameter of the conveying hole and the number of small holes. The maximum outlet velocity achieved is 8 m/s, with the optimal structural parameters identified as an air injection hole diameter of 2.96 mm, an air injection angle of 47°, and 24 small holes. The simulation model was calibrated and validated through fluidized bed experiments, and the simulation optimization was further confirmed via bench-scale particle transportation tests. This research provides a theoretical framework and engineering guidance for optimizing pneumatic particle transport in the confined spaces of offshore oil and gas wells. Full article
Show Figures

Figure 1

21 pages, 10986 KB  
Article
CFD–DEM Modelling of Ground Collapse Induced by Underground Pipeline Leakage in Water-Rich Sand Layers
by Zili Dai and Likang Zhao
Modelling 2025, 6(4), 141; https://doi.org/10.3390/modelling6040141 - 3 Nov 2025
Cited by 1 | Viewed by 650
Abstract
Urban underground pipeline aging and leakage can result in soil erosion and ground collapse, constituting a major threat to urban public safety. To investigate this disaster mechanism, this present study established a two-dimensional numerical model based on the computational fluid dynamics–discrete element method [...] Read more.
Urban underground pipeline aging and leakage can result in soil erosion and ground collapse, constituting a major threat to urban public safety. To investigate this disaster mechanism, this present study established a two-dimensional numerical model based on the computational fluid dynamics–discrete element method (CFD–DEM) two-way fluid–solid coupling approach, simulating and reproducing the entire process from soil erosion, soil arch evolution to ground collapse caused by underground pipeline leakage in water-rich sand layers. The simulation shows that under the action of seepage pressures, soil particles are eroded and lost, forming a cavity above the pipeline defect. As soil continues to be lost, the disturbed zone expands toward the ground surface, causing ground settlement, and in water-rich sand layers, a funnel-shaped sinkhole is eventually formed. The ground collapse process is closely related to the groundwater level and the thickness of the overlying soil layer above the pipeline. Rising groundwater levels reduce the effective stress and shear strength of the soil, significantly exacerbating seepage erosion. Increasing the thickness of the overlying soil layer can enhance the confining pressure, improve soil compactness, and promote the formation of soil stress arch, thereby effectively slowing down the rate of ground collapse. This study reproduces the process of ground collapse numerically and reveals the mechanism of ground collapse induced by underground pipeline leakage in water-rich sand layers. Full article
(This article belongs to the Special Issue Recent Advances in Computational Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop