From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater Quality and Quantity in the City of Nyíregyháza
2.2. Quality and Quantity of the Wastewater in the Plant No. 1 Nyíregyháza Treatment Procedure
2.3. Sludge Treatment and Composting
2.4. The Quality of Compost Used in the SSC Experiment
2.5. Long-Term Field Experiment
2.6. Meteorological Conditions
2.7. Soil and Plant Sampling
2.8. Soil Chemical Analysis
2.9. Statistical Analysis
2.10. Quality Control and Assurance
3. Results
3.1. Efficiency of the Wastewater Treatment
3.2. Sewage Sludge Compost Quality Requirements in Hungary
3.3. Changes in Soil Quality
3.4. Grain Yield of Rye
3.5. Relationships Between Soil Chemical Parameters and Rye Yield
4. Discussion
4.1. Water Treatment and and Composting Process
4.2. Agricultural Utilization of the Sewage Sludge Compost Product
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BOD5 | 5 days Biological oxygen demand |
COD | Chemical oxygen demand |
d.m. | Dry matter |
IAREF | Institutes for Agricultural Research and Educational Farm |
LCS | Laboratory control sample |
PAH | Polycyclic aromatic hydrocarbons |
PCB | Polychlorinated biphenyls |
PCDD/F | Polychlorodibenzo-p-dioxins and polychlorodibenzofurans |
PE | Population equivalent |
RSD | Relative standard deviation |
SD | Standard deviation |
TSS | Total suspended solid |
SSC | Sewage sludge compost |
T.E.Q. | Toxic equivalency |
TN | Total nitrogen |
TP | Total phosphorus |
TPH | Aliphatic and aromatic petroleum hydrocarbon |
SOM | Soil organic matter |
UD | University of Debrecen |
References
- Eurostat. Sewage Sludge Production and Disposal. Available online: https://ec.europa.eu/eurostat/databrowser/view/ENV_WW_SPD/default/table?lang=en (accessed on 20 May 2025).
- Hungarian Central Statistical Office. Municipal Wastewater Treatment. Available online: https://www.ksh.hu/stadat_files/kor/hu/kor0027.html (accessed on 20 May 2025).
- Hungarian Central Statistical Office. Municipal Wastewater Treatment Index. Available online: https://www.ksh.hu/ffi/3-12.html (accessed on 20 May 2025).
- Srivastava, R.K.; Purohit, S.; Alam, E.; Islam, M.K. Advancements in soil management: Optimizing crop production through interdisciplinary approaches. J. Agric. Food Res. 2024, 18, 101528. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Granato, T.C.; Cox, A.E.; Pietz, R.I.; Carlson, C.R.; Abedin, Z. Soil carbon sequestration resulting from long-term application of biosolids for land reclamation. J. Environ. Qual. 2009, 38, 61–74. [Google Scholar] [CrossRef]
- Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (OJ L 181 04.07.1986) p. 6, ELI. Available online: http://data.europa.eu/eli/dir/1986/278/oj (accessed on 20 May 2025).
- Hungarian Central Statistical Office. Cattle Herd by County and Region. Available online: https://www.ksh.hu/stadat_files/mez/hu/mez0087.html (accessed on 20 May 2025).
