The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Part
- Flotation experiments with Na2S-3418A
- Flotation experiments with KAX-Na2S-3418 A
- Flotation experiments with the sample after grinding of coarse residues
4. Results and Discussion
4.1. Time of Grinding and Size Distribution of Coarse Sludge Residues
4.2. The Effect of Particle Size Distribution on the Extraction of the Studied Components from Slags
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maslak, O.I.; Hryshko, N.Y.; Hlazunova, O.O.; Maslak, M.V.; Yakovenko, Y.Y.; Savielova, A.D. Prospects of the recycling of metallurgical waste. IOP Conf. Ser. Earth Environ. Sci. 2024, 1415, 012128. [Google Scholar] [CrossRef]
- Bulaev, A.G.; Muravyov, M.I.; Pivovarova, T.A.; Fomchenko, N.V.; Kondrat’eva, T.F. Bioprocessing of mining and metallurgical wastes containing nonferrous and precious metals. Adv. Mater. Res. 2013, 825, 301–304. [Google Scholar] [CrossRef]
- Adesina, A. Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Dispos. Sustain. Energy 2020, 2, 165–175. [Google Scholar] [CrossRef]
- Muravyov, M.I.; Bulaev, A.G.; Kondrat’eva, T.F. Complex treatment of mining and metallurgical wastes for recovery of base metals. Miner. Eng. 2014, 64, 63–66. [Google Scholar] [CrossRef]
- Ban, J.; Sun, K.; Yao, J.; Sunahara, G.; Hudson-Edwards, K.; Jordan, G.; Alakangas, L.; Ni, W.; Poon, C.S. Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation. Environ. Res. 2022, 213, 113533. [Google Scholar] [CrossRef]
- Yang, S.J.; Zhang, L.W.; Yu, D.H. Intensive development and comprehensive utilization of metallurgical slag. Appl. Mech. Mater. 2012, 174–177, 1424–1428. [Google Scholar] [CrossRef]
- Lim, B.; Aylmore, M.; Alorro, R.D. Technospheric Mining of Critical and Strategic Metals from Non-Ferrous Slags. Metals. 2024, 14, 804. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Chen, Y.; Huang, J. A Novel Non-Ferrous Metals Price Forecast Model Based on LSTM and Multivariate Mode Decomposition. Axioms 2023, 12, 670. [Google Scholar] [CrossRef]
- Nowińska, K.; Grzesik, B.; Kokowska-Pawłowska, M.; Nowak, J. Use of Mineral Waste for the Production of Artificial Aggregates. Appl. Sci. 2024, 14, 11734. [Google Scholar] [CrossRef]
- Matinde, E.; Simate, G.S.; Ndlovu, S. Mining and metallurgical wastes: A review of recycling and re-use practices. J. S. Afr. Inst. Min. Met. 2018, 118, 825–844. [Google Scholar] [CrossRef]
- Fomchenko, N.; Muravyov, M. Sequential Bioleaching of Pyritic Tailings and Ferric Leaching of Nonferrous Slags as a Method for Metal Recovery from Mining and Metallurgical Wastes. Minerals 2020, 10, 1097. [Google Scholar] [CrossRef]
- Dong, K.; Wang, H.; Jiang, Z. Case Analysis of Blast Furnace Consumption Technology and Process. In Resource Utilization of Solid Waste by Thermometallurgy in Steel Processes; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Pfandl, K.; Küppers, B.; Scheiber, S.; Stockinger, G.; Holzer, J.; Pomberger, R.; Antrekowitsch, H.; Vollprecht, D. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties. Waste Manag. Res. 2019, 38, 111–121. [Google Scholar] [CrossRef]
