Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (680)

Search Parameters:
Keywords = copper wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
18 pages, 3140 KiB  
Article
Spatial and Temporal Distribution of Conversational and Emerging Pollutants in Fecal Sludge from Rural Toilets, China
by Lin Lin, Yilin Shen, Guoji Ding, Shakib Alghashm, Seinn Lei Aye and Xiaowei Li
Sustainability 2025, 17(15), 7088; https://doi.org/10.3390/su17157088 - 5 Aug 2025
Abstract
Effective management of fecal pollutants in rural sanitation is crucial for environmental health and public safety, especially in developing regions. In this study, temporal and regional variations in nutrient elements, heavy metals, pathogenic microorganisms (PMs), and antibiotic resistance genes (ARGs) of fecal samples [...] Read more.
Effective management of fecal pollutants in rural sanitation is crucial for environmental health and public safety, especially in developing regions. In this study, temporal and regional variations in nutrient elements, heavy metals, pathogenic microorganisms (PMs), and antibiotic resistance genes (ARGs) of fecal samples from rural toilets in China were investigated. The moisture contents of the fecal samples average 92.7%, decreasing seasonally from 97.4% in summer to 90.6% in winter. The samples’ pH values range from 6.5 to 7.5, with a slight decrease in winter (6.8), while their electrical conductivity varies from 128.1 to 2150 μs/cm, influenced by regional diets. Chromium (9.0–49.7 mg/kg) and copper (31.9–784.4 mg/kg) levels vary regionally, with higher concentrations in Anhui and Guangxi Provinces due to dietary and industrial factors. Zinc contents range from 108.5 to 1648.9 mg/kg, with higher levels in autumn and winter, resulting from agricultural practices and Zn-containing fungicides, posing potential health and phytotoxicity risks. Seasonal and regional variations in PMs and ARGs were observed. Guangxi Province shows the high PM diversity in summer samples, while Jiangsu Province exhibits the high ARGs types in autumn samples. These findings highlight the need for improved waste management and sanitation solutions in rural areas to mitigate environmental risks and protect public health. Continued research in these regions is essential to inform effective sanitation strategies. Full article
Show Figures

Graphical abstract

37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 228
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

28 pages, 6625 KiB  
Article
Short- and Long-Term Mechanical and Durability Performance of Concrete with Copper Slag and Recycled Coarse Aggregate Under Magnesium Sulfate Attack
by Yimmy Fernando Silva, Claudia Burbano-Garcia, Eduardo J. Rueda, Arturo Reyes-Román and Gerardo Araya-Letelier
Appl. Sci. 2025, 15(15), 8329; https://doi.org/10.3390/app15158329 - 26 Jul 2025
Viewed by 267
Abstract
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly [...] Read more.
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly deleterious to concrete structures. Therefore, this study investigates the short- and long-term performance of concrete produced with copper slag (CS)—a massive waste generated by copper mining activities worldwide—employed as a supplementary cementitious material (SCM), together with recycled coarse aggregate (RCA), obtained from concrete construction and demolition waste, when exposed to MgSO4. CS was used as a 15 vol% cement replacement, while RCA was incorporated at 0%, 20%, 50%, and 100 vol%. Compressive strength, bulk density, water absorption, and porosity were measured after water curing (7–388 days) and following immersion in a 5 wt.% MgSO4 solution for 180 and 360 days. Microstructural characteristics were assessed using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis with its differential thermogravimetric derivative (TG-DTG), and Fourier transform infrared spectroscopy (FTIR) techniques. The results indicated that replacing 15% cement with CS reduced 7-day strength by ≤10%, yet parity with the reference mix was reached at 90 days. Strength losses increased monotonically with RCA content. Under MgSO4 exposure, all mixtures experienced an initial compressive strength gain during the short-term exposures (28–100 days), attributed to the pore-filling effect of expansive sulfate phases. However, at long-term exposure (180–360 days), a clear strength decline was observed, mainly due to internal cracking, brucite formation, and the transformation of C–S–H into non-cementitious M–S–H gel. Based on these findings, the combined use of CS and RCA at low replacement levels shows potential for producing environmentally friendly concrete with mechanical and durability performance comparable to those of concrete made entirely with virgin materials. Full article
Show Figures