- Usman, K.; Khan, S.; Ghulam, S.; Khan, M.U.; Khan, N.; Khan, M.A.; Khalil, S.K. Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 2012, 3, 1708–1721. [Google Scholar] [CrossRef]
- Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends Environ. Anal. Chem. 2021, 30, e00125. [Google Scholar] [CrossRef]
- Abad, E.; Martínez, K.; Planas, C.; Palacios, O.; Caixach, J.; Rivera, J. Priority organic pollutant assessment of sludges for agricultural purposes. Chemosphere 2005, 61, 1358–1369. [Google Scholar] [CrossRef]
- Duan, B.; Feng, Q. Risk Assessment and potential analysis of the agricultural use of sewage sludge in Central Shanxi Province. Int. J. Environ. Res. Public Health 2022, 19, 4236. [Google Scholar] [CrossRef]
- Lin, C.; Cheruiyot, N.K.; Bui, X.T.; Ngo, H.H. Composting and its application in bioremediation of organic contaminants. Bioengineered 2022, 13, 1073–1089. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Priya, A.K.; Yogeshwaran, V.; Yang, Z.; Elwakeel, K.Z.; Lopez-Maldonado, E.A. Biosolids management and utilizations: A review. J. Clean. Prod. 2024, 451, 141974. [Google Scholar] [CrossRef]
- Peccia, J.; Westerhoff, P. We should expect more out of our sewage sludge. Environ. Sci. Technol. 2015, 49, 8271–8276. [Google Scholar] [CrossRef]
- Styszko, K.; Durak, J.; Kończak, B.; Głodniok, M.; Borgulat, A. The impact of sewage sludge processing on the safety of its use. Sci. Rep. 2022, 12, 12227. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Wichuk, K.M.; McCartney, D. Compost stability and maturity evaluation—A literature review. Can. J. Civ. Eng. 2010, 37, 1505–1523. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil. 2016, 401, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Várallyay, G. Magyarország talajainak vízháztartási és anyagforgalmi típusai. Agrokémia és Talajtan 1985, 34, 267–299. (In Hungarian) [Google Scholar]
- Tahoun, A.M.M.A.; El-Enin, M.M.A.; Mancy, A.G.; Sheta, M.H.; Shaaban, A. Integrative soil application of humic acid and foliar plant growth stimulants improves soil properties and wheat yield and quality in nutrient-poor sandy soil of a Semiarid region. J. Soil Sci. Plant Nutr. 2022, 22, 2857–2871. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Gabriel, D.; Sánchez, A. The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Sci. Total Environ. 2019, 654, 311–323. [Google Scholar] [CrossRef]
- Timofejeva, A.; Galyamova, M.; Sedykh, S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 2022, 11, 2119. [Google Scholar] [CrossRef]
- Hrčka, M.; Kraus, K.; Hřebečková, T.; Tunklová, B.; Kubeš, J.; Hanč, A. Effects of sewage sludge compost and vermicompost on wheat yield and vitality. Agriculture 2025, 15, 551. [Google Scholar] [CrossRef]
- Mingorance, M.D.; Oliva, S.R.; Valdés, B.; Pina Gata, F.J.; Leidi, E.O.; Guzmán, I.; Peña, A. Stabilized municipal sewage sludge addition to improve properties of an acid mine soil for plant growth. J. Soils Sediments. 2014, 14, 703–712. [Google Scholar] [CrossRef]
- Almási, C.; Orosz, V.; Tóth, T.; Mansour, M.M.; Demeter, I.; Henzsel, I.; Bogdányi, Z.; Szegi, T.A.; Makádi, M. Effects of sewage sludge compost on carbon, nitrogen, phosphorus, and sulfur ratios and soil enzyme activities in a long-term experiment. Agronomy 2025, 15, 143. [Google Scholar] [CrossRef]