- Zhang, T.S.; Yu, Q.J.; Wei, J.X.; Zhang, P.P.; Li, S. Effect of size fraction of ground granulated blast furnace slag on its strength contribution and hydraulic activity. Adv. Sci. Lett. 2011, 4, 1286–1291. [Google Scholar] [CrossRef]
- Petlovanyi, M.; Malashkevych, D.; Sai, K.; Bulat, I.; Popovych, V. Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Min. Miner. Depos. 2021, 15, 122–129. [Google Scholar] [CrossRef]
- Jani, Y.; Pehme, K.; Bucinskas, A.; Kriipsalu, M.; Burlakovs, J.; Hogland, W. Speciation of Cu, Zn and Cr in Excavated Fine Fraction of Waste at two Landfills. Iran. J. Energy Environ. 2018, 9, 86–90. [Google Scholar] [CrossRef]
- Valderrama, L.; Tapia, J.; Pavez, O.; Santander, M.; Rivera, V.; Gonzalez, M. Recovery of Copper from Slags Through Flotation at the Hernán Videla Lira Smelter. Minerals 2024, 14, 1228. [Google Scholar] [CrossRef]
- Panayotova, M. Control of Non-Ferrous Metal-Sulfide Minerals’ Flotation via Pulp Potential. Minerals 2023, 13, 1512. [Google Scholar] [CrossRef]
- Roy, S.; Rehani, S. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures. Int. J. Miner. Process. 2015, 143, 43–49. [Google Scholar] [CrossRef]
- Carranza, F.; Romero, R.; Mazuelos, A.; Iglesias, N.; Forcat, O. Biorecovery of copper from converter slags: Slags characterization and exploratory ferric leaching tests. Hydrometallurgy 2009, 97, 39–45. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Karimov, K.; Turakhodjaev, N.; Akhmedov, A.; Tashbulatov, S. A mathematical model of the technology of extraction of copper from industrial slags. E3S Web Conf. 2021, 264, 04077. [Google Scholar] [CrossRef]
- Kölking, M.; Flamme, S.; Heinrichs, S.; Schmalbein, N.; Jacob, M. More resource efficient recycling of copper and copper alloys by using X-ray fluorescence sorting systems: An investigation on the metallic fraction of mixed foundry residues. Waste Manag. Res. 2024, 42, 814–822. [Google Scholar] [CrossRef]
- Marwa, A. Effect of Particle Size on Leachate Formation Characteristics from Gold Mine Waste Rocks: At Source Acid Mine Drainage Management in Tanzania. J. Appl. Sci. Environ. Manag. 2023, 27, 2387–2392. [Google Scholar] [CrossRef]
- Pereira, G.V.d.A.; Pereira, W.V.d.S.; Ramos, S.J.; Guimarães, J.T.F.; Covre, W.P.; Dias, Y.N.; Fernandes, A.R. Bioavailable and Bioaccessible Fractions of Potentially Toxic Elements in Copper Mining Wastes in the Southeastern Amazon. Minerals 2025, 15, 140. [Google Scholar] [CrossRef]
- Lyalyuk, V.P.; Shmel’tser, E.O.; Lyakhova, I.A.; Kassim, D.A.; Tarakanov, A.K.; Otorvin, P.I. Changes in Granulometric Composition of Blast- Furnace Coke. Coke Chem. 2013, 56, 456–460. [Google Scholar] [CrossRef]
- Liu, J.; Qin, Q.; Yu, Q. The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength. Powder Technol. 2020, 362, 32–36. [Google Scholar] [CrossRef]