Figure 1

15 pages, 734 KiB  
Article
The Influence of Electrostatic Separation Parameters on the Recovery of Metals from Pre-Crushed PCBs
by Antonio Manuel Lopez-Paneque, Victoria Humildad Gallardo García-Orta, Jose Maria Gallardo, Ranier Enrique Sepúlveda-Ferrer and Ernesto Chicardi
Metals 2025, 15(8), 826; https://doi.org/10.3390/met15080826 - 23 Jul 2025
Viewed by 246
Abstract
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The [...] Read more.
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The process exploits the differences in electrical properties between conductive metals and non-conductive polymers and ceramics, facilitating their separation through applied electric fields. The raw materials were pre-treated via mechanical comminution using shredders and hammer mills to achieve an optimal particle size distribution (<3 mm), which enhances separation efficiency. Ferrous materials were removed prior to electrostatic separation to improve process selectivity. Key operational parameters, including particle size, charge accumulation, environmental conditions, and separation efficiency, were systematically analysed. The results demonstrate that electrostatic separation effectively recovers high-value metals such as copper and gold while minimizing material losses. Additionally, the process contributes to the sustainability of e-waste recycling by enabling the recovery of non-metallic fractions for potential secondary applications. This work underscores the significance of electrostatic separation as a viable technique for e-waste management and highlights optimization strategies for enhancing its performance in large-scale recycling operations. Full article
Show Figures

Figure 1

18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 227
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion
by Taiane L. Dlugoviet, Andressa dos Santos, Julia de Oliveira Primo and Fauze Jacó Anaissi
Colorants 2025, 4(3), 23; https://doi.org/10.3390/colorants4030023 - 14 Jul 2025
Viewed by 236
Abstract
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments [...] Read more.
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments using ZnO as support obtained through starch combustion. ZnO was obtained by starch (sago) combustion and characterized by XRD, SEM and the BET method. It was then used for the adsorption of orange and green textile dyes, evaluating the adsorbent dosage, initial dye concentration, contact time, and selectivity with copper ions. The removal studies indicated up to 100% removal of both dyes at low concentrations. The co-adsorption system showed excellent performance, with removal percentages exceeding 90% for both textile dyes and Cu (II) ions. Hybrid pigments were assessed for solvent resistance and durability under extended white light exposure. ZnO immobilized the dyes, showing resistance to organic solvents and good stability under prolonged white light exposure. Full article
Show Figures

Figure 1

20 pages, 2516 KiB  
Article
Utilisation of Pyrometallurgical Wastes: Recovery of Copper from the Spent Refractory Bricks from a Smelter in Namibia
by Titus Nghipulile, Godfrey Dzinomwa, Benjamin Mapani, Jaquiline Tatenda Kurasha and Chanda Anamela Kambobe
Minerals 2025, 15(7), 722; https://doi.org/10.3390/min15070722 - 10 Jul 2025
Viewed by 291
Abstract
The reprocessing of metallurgical wastes to recover much-needed metals such as copper not only ensures an adequate supply of metals but also contributes to the cleaning of the environment. A copper smelter in Namibia accumulated significant amounts of spent refractory bricks that are [...] Read more.
The reprocessing of metallurgical wastes to recover much-needed metals such as copper not only ensures an adequate supply of metals but also contributes to the cleaning of the environment. A copper smelter in Namibia accumulated significant amounts of spent refractory bricks that are enriched with metal values including copper. This supposedly waste material can potentially serve as a supplement to the ore concentrate, as a smelter feedstock for this toll smelter. Representative samples of crushed bricks, designated as Sample 1 and Sample 2, were used for mineralogical characterisation and flotation test work. The assays for Sample 1 and Sample 2 were 14% Cu and 18% Cu, respectively. Microscopy results identified various copper phases including metallic Cu, bornite, malachite and chalcopyrite. Batch flotation tests were conducted to investigate the effect of grind size (P80 of 53, 75 and 106 μm), pulp pH (natural pulp pH, 10, 10.5 and 11) and collector (potassium amyl xanthate, PAX) dosage (70, 100 and 130 g/t) on the recovery of copper, concentrate grade and weight recovery. In some tests, a co-collector (dithiophosphate, DTP) and sulphidiser (Na2S) were also added in the quest to maximise the recovery of copper. Based on the test conditions investigated in this study, the grind size is the key variable affecting the recovery of copper. The best copper recovery of 86% (with a weight recovery in the range of 42 to 45% (w/w) and concentrate grade of 37% Cu) was achieved for the finest grind size of 53 μm. The reagent suite that yielded the best recovery was 70 g/t PAX with no addition of the sulphidiser while the pH was 10. There is scope for developing the process routes to recover other valuable metals such as iron, lead and zinc that are also in the spent bricks, as well as potential reuse of the spent bricks (after recovering valuable metals) to make new refractory bricks. Full article
(This article belongs to the Special Issue Circular Economy of Remining Secondary Raw Materials)
Show Figures