- da Silva, W.R.; do Nascimento, C.W.A.; da Silva, F.B.V.; de Souza, A.A.B.; Fracetto, G.G.M.; de Sá Veloso Ximenes, D.H. Effects of sewage sludge stabilization processes on soil fertility, mineral composition, and grain yield of maize in successive cropping. J. Soil Sci. Plant Nutr. 2021, 21, 1076–1088. [Google Scholar] [CrossRef]
- Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; De Corato, U.; Crecchio, C. Short-term effects of sewage sludge compost amendment on semiarid soil. Soil Syst. 2020, 4, 48. [Google Scholar] [CrossRef]
- Bai, Y.; Zang, C.; Gu, M.; Gu, C.; Shao, H.; Guan, Y.; Wang, X.; Zhou, X.; Shan, Y.; Feng, K. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils. Sci. Total Environ. 2017, 578, 47–55. [Google Scholar] [CrossRef]
- Aranyos, J.T.; Tomócsik, A.; Makádi, M.; Mészáros, J.; Blaskó, L. Changes in physical properties of sandy soil after long-term compost treatment. Int. Agrophys. 2016, 30, 269–274. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.; Sultana, T.; Akram, M.; Al Shoumik, B.A.; Khan, M.Z.; Farooq, M.A. Utilization of sewage sludge to manage saline–alkali soil and increase crop production: Is it safe or not? Environ. Technol. Innov. 2023, 32, 103266. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Buzás, I. Talaj- és agrokémiai vizsgálati módszerkönyv 2. A talajok fizikai-kémiai és kémiai vizsgálati módszerei; Mezőgazdasági Kiadó Vállalat: Budapest, Hungary, 1988. (In Hungarian) [Google Scholar]
- Mulvaney, R.L. Nitrogen-inorganic forms. In Methods of Soil Analysis, Part 3, Chemical Methods, 1st ed.; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series No. 5; Soil Science Society of America Inc., American Society of Agronomy Inc.: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Magyar Szabvány (MSZ) 20135:1999; A talaj oldható tápelemtartalmának meghatározása (Hungarian Standard). Magyar Szabványügyi Testület: Budapest, Hungary, 1999. (In Hungarian)
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- 36/2006. (V. 18.). FVM rendelet a termésnövelő anyagok engedélyezéséről, tárolásáról, forgalmazásáról és felhasználásáról; Decree of Ministry of Agriculture and Rural Development; (In Hungarian). Available online: https://net.jogtar.hu/jogszabaly?docid=a0600036.fvm (accessed on 20 May 2025).
- Dietrich, B.; Gayer, J.; Grenczer, G.; Kovacs, R. The Hungarian Water and Sanitation Industry in the 21st Century; Hungarian Investment and Trade Agency: Budapest, Hungary, 2013. [Google Scholar]
- „STRATÉGIA 2014” KONZORCIUM. Szennyvíziszap kezelési és hasznosítási stratégia 2014–2023; Az Országos Vízügyi Főigazgatóság megbízásából: Budapest, Hungary, 2017. (In Hungarian) [Google Scholar]
- Nowak, O.; Enderle, P.; Varbanov, P. Ways to optimize the energy balance of municipal wastewater systems: Lessons learned from Austrian applications. J. Clean. Product. 2014, 88, 125–131. [Google Scholar] [CrossRef]
- Righi, S.; Oliviero, L.; Pedrini, M.; Buscaroli, A.; Casa, C.D. Life Cycle Assessment of management systems for sewage sludge and food waste: Centralized and decentralized approaches. J. Clean. Product. 2013, 44, 8–17. [Google Scholar] [CrossRef]
- Juhász, E. Települési szennyvíziszapok kezelése; Környezetvédelmi Szolgáltatók és Gyártók Szövetsége, KSZGYSZ: Budapest, Hungary, 2013. (In Hungarian) [Google Scholar]
- Nakatsuka, N.; Kishita, Y.; Kurafuchi, T.; Akamatsu, F. Integrating wastewater treatment and incineration plants for energy effecient urban biomass utilization: A life cycle analysis. J. Clean. Prod. 2020, 243, 118448. [Google Scholar] [CrossRef]
