Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,551)

Search Parameters:
Keywords = cost of renewable energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2405 KiB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 (registering DOI) - 7 Aug 2025
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

18 pages, 1567 KiB  
Article
A Distributed Multi-Microgrid Cooperative Energy Sharing Strategy Based on Nash Bargaining
by Shi Su, Qian Zhang and Qingyang Xie
Electronics 2025, 14(15), 3155; https://doi.org/10.3390/electronics14153155 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of energy transformation, the proportion of new energy is increasing, and the efficient trading mechanism of multi-microgrids can realize energy sharing to improve the consumption rate of new energy. A distributed multi-microgrid cooperative energy sharing strategy is proposed based [...] Read more.
With the rapid development of energy transformation, the proportion of new energy is increasing, and the efficient trading mechanism of multi-microgrids can realize energy sharing to improve the consumption rate of new energy. A distributed multi-microgrid cooperative energy sharing strategy is proposed based on Nash bargaining. Firstly, by comprehensively considering the adjustable heat-to-electrical ratio, ladder-type positive and negative carbon trading, peak–valley electricity price and demand response, a multi-microgrid system with wind–solar-storage-load and combined heat and power is constructed. Then, a multi-microgrid cooperative game optimization framework is established based on Nash bargaining, and the complex nonlinear problem is decomposed into two stages to be solved. In the first stage, the cost minimization problem of multi-microgrids is solved based on the alternating direction multiplier method to maximize consumption rate and protect privacy. In the second stage, through the established contribution quantification model, Nash bargaining theory is used to fairly distribute the benefits of cooperation. The simulation results of three typical microgrids verify that the proposed strategy has good convergence properties and computational efficiency. Compared with the independent operation, the proposed strategy reduces the cost by 41% and the carbon emission by 18490kg, thus realizing low-carbon operation and optimal economic dispatch. Meanwhile, the power supply pressure of the main grid is reduced through energy interaction, thus improving the utilization rate of renewable energy. Full article
32 pages, 5466 KiB  
Article
Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
by Dennis Thom, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4198; https://doi.org/10.3390/en18154198 - 7 Aug 2025
Abstract
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely [...] Read more.
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m2) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals. Full article
Show Figures

Figure 1

22 pages, 6392 KiB  
Article
Comparison of Triple-Tube Heat Exchanger and Spherical Ice Balls for Energy Storage Performance: A Numerical Study
by Gülşah Karaca Dolgun
Energies 2025, 18(15), 4199; https://doi.org/10.3390/en18154199 - 7 Aug 2025
Abstract
Ice energy storage systems have gained significant attention as sustainable solutions for energy management, particularly in applications with fluctuating energy demands. This study aims to compare two different designs, a triple-tube heat exchanger (TTHE) and spherical ice balls, the latter being the most [...] Read more.
Ice energy storage systems have gained significant attention as sustainable solutions for energy management, particularly in applications with fluctuating energy demands. This study aims to compare two different designs, a triple-tube heat exchanger (TTHE) and spherical ice balls, the latter being the most widely used traditional design in the industry. The TTHE design was first analyzed theoretically, then optimized using Computational Fluid Dynamics (CFD) simulations, and validated by the literature. Finally, it was compared with spherical ice balls under identical conditions. The analyses were conducted for an ice storage volume of 1000 kg, with the complete solidification process designed to occur within 8 h. The results indicate that the TTHE reduced solidification time by 25% while simultaneously increasing energy storage by 8%. This study contributes to the advancement of sustainable energy technologies by providing a comparative analysis of spherical ice balls and triple-tube heat exchangers for optimizing ice storage systems. The implementation of a TTHE for thermal storage can lower energy costs, mitigate peak demand, and address the intermittency challenges associated with renewable energy sources. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

24 pages, 2540 KiB  
Article
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
by Mónica Álvarez-Manso, Gabriel Búrdalo-Salcedo and María Fernández-Raga
Hydrogen 2025, 6(3), 54; https://doi.org/10.3390/hydrogen6030054 - 6 Aug 2025
Abstract
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study [...] Read more.
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis, focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested, selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm), moderate (411–900 µS/cm), and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency, energy use, waste generation, and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants, recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment, stressing the need for clear environmental guidelines to ensure project sustainability. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 - 5 Aug 2025
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