- Buchwald, V.F.; Wivel, H. Slag analysis as a method for the characterization and provenancing of ancient iron objects. Mater. Charact. 1998, 40, 73–96. [Google Scholar] [CrossRef]
- Li, M.; Lu, Y.; Liu, Y.; Chu, J.; Zhang, T.; Wang, W. Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete. Sustainability 2024, 16, 2083. [Google Scholar] [CrossRef]
- Sajjad, M.; Otsuki, A. Correlation between Flotation and Rheology of Fine Particle Suspensions. Metals 2022, 12, 270. [Google Scholar] [CrossRef]
- Kazemi, F.; Bahrami, A.; Ghorbani, Y.; Danesh, A.; Abdollahi, M.; Falah, H.; Salehi, M. The interaction and synergic effect of particle size on flotation efficiency: A comparison study of recovery by size, and by liberation between lab and industrial scale data. Rud.-Geol.-Naft. Zb. (Min.-Geol.-Pet. Eng. Bull.) 2023, 38, 622–699. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Safari, M.; Hoang, D.H.; Khoshdast, H.; Albijanic, B.; Kowalczuk, P.B. Technological assessments on recent developments in fine and coarse particle flotation systems. Miner. Eng. 2022, 180, 107509. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Safari, M.; Hoang, D.H. Fine, Coarse and Fine-Coarse Particle Flotation in Mineral Processing with A Particular Focus on the Technological Assessments. In Proceedings of the 2nd International Conference on Mineral Science, Online, 1–15 March 2021. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Mao, S.; Qin, S. Effects of Fine Minerals on Pulp Rheology and the Flotation of Diaspore and Pyrite Mixed Ores. Minerals 2020, 10, 60. [Google Scholar] [CrossRef]
- Wang, L.; Li, C. A Brief Review of Pulp and Froth Rheology in Mineral Flotation. J. Chem. 2020, 2020, 3894542. [Google Scholar] [CrossRef]
- Sigauke, T.; Johnson, O.T.; Ndeshimona, V.L.; Mashingaidze, M.M. Advancements in nanotechnology for the enhanced flotation of fine mineral particles: A review. Discov. Appl. Sci. 2025, 7, 317. [Google Scholar] [CrossRef]
- Abd El-Rahiem, F.H. Recent Trends in Flotation of Fine Particles. J. Min. World Express 2014, 3, 63. [Google Scholar] [CrossRef]
- Bilal, M.; Park, I.; Hornn, V.; Ito, M.; Hassan, F.U.; Jeon, S.; Hiroyoshi, N. The Challenges and Prospects of Recovering Fine CopperSulfides from Tailings Using Different Flotation Techniques: A Review. Minerals 2022, 12, 586. [Google Scholar] [CrossRef]
- Zeng, G.; Zhu, Y.; Chen, W. A Brief Review of Micro-Particle Slurry Rheological Behavior in Grinding and Flotation for Enhancing Fine Mineral Processing Efficiency. Minerals 2023, 13, 792. [Google Scholar] [CrossRef]
- Sokolovic, J.; Miskovic, S. The effect of particle size on coal flotation kinetics: A review. Physicochem. Probl. Miner. Process. 2018, 54, 1172. [Google Scholar] [CrossRef]
- Sygusch, J.; Wilhelm, T.; Furat, O.; Bachmann, K.; Schmidt, V.; Rudolph, M. Application of Multivariate Tromp Functions for Evaluating the Joint Impact of Particle Size, Shape and Wettability on the Separation of Ultrafine Particles via Flotation. Powders 2024, 3, 338–366. [Google Scholar] [CrossRef]