- Ladányi, Z.; Csányi, K.; Farsang, A.; Perei, K.; Bodor, A.; Kézér, A.; Barta, K.; Babcsányi, I. Impact of low-dose municipal sewage sludge compost treatments on the nutrient and the heavy metal contents in a Chernozem topsoil near Újkígyós, Hungary: A 5-Year Comparison. J. Environ. Geogr. 2020, 13, 25–30. [Google Scholar] [CrossRef]
- Santos, L.Z.H.; Myrna, S.O.; Wenndy, L.W.; Andrea, V.R.; Manuel, G.P.J. Effects of compost made with sludge and organic residues on bean (Phaseolus vulgaris L.) crop and arbuscular mycorrhizal fungi density. Front. Agric. Food Technol. 2016, 6, 001–006. [Google Scholar]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, Y.; Wang, T.; Han, Q. Salinity effects on soil structure and hydraulic properties: Implications for pedotransfer functions in coastal areas. Land 2024, 13, 2077. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Till. Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; Stanek-Tarkowska, J.; Ilek, A. Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy 2022, 12, 208. [Google Scholar] [CrossRef]
- Günal, H.; Korucu, T.; Birkas, M.; Özgöz, E.; Halbac-Cotoara-Zamfir, R. Threats to sustainability of soil functions in Central and Southeast Europe. Sustainability 2015, 7, 2161–2188. [Google Scholar] [CrossRef]
- Thiyagarajan, C. Organo zinc chelates for improving the yield and zinc nutrition of Hybrid tomato on calcareous soil under drip fertigation. J. Soil Sci. Plant Nutr. 2021, 22, 140–149. [Google Scholar] [CrossRef]
- Bi, X.; Chu, H.; Fu, M.; Xu, D.; Zhao, W.; Zhong, Y.; Wang, M.; Li, K.; Zhang, Y. Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Sci. Rep. 2023, 13, 12242. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-functionality of organic matter in soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Mendez, J.C.; Hiemstra, T.; Koopmans, G.F. Assessing the reactive surface area of soils and the association of soil organic carbon with natural oxide nanoparticles using ferrihydrite as proxy. Environ. Sci. Technol. 2020, 54, 11990–12000. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy 2021, 11, 1415. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Cameron, K.C.; Curtin, D.; Di, H.J.; Beare, M.H.; Johnstone, P.R.; Edwards, G.R. Organic matter amendments to soil can reduce nitrate leaching losses from livestock urine under simulated fodder beet grazing. Agric. Ecosyst. Environ. 2019, 272, 10–18. [Google Scholar] [CrossRef]
- Farsang, A.; Babcsányi, I.; Ladányi, Z.; Perei, K.; Bodor, A.; Csányi, K.T.; Barta, K. Evaluating the effects of sewage sludge compost applications on the microbial activity, the nutrient and heavy metal content of a Chernozem soil in a field survey. Arab. J. Geosci. 2020, 13, 982. [Google Scholar] [CrossRef]
- Asrade, D.A.; Kulhánek, M.; Balík, J.; Černý, J.; Sedlář, O.; Suran, P. Phosphorus availability and balance with long-term sewage sludge and nitrogen fertilization in Chernozem soil under maize monoculture. Plants 2024, 13, 2037. [Google Scholar] [CrossRef]
- Balla Kovács, A.; Kremper, R.; Kincses, I.; Leviczky, Á. Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of spinach (Spinacia oleracea L.). Acta Agr. Debreceniensis 2016, 70, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef]
- Tutor, L.; Béres, A.; Barczi, A.; Horváth, M.K.; Géczi, G. Monitoring of potassium content in wastewater treatment plants. J. Centr. Europ. Green Innov. 2024, 12, 38–48. [Google Scholar] [CrossRef]
