Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting
Abstract
1. Introduction
2. Materials and Methods
2.1. Copper Slag Preparation
2.2. Preparation of Copper Slag Electrodes
2.3. Preparation of Saline Electrolyte
2.4. Characterisation of Copper Slag Powder
2.4.1. X-Ray Diffraction (XRD)
2.4.2. Scanning Electron Microscopy (SEM-EDS)
2.4.3. Raman Spectroscopy
2.5. Electrochemical Studies of Copper Slag Powder
2.6. Corrosion Studies for Copper Slag Powder
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Madurai Elavarasan, R.; Pugazhendhi, R.; Irfan, M.; Mihet-Popa, L.; Khan, I.A.; Campana, P.E. State-of-the-Art Sustainable Approaches for Deeper Decarbonization in Europe—An Endowment to Climate Neutral Vision. Renew. Sustain. Energy Rev. 2022, 159, 112204. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Hassan, Q.; Tabar, V.S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A Review of Green Hydrogen Production Based on Solar Energy; Techniques and Methods. Energy Harvest. Syst. 2024, 11, 20220134. [Google Scholar] [CrossRef]
- Okolie, J.A.; Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Futuristic Applications of Hydrogen in Energy, Biorefining, Aerospace, Pharmaceuticals and Metallurgy. Int. J. Hydrog. Energy 2021, 46, 8885–8905. [Google Scholar] [CrossRef]
- Dutta, S. Review on Solar Hydrogen: Its Prospects and Limitations. Energy Fuels 2021, 35, 11613–11639. [Google Scholar] [CrossRef]
- Leiva-Guajardo, S.I.; Toro, N.; Fuentealba, E.; Morel, M.J.; Soliz, Á.; Portillo, C.; Galleguillos Madrid, F.M. Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. Materials 2024, 17, 5434. [Google Scholar] [CrossRef]
- Sánchez de Rojas, M.I.; Rivera, J.; Frías, M.; Marín, F. Use of Recycled Copper Slag for Blended Cements. J. Chem. Technol. Biotechnol. 2008, 83, 209–217. [Google Scholar] [CrossRef]
- Murari, K.; Siddique, R.; Jain, K.K. Use of Waste Copper Slag, a Sustainable Material. J. Mater. Cycles Waste Manag. 2015, 17, 13–26. [Google Scholar] [CrossRef]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of Copper Slag in Cement and Concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life Cycle Assessment of Hydrogen Production via Electrolysis—A Review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- González, C.; Parra, R.; Klenovcanova, A.; Imris, I.; Sánchez, M. Reduction of Chilean Copper Slags: A Case of Waste Management Project. Scand. J. Metall. 2005, 34, 143–149. [Google Scholar] [CrossRef]
- Kim, B.S.; Jo, S.K.; Shin, D.; Lee, J.C.; Jeong, S.B. A Physico-Chemical Separation Process for Upgrading Iron from Waste Copper Slag. Int. J. Miner. Process. 2013, 124, 124–127. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K. Premchand Characteristics and Utilisation of Copper Slag—A Review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Zhai, Q.; Liu, R.; Wang, C.; Wen, X.; Li, X.; Sun, W. A Novel Scheme for the Utilization of Cu Slag Flotation Tailings in Preparing Internal Electrolysis Materials to Degrade Printing and Dyeing Wastewater. J. Hazard. Mater. 2022, 424, 127537. [Google Scholar] [CrossRef]
- Jena, S.S.; Tripathy, S.K.; Mandre, N.R.; Venugopal, R.; Farrokhpay, S. Sustainable Use of Copper Resources: Beneficiation of Low-Grade Copper Ores. Minerals 2022, 12, 545. [Google Scholar] [CrossRef]
- Gabasiane, T.S.; Danha, G.; Mamvura, T.A.; Mashifana, T.; Dzinomwa, G. Characterization of Copper Slag for Beneficiation of Iron and Copper. Heliyon 2021, 7, e06757. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The Potential for Copper Slag