- Strube, F.; Guy, B.M.; Pereira, L.; Ebert, D.; Zgheib, A.; Fischer, M.; Möckel, R.; Schmidt, A.; Rudolph, M. Batch Flotation of Lithium-Bearing Slag—A Special Focus on the Phase Properties of Engineered Artificial Minerals for Enhancing the Recycling of End-of-Life Lithium-Ion Batteries. Minerals 2025, 15, 334. [Google Scholar] [CrossRef]
№ | Element | Slag | Concentrate |
---|---|---|---|
1. | Be | <0.002 | 1.7 ± 0.3 |
2. | * Na | 11,000 ± 1400 | 5000 ± 650 |
3. | * Mg | 18,000 ± 2300 | 7700 ± 1000 |
4. | * Al | 40,000 ± 5300 | 14,000 ± 1800 |
5. | * K | 11,000 ± 1400 | 3900 ± 520 |
6. | * Ca | 94,000 ± 12,000 | 43,000 ± 5600 |
7. | V | <0.2 | 54 ± 8 |
8. | Cr | <0.1 | 120 ± 19 |
9. | * Mn | 4400 ± 580 | 3100 ± 400 |
10. | * Fe | 260,000 ± 33,000 | 280,000 ± 37,000 |
11. | Co | <0.2 | 220 ± 30 |
12. | Ni | <0.2 | 230 ± 34 |
13. | * Cu | 5100 ± 670 | 140,000 ± 18,000 |
14. | Zn | 0.2 | 41,000 ± 6200 |
15. | As | <0.02 | 340 ± 50 |
16. | Se | <0.1 | 170 ± 25 |
17. | Rb | <0.02 | 20 ± 3 |
18. | Sr | <0.02 | 480 ± 70 |
19. | Ag | <0.02 | 190 ± 28 |
20. | Cd | <0.02 | 12.0 ± 2.0 |
21. | Cs | <0.002 | 1.2 ± 0.2 |
22. | Ba | 13,000 ± 1800 | 100 ± 13 |
23. | La | <0.002 | 8.2 ± 1.2 |
24. | Ce | <0.002 | 25 ± 4 |
25. | Pr | <0.002 | 2.5 ± 0.4 |
26. | Nd | <0.002 | 11 ± 2 |
27. | Sm | <0.002 | 2.1 ± 0.4 |
28. | Eu | <0.002 | <0.002 |
29. | Gd | <0.002 | 2.4 ± 0.4 |
30. | Dy | <0.002 | 2.1 ± 0.4 |
31. | Ho | <0.002 | 0.4 ± 0.1 |
32. | Er | <0.002 | 1.4 ± 0.2 |
33. | Yb | <0.01 | 1.5 ± 0.3 |
34. | Lu | <0.002 | 0.19 ± 0.03 |
35. | * Pb | 860 ± 110 | 7100 ± 930 |
36. | Th | <0.01 | 5.0 ± 0.8 |
37. | U | <0.01 | 4.9 ± 0.8 |
38. | Rh | <0.002 | 0.48 ± 0.07 |
39. | Pd | 2.4 ± 0.3 | 1.5 ± 0.2 |
40. | Te | <0.002 | <0.002 |
41. | Pt | <0.002 | <0.002 |
42. | Au | <0.002 | 5.3 ± 0.2 |
Grinding Time, min | Cumulative (%), Sifted | |||||||
---|---|---|---|---|---|---|---|---|
150 Microns | 106 Microns | 75 Microns | 63 Microns | 53 Microns | 45 Microns | 38 Microns | 20 Microns | |
17 | 88.49 | 63.67 | 43.69 | 35.57 | 30.68 | 26.76 | 22.85 | 18.15 |
25 | 98.04 | 89.68 | 65.67 | 56.68 | 45.67 | 39.91 | 33.66 | 26.68 |
35 | 99.76 | 97.86 | 88.87 | 78.15 | 66.48 | 58.50 | 49.15 | 37.49 |
45 | 100.00 | 99.74 | 97.18 | 92.28 | 84.69 | 77.59 | 67.80 | 54.56 |
60 | 100.00 | 100.00 | 99.27 | 97.28 | 94.97 | 90.53 | 81.52 | 60.33 |
Particle Size Range (Microns) | Weight, in % | Cumulative (%), Sifted | ||||
---|---|---|---|---|---|---|
20 min | 30 min | 60 min | 20 min (24 Microns) | 30 min (20 Microns) | 60 min (<10 Microns) | |
−45 + 38 | 8.37 | 5.28 | 0.81 | 100.00 | 100.00 | |
−38 + 20 | 17.60 | 16.15 | 5.46 | 91.63 | 94.72 | 99.19 |
−20 | 74.03 | 78.57 | 93.72 | 74.03 | 78.57 | 93.72 |
The input sample | 100.00 | 100.00 | 100.00 | - | - | - |