Figure 1

20 pages, 5033 KiB  
Article
Plant-Based Biosorbents for Copper(II) Removal: A Comparative Study of Biomass and Essential Oil Residues
by Lidia Ivanova, Paunka Vassileva, Albena Detcheva, Violeta Koleva and Ivalina Avramova
Appl. Sci. 2025, 15(14), 7695; https://doi.org/10.3390/app15147695 - 9 Jul 2025
Viewed by 203
Abstract
The present study compared the adsorption properties of two plant materials and the waste products after their essential oil extraction for removing Cu(II) ions from contaminated water. Methods like SEM, XRD, nitrogen adsorption, DTA, TGA, FTIR, and XPS were used for characterization of [...] Read more.
The present study compared the adsorption properties of two plant materials and the waste products after their essential oil extraction for removing Cu(II) ions from contaminated water. Methods like SEM, XRD, nitrogen adsorption, DTA, TGA, FTIR, and XPS were used for characterization of the materials. All materials showed similar porosity and structure, favoring Cu(II) biosorption. The effects of contact time, pH, temperature, sample amount, and initial metal concentration on Cu(II) removal were examined. Optimal pH was 4, with equilibrium reached in less than 10 min. Temperature and sample amount do not significantly influence the biosorption. The experimental data were fitted to the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models, and maximum adsorption capacities were calculated. The four plant materials proved to be effective biosorbents for removing copper ions from contaminated water. Desorption experiments using 1 M HNO3 and 0.1 M EDTA showed 100% recovery. The reusability of the most effective biosorbent was confirmed through four adsorption/desorption cycles with EDTA. This material was also used to study the possibilities of purifying a real sample of contaminated water. Full article
(This article belongs to the Special Issue Advanced Adsorbents for Wastewater Treatment)
Show Figures

Figure 1

25 pages, 3005 KiB  
Review
Non-Ferrous Metal Smelting Slags for Thermal Energy Storage: A Mini Review
by Meichao Yin, Yaxuan Xiong, Aitonglu Zhang, Xiang Li, Yuting Wu, Cancan Zhang, Yanqi Zhao and Yulong Ding
Buildings 2025, 15(13), 2376; https://doi.org/10.3390/buildings15132376 - 7 Jul 2025
Viewed by 466
Abstract
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. [...] Read more.
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. This study comprehensively sums up the composition and fundamental characteristics of metallurgical waste slag. It delves into the application potential of non-ferrous metal smelting waste slag, such as copper slag, nickel slag, and lead slag, in both sensible and latent heat storage. In sensible heat storage, copper slag, with its low cost and high thermal stability, is suitable as a storage material. After appropriate treatment, it can be combined with other materials to produce composite phase change energy storage materials, thus expanding its role into latent heat storage. Nickel slag, currently mainly used in infrastructure materials, still needs in-depth research to confirm its suitability for sensible heat storage. Nevertheless, in latent heat storage, it has been utilized in making the support framework of composite phase change materials. While there are no current examples of lead slag being used in sensible heat storage, the low leaching concentration of lead and zinc in lead slag concrete under alkaline conditions offers new utilization ideas. Given the strong nucleation effect of iron and impurities in lead slag, it is expected to be used in the skeleton preparation of composite phase change materials. Besides the aforementioned waste slags, other industrial waste slags also show potential as sensible heat storage materials. This paper aims to evaluate the feasibility of non-ferrous metal waste slag as energy storage materials. It analyses the pros and cons of their practical applications, elaborates on relevant research progress, technical hurdles, and future directions, all with the goal of enhancing their effective use in heat storage. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