22 pages, 1646 KiB  
Article
Stochastic Optimization Scheduling Method for Mine Electricity–Heat Energy Systems Considering Power-to-Gas and Conditional Value-at-Risk
by Chao Han, Yun Zhu, Xing Zhou and Xuejie Wang
Energies 2025, 18(15), 4146; https://doi.org/10.3390/en18154146 - 5 Aug 2025
Viewed by 73
Abstract
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both [...] Read more.
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both the supply and demand sides, a P2G unit is introduced, and a Latin hypercube sampling technique based on Cholesky decomposition is employed to generate wind–solar-load sample matrices that capture source–load correlations, which are subsequently used to construct representative scenarios. Second, a stochastic optimization scheduling model is developed for the mine electricity–heat energy system, aiming to minimize the total scheduling cost comprising day-ahead scheduling cost, expected reserve adjustment cost, and CVaR. Finally, a case study on a typical mine electricity–heat energy system is conducted to validate the effectiveness of the proposed method in terms of operational cost reduction and system reliability. The results demonstrate a 1.4% reduction in the total operating cost, achieving a balance between economic efficiency and system security. Full article
Show Figures

Figure 1

25 pages, 3418 KiB  
Review
Review on the Theoretical and Practical Applications of Symmetry in Thermal Sciences, Fluid Dynamics, and Energy
by Nattan Roberto Caetano
Symmetry 2025, 17(8), 1240; https://doi.org/10.3390/sym17081240 - 5 Aug 2025
Viewed by 77
Abstract
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics [...] Read more.
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics domains. Thermal and fluid processes are applied in several modern energy use technologies, essentially involving the complex, multidimensional interaction of fluid mechanics and thermodynamics, such as renewable energy applications, combustion diagnostics, or Computational Fluid Dynamics (CFD)-based optimization, where symmetry is highly considered to simplify geometric parameters. Indeed, the interconnection between experimental analysis and the numerical simulation of processes is an important field. Symmetry operates as a unifying principle, its presence determining everything from the stability of turbulent flows to the efficiency of nuclear reactors, revealing hidden patterns that transcend scales and disciplines. Rotational invariance in pipelines; rotors of hydraulic, thermal, and wind turbines, and in many other cases, for instance, not only lowers computational cost but also guarantees that solutions validated in the laboratory can be effectively scaled up to industrial applications, demonstrating its crucial role in bridging theoretical concepts and real-world implementation. Thus, a wide range of symmetry solutions is exhibited in this research area, the results of which contribute to the development of science and fast information for decision making in industry. In this review, essential findings from prominent research were synthesized, highlighting how symmetry has been conceptualized and applied in these contexts. Full article
(This article belongs to the Special Issue Symmetry in Thermal Fluid Sciences and Energy Applications)
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Viewed by 113
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Viewed by 180
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
33 pages, 879 KiB  
Article
Barrier Analysis of Flexibilization of Cooling Supply Systems
by Dana Laureen Laband, Martin Stöckl, Annedore Mittreiter and Uwe Holzhammer
Energies 2025, 18(15), 4133; https://doi.org/10.3390/en18154133 - 4 Aug 2025
Viewed by 96
Abstract
The present study examines the barriers that prevent cooling system flexibility from being optimized. In the context of an increasing reliance on renewable energy sources, the necessity for flexible energy utilization is becoming increasingly apparent. A survey and discussion groups were conducted with [...] Read more.
The present study examines the barriers that prevent cooling system flexibility from being optimized. In the context of an increasing reliance on renewable energy sources, the necessity for flexible energy utilization is becoming increasingly apparent. A survey and discussion groups were conducted with various stakeholders within the cooling value chain to obtain their experiences and insights regarding barriers to flexibilization. The findings point out that economic, technological, and regulatory barriers are the primary factors impeding the implementation of flexible solutions. In particular, high investment costs, complex technical implementation, a lack of information, and a complicated legal framework were identified as significant impediments. To enhance the flexibility of cooling systems, coordinated efforts are necessary to address these barriers. Practical examples, training, and the standardization and digitalization of processes could facilitate the widespread implementation of flexible cooling systems. Full article
Show Figures

Figure 1

52 pages, 1100 KiB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Viewed by 149
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

Back to TopTop