Particle Size (µm) | Products | Weight, % | Output Cu, % | Output Zn, % | Estimated Cu, % | Estimated Zn, % |
---|---|---|---|---|---|---|
Estimated values of flotation experiments Na2S-3418 A | ||||||
Total flotation | 17.74 | 53.86 | 19.04 | 2.16 | 3.85 | |
63 | Residue | 82.26 | 46.14 | 80.96 | 0.40 | 3.53 |
* Input | 100.00 | 100.00 | 100.00 | 0.71 | 3.59 | |
Total flotation | 21.32 | 56.28 | 22.68 | 1.89 | 3.92 | |
45 | Residue | 78.68 | 43.72 | 77.32 | 0.40 | 3.62 |
* Input | 100.00 | 100.00 | 100.00 | 0.72 | 3.68 | |
Total flotation | 22.59 | 58.39 | 25.15 | 1.91 | 4.02 | |
38 | Residue | 77.41 | 41.61 | 74.85 | 0.40 | 3.49 |
* Input | 100.00 | 100.00 | 100.00 | 0.74 | 3.61 | |
Estimated values. Coarse flotation: KAX, Control flotation: 3418 A | ||||||
Total flotation | 17.08 | 46.75 | 18.47 | 1.78 | 3.15 | |
63 | Residue | 82.92 | 53.25 | 81.53 | 0.42 | 2.87 |
* Input | 100.00 | 100.00 | 100.00 | 0.65 | 2.92 | |
Total flotation | 23.68 | 56.23 | 26.28 | 1.54 | 3.25 | |
45 | Residue | 76.32 | 43.77 | 73.72 | 0.37 | 2.83 |
* Input | 100.00 | 100.00 | 100.00 | 0.65 | 2.93 | |
Total flotation | 25.54 | 59.05 | 28.45 | 1.53 | 3.28 | |
38 | Residue | 74.46 | 40.95 | 71.55 | 0.36 | 2.83 |
* Input | 100.00 | 100.00 | 100.00 | 0.66 | 2.94 | |
Experimental results of crushed coarse residues during control flotation | ||||||
Total flotation | 25.74 | 49.38 | 19.94 | 1.28 | 2.27 | |
24 | Residue | 74.26 | 50.62 | 80.06 | 0.45 | 3.16 |
* Input | 100.00 | 100.00 | 100.00 | 0.67 | 2.93 | |
Total flotation | 25.74 | 49.38 | 19.94 | 1.28 | 2.27 | |
20 | Residue | 74.26 | 50.62 | 80.06 | 0.45 | 3.16 |
* Input | 100.00 | 100.00 | 100.00 | 0.67 | 2.93 | |
Total flotation | 32.84 | 55.88 | 28.21 | 1.10 | 2.53 | |
10 | Residue | 67.16 | 44.12 | 71.79 | 0.43 | 3.14 |
* Input | 100.00 | 100.00 | 100.00 | 0.65 | 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabitova, A.; Mukhamediyarov, N.; Mussabayeva, B.; Rakhadilov, B.; Aitkazin, N.; Bayakhmetova, B.; Sharipkhan, Z.; Gaisina, B. The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction. Processes 2025, 13, 2113. https://doi.org/10.3390/pr13072113
Sabitova A, Mukhamediyarov N, Mussabayeva B, Rakhadilov B, Aitkazin N, Bayakhmetova B, Sharipkhan Z, Gaisina B. The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction. Processes. 2025; 13(7):2113. https://doi.org/10.3390/pr13072113
Chicago/Turabian StyleSabitova, Alfira, Nurlan Mukhamediyarov, Binur Mussabayeva, Bauyrzhan Rakhadilov, Nurbol Aitkazin, Bulbul Bayakhmetova, Zhanna Sharipkhan, and Balzhan Gaisina. 2025. "The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction" Processes 13, no. 7: 2113. https://doi.org/10.3390/pr13072113
APA StyleSabitova, A., Mukhamediyarov, N., Mussabayeva, B., Rakhadilov, B., Aitkazin, N., Bayakhmetova, B., Sharipkhan, Z., & Gaisina, B. (2025). The Effect of the Granulometric Composition of Slags on the Efficiency of Non-Ferrous Metal Extraction. Processes, 13(7), 2113. https://doi.org/10.3390/pr13072113