22 pages, 2944 KiB  
Article
From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost
by Csilla Almási, Zoltán Veres, Ibolya Demeter, Viktória Orosz, Tímea Tóth, Mostafa M. Mansour, István Henzsel, Zsolt Bogdányi, Tamás András Szegi and Marianna Makádi
Water 2025, 17(13), 2026; https://doi.org/10.3390/w17132026 - 5 Jul 2025
Viewed by 583
Abstract
The treatment of wastewater and the utilization of the by-products of these processes are an important part of the circular economy. The sewage sludge, a result of wastewater treatment, could be used as a material for plant nutrient supply and/or soil-improving products. The [...] Read more.
The treatment of wastewater and the utilization of the by-products of these processes are an important part of the circular economy. The sewage sludge, a result of wastewater treatment, could be used as a material for plant nutrient supply and/or soil-improving products. The city of Nyíregyháza, Hungary, with 120,000 citizens, has a well-planned water treatment plant operated by Nyírségvíz Ltd., which, in cooperation with the Research Institute of Nyíregyháza, developed a municipal sewage sludge compost (SSC). The closed loop of sewage water treatment and the agricultural utilization of its by-product has been developed and managed. The compost product called Nyírkomposzt was planned for acidic sandy soils. Beyond the agronomic benefits, the sustainable and environmentally sound utilization of SSC reduces sewage sludge disposal. This active involvement of a water utility company demonstrates the potential of cross-sectoral cooperation in solving environmental problems. The quality of the compost fits the Hungarian legislation. To study the effects of 0, 9, 18, and 27 t ha−1 doses of compost on acidic sandy soil, a long-term small plot experiment was started in 2003. The cumulative effects of the regular (every third year, last treatment before sampling in 2021) application of the SSC showed positive changes in basic soil properties, depending on the doses used. Increasing values were found in the case of pH from 4.5 to 6, plant available P2O5 from 240 to 690 ppm, and plant available K2O from 180 to 200 ppm. The plant-available zinc and copper content also increased. Soil organic matter and total N content stabilized at around 0.9% and 0.08%, respectively. The grain yields of winter rye also increased in both investigated years. The yields of 18 t ha−1 treatment were about two times higher compared to the control, but only in 2022 was the difference significant. Our findings underscore the potential of well-planned SSC applications to improve the fertility of ploughed, acidic sandy soil, taking into account the theory of the circular economy by utilizing wastes and decreasing landfilling. Full article
(This article belongs to the Special Issue Treatment and Resource Utilization of Urban Sewage Sludge)
Show Figures

Figure 1

13 pages, 642 KiB  
Article
The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction
by Alfira Sabitova, Nurlan Mukhamediyarov, Binur Mussabayeva, Bauyrzhan Rakhadilov, Nurbol Aitkazin, Bulbul Bayakhmetova, Zhanna Sharipkhan and Balzhan Gaisina
Processes 2025, 13(7), 2113; https://doi.org/10.3390/pr13072113 - 3 Jul 2025
Viewed by 308
Abstract
The processing of metallurgical slags is an urgent task, as they contain residual amounts of precious and non-ferrous metals such as gold, silver, copper and zinc. The efficiency of extraction of these metals directly depends on the granulometric composition of the processed material, [...] Read more.
The processing of metallurgical slags is an urgent task, as they contain residual amounts of precious and non-ferrous metals such as gold, silver, copper and zinc. The efficiency of extraction of these metals directly depends on the granulometric composition of the processed material, which determines the need for its detailed analysis. The purpose of this study is to analyze the effect of the granulometric composition of slags on the efficiency of extraction of non-ferrous metals using the flotation method. For this purpose, studies were carried out, including granulometric analysis, chemical composition analysis and flotation tests using Na2S, KAX and 3418A reagents. The analysis showed that the main part of the slag consisted of particles less than 3.36 mm, while the content of copper was 0.60%, zinc was 2.37%, gold was 0.1 g/t and silver was 7.2 g/t. Flotation experiments confirmed that the use of Na2S and 3418A increased the recoverability of copper and zinc, and reducing the particle size to d80 <10 microns increased the efficiency of copper extraction by 7%. Thus, the optimization of flotation processes and the control of granulometric composition make it possible to increase the efficiency of metallurgical waste processing, reduce losses of valuable metals and reduce the environmental burden. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 8756 KiB  
Article
Predicting Industrial Copper Hydrometallurgy Output with Deep Learning Approach Using Data Augmentation
by Bagdaulet Kenzhaliyev, Nurtugan Azatbekuly, Serik Aibagarov, Bibars Amangeldy, Aigul Koizhanova and David Magomedov
Minerals 2025, 15(7), 702; https://doi.org/10.3390/min15070702 - 30 Jun 2025
Viewed by 384
Abstract
Sustainable copper extraction presents significant challenges due to waste generation and environmental impacts, requiring advanced predictive methodologies to optimize production processes. This study addresses a gap in applying deep learning to forecast hydrometallurgical copper production by comparing six recurrent neural network architectures: Vanilla [...] Read more.
Sustainable copper extraction presents significant challenges due to waste generation and environmental impacts, requiring advanced predictive methodologies to optimize production processes. This study addresses a gap in applying deep learning to forecast hydrometallurgical copper production by comparing six recurrent neural network architectures: Vanilla LSTM, Stacked LSTM, Bidirectional LSTM, GRU, CNN-LSTM, and Attention LSTM. Using time-series data from a full-scale industrial operation, we implemented a data augmentation approach to overcome data scarcity limitations. The models were evaluated through rigorous metrics and multi-step forecasting tests. The results demonstrated remarkable performance from five architectures, with Bidirectional LSTM and Attention LSTM achieving the highest accuracy (RMSE < 0.004, R2 > 0.999, MAPE < 1%). These models successfully captured and reproduced complex cyclical patterns in copper mass production for up to 500 time steps ahead. The findings validate our data augmentation strategy for enabling models to learn complex known cyclical patterns from limited initial data and establish a promising foundation for implementing AI-driven predictive systems that can enhance process control, reduce waste, and advance sustainability in hydrometallurgical operations. However, these performance metrics reflect the models’ ability to reproduce patterns inherent in the augmented dataset derived from a single operational cycle; validation on entirely independent operational data is crucial for assessing true generalization and is a critical next step. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Isolation of a Novel Bioactive Fraction from Saffron (Crocus sativus L.) Leaf Waste: Optimized Extraction and Evaluation of Its Promising Antiproliferative and Chemoprotective Effects as a Plant-Based Antitumor Agent
by Raúl Sánchez-Vioque, Julio Girón-Calle, Manuel Alaiz, Javier Vioque-Peña, Adela Mena-Morales, Esteban García-Romero, Lourdes Marchante-Cuevas and Gonzalo Ortiz de Elguea-Culebras
Appl. Sci. 2025, 15(13), 7376; https://doi.org/10.3390/app15137376 - 30 Jun 2025
Viewed by 313
Abstract
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched [...] Read more.
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched fraction. The main components of this fraction were identified by HPLC-DAD/ESI-MS and the antiproliferative and metal-chelating effects on colon cancer cells (Caco-2) and Fe2+ and Cu2+ ions, respectively, were evaluated. The process involved the extraction of saffron leaves with a 70% hydroalcoholic solution, followed by purification using liquid chromatography. Chemical characterization revealed the presence of several phenolic compounds, including flavonoids (kaempferol, luteolin and quercetin glycosides) as major constituents; whereas, in vitro assays revealed a strong dose-dependent inhibition of cell proliferation. Likewise, the sample exhibited significant iron- and copper-chelating activity, suggesting its potential as a natural chelator to help mitigate the carcinogenic effects of metal accumulation in humans. In summary, this study underscores the potential of the saffron leaf fraction as a promising natural and complementary chemoprotective agent in colorectal cancer. Additionally, these results underscore the value of agricultural by-products, supporting a circular bioeconomy by reducing environmental impact and promoting the sustainable use of natural resources. Full article
Show Figures

Figure 1

18 pages, 6225 KiB  
Article
Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting
by Susana I. Leiva-Guajardo, Manuel Fuentes Maya, Luis Cáceres, Víctor M. Jimenez-Arevalo, Álvaro Soliz, Norman Toro, José Ángel Cobos Murcia, Victor E. Reyes Cruz, Mauricio Morel, Edward Fuentealba and Felipe M. Galleguillos Madrid
Materials 2025, 18(13), 3092; https://doi.org/10.3390/ma18133092 - 30 Jun 2025
Viewed by 467
Abstract
The increasing demand for sustainable energy and clean water has prompted the exploration of alternative solutions to reduce reliance on fossil fuels. In this context, hydrogen production through water electrolysis powered by solar energy presents a promising pathway toward a zero-carbon footprint. This [...] Read more.
The increasing demand for sustainable energy and clean water has prompted the exploration of alternative solutions to reduce reliance on fossil fuels. In this context, hydrogen production through water electrolysis powered by solar energy presents a promising pathway toward a zero-carbon footprint. This study investigates the potential of copper slag, an abundant industrial waste, as a low-cost electrocatalyst for the hydrogen evolution reaction (HER) in contact with saline water such as 0.5 M NaCl and seawater, comparing the electrochemical response when in contact with geothermal water from El Tatio (Atacama Desert). The physicochemical characterisation of copper slag was performed using XRD, Raman, and SEM-EDS to determine its surface properties. Electrochemical evaluations were conducted in 0.5 M NaCl and natural seawater using polarisation techniques to assess the corrosion behaviour and catalytic efficiency of the copper slag electrodes. The results indicate that copper slag exhibits high stability and promising HER kinetics, particularly in seawater, where its mesoporous structure facilitates efficient charge transfer processes. The key novelty of this manuscript lies in the direct revalorisation of untreated copper slag as a functional electrode for HER in real seawater and geothermal water, avoiding the use of expensive noble metals and aligning with circular economy principles. This innovative combination of recycled material and natural saline electrolyte enhances both the technical and economic viability of electrolysis, while reducing environmental impact and promoting green hydrogen production in coastal regions with high solar potential. This research contributes to the value of industrial waste, offering a viable pathway for advancing sustainable hydrogen technologies in real-world environments. Full article
Show Figures

Figure 1

Back to TopTop