- Kirkman, J.H.; Basker, A.; Surapaneni, A.; MacGregor, A.N. Potassium in the soils of New Zealand—A review. N. Z. J. Agric. Res. 1994, 37, 207–227. [Google Scholar] [CrossRef]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo,). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Jordan, N.R.; Smith, R.G.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Koide, R.T.; Davis, A.S. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci. Rep. 2018, 8, 8467. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Oljača, S.I.; Dolijanović, Z.K.; Glamočlija, D.N.; Đorđević, S.S.; Oljača, J.M. Productivity of winter rye in organic vs. conventional cropping system. J. Agric. Sci. 2010, 55, 123–129. [Google Scholar] [CrossRef]
- Ahmed, H.K.; Fawy, H.A.; Abdel-Hady, E. Study of sewage sludge use in agriculture and its effect on plant and soil. Agric. Biol. J. N. Am. 2010, 1, 1044–1049. [Google Scholar] [CrossRef]
- Fernández, J.M.; Plaza, C.; García-Gil, J.C.; Polo, A. Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds of sewage sludge. Appl. Soil Ecol. 2009, 42, 18–24. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, H.Y.; Zhang, Y.L.; Ran, D.D.; Wu, L.Q.; Wang, H.F.; Zeng, R.J. Effects of sewage sludge pretreatment methods on its use in agricultural applications. J. Hazard. Mater. 2022, 428, 128213. [Google Scholar] [CrossRef] [PubMed]
- Crespo, C.; O’Brien, P.L.; Ruis, S.J.; Kovar, J.L.; Kaspar, T.C. Thermal time and precipitation dictate cereal rye shoot biomass production. Field Crops Res. 2024, 315, 109473. [Google Scholar] [CrossRef]
- Tomócsik, A. Kommunális szennyvíziszap komposzt mezőgazdasági hasznosításának értékelése tartamkísérletben. Ph.D. értekezés, Magyar Agrár- és Élettudományi Egyetem Környezettudományi Doktori Iskola, Gödöllő, Hungary, 2021. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Bulk density (kg dm−3) | min. 0.9 |
Dry matter (m/m%) | min. 50.0 |
Organic matter (m/m%) in d.m. | min. 25 |
pH (H2O 10%) | 6.5–8.5 |
Water soluble salt content (m/m%) in d.m. | max. 4.0 |
Particle size composition <25 mm (m/m%) | min. 100.0 |
N content (m/m%) in d.m. | min. 1.0 |
P2O5 content (m/m%) in d.m. | min. 0.5 |
K2O content (m/m%) in d.m. | min. 0.5 |
Ca content (m/m%) in d.m. | min. 1.2 |
Mg content (m/m%) in d.m. | min. 0.5 |
As content (m/m%) in d.m. | max. 10.0 |
Cd content (m/m%) in d.m. | max. 2.0 |
Co content (m/m%) in d.m. | max. 50.0 |
Cr content (m/m%) in d.m. | max. 100.0 |
Cu content (m/m%) in d.m. | max. 100.0 |
Hg content (m/m%) in d.m. | max. 1.0 |
Ni content (m/m%) in d.m. | max. 50.0 |
Pb content (m/m%) in d.m. | max. 100.0 |
Se content (m/m%) in d.m. | max. 5.0 |
Total polycyclic aromatic hydrocarbons (PAH) content (19 elements) (mg kg−1) in d.m. | <1.0 |
Benzopyrene content (mg kg−1) in d.m. | <0.1 |
Aliphatic and aromatic petroleum hydrocarbon (TPH) (C5–C40) content (mg kg−1) in d.m. | <100.0 |
Total polychlorinated biphenyls (PCB) content (amount of PCB–28, 52, 101, 118, 138, 153, 180)
(mg kg−1) in d.m. | <0.1 |
Total polychlorodibenzo-p-dioxins and polychlorodibenzofurans (PCDD/F) content
(ng kg−1) in d.m. T.E.Q. | <5.0 |
Fecal Coliform (CFU g−1 or CFU mL−1) | <10 |
Fecal Streptococcus (CFU g−1 or CFU mL−1) | <10 |
Salmonella sp. (in 2 × 10 g or mL) | negative |
Human parasitic worm (in 100 g or mL) | negative |
Free from foreign matter that cannot be introduced into the biological cycle, substances that inhibit germination or growth, seeds of quarantine weeds or their vegetative parts, infectious macro- and microorganisms that are harmful to human, animal, and plant health, toxic, polluting, and radioactive substances. The biological efficiency should correspond to the effect guaranteed by the manufacturer. |
Parameter | 0 t ha−1 SSC | 9 t ha−1 SSC | 18 t ha−1 SSC | 27 t ha−1 SSC |
---|---|---|---|---|
2022 | ||||
pHKCl | 4.58 ± 0.10 a | 5.49 ± 0.38 b | 5.96 ± 0.16 b | 5.97 ± 0.33 b |
Water soluble salt content (% m/m) | <0.02 | <0.02 | <0.02 | <0.02 |
SOM (%) | 0.58 ± 0.19 a | 0.65 ± 0.18 a | 0.74 ± 0.04 a | 0.77 ± 0.11 a |
NO3-NO2-N (mg kg−1) | 5.25 ± 2.08 a | 4.26 ± 0.38 a | 5.99 ± 2.92 a | 6.17 ± 2.60 a |
P2O5 (mg kg−1) | 94 ± 23.48 a | 400 ± 29.83 b | 455 ± 177.02 b | 741 ± 62.27 c |
K2O (mg kg−1) | 122 ± 27.54 ab | 112 ± 12.48 a | 145 ± 34.48 ab | 166 ± 32.34 b |
Zn (mg kg−1) | 0.78 ± 0.79 a | 5.14 ± 0.53 b | 8.79 ± 2.33 c | 11.40 ± 1.97 c |
Cu (mg kg−1) | 1.02 ± 0.64 a | 1.58 ± 0.50 ab | 2.17 ± 0.37 bc | 2.65 ± 0.29 c |
2024 | ||||
pHKCl | 4.43 ± 0.22 a | 5.59 ± 0.42 b | 6.10 ± 0.32 bc | 6.24 ± 0.36 c |
Water soluble salt content (% m/m) | <0.02 | <0.02 | <0.02 | <0.02 |
SOM (%) | 0.64 ± 0.27 a | 0.65 ± 0.04 a | 0.67 ± 0.03 a | 0.82 ± 0.21 a |
NO3-NO2-N (mg kg−1) | 1.57 ± 0.28 a | 5.02 ± 3.18 a | 4.09 ± 2.06 a | 5.83 ± 1.99 a |
P2O5 (mg kg−1) | 91 ± 32.29 a | 263 ± 53.34 a | 582 ± 83.34 b | 737 ± 164.44 b |
K2O (mg kg−1) | 117 ± 7.23 a | 111 ± 4.72 a | 115 ± 11.39 a | 174 ± 71.90 a |
Zn (mg kg−1) | 0.84 ± 0.57 a | 3.98 ± 0.24 a | 8.68 ± 1.77 b | 13.12 ± 2.78 c |
Cu (mg kg−1) | 1.32 ± 0.72 a | 1.73 ± 0.30 a | 2.36 ± 0.27 ab | 3.12 ± 0.67 b |
Levene Test p Value | T-Test p Value (Two-Sided) | |
---|---|---|
pHKCl | 0.191 | 0.781 |
SOM (%) | 0.837 | 0.685 |
NO3-NO2-N (mg kg−1) | 0.201 | 0.113 |
P2O5 (mg kg−1) | 0.236 | 0.957 |
K2O (mg kg−1) | 0.903 | 0.717 |
Zn (mg kg−1) | 0.389 | 0.936 |
Cu (mg kg−1) | 0.588 | 0.231 |
Grain yield | 0.384 | 0.694 |
Treatments | 0 t ha−1 SSC | 9 t ha−1 SSC | 18 t ha−1 SSC | 27 t ha−1 SSC |
---|---|---|---|---|
2022 | ||||
Yield (t ha−1) | 1.01 ± 0.63 a | 2.10 ± 0.70 b | 2.50 ± 0.42 b | 2.44 ± 0.33 b |
2024 | ||||
Yield (t ha−1) | 1.55 ± 0.50 a | 1.57 ± 0.79 a | 2.24 ± 0.66 a | 2.20 ± 0.80 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almási, C.; Veres, Z.; Demeter, I.; Orosz, V.; Tóth, T.; Mansour, M.M.; Henzsel, I.; Bogdányi, Z.; Szegi, T.A.; Makádi, M. From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost. Water 2025, 17, 2026. https://doi.org/10.3390/w17132026
Almási C, Veres Z, Demeter I, Orosz V, Tóth T, Mansour MM, Henzsel I, Bogdányi Z, Szegi TA, Makádi M. From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost. Water. 2025; 17(13):2026. https://doi.org/10.3390/w17132026
Chicago/Turabian StyleAlmási, Csilla, Zoltán Veres, Ibolya Demeter, Viktória Orosz, Tímea Tóth, Mostafa M. Mansour, István Henzsel, Zsolt Bogdányi, Tamás András Szegi, and Marianna Makádi. 2025. "From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost" Water 17, no. 13: 2026. https://doi.org/10.3390/w17132026
APA StyleAlmási, C., Veres, Z., Demeter, I., Orosz, V., Tóth, T., Mansour, M. M., Henzsel, I., Bogdányi, Z., Szegi, T. A., & Makádi, M. (2025). From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost. Water, 17(13), 2026. https://doi.org/10.3390/w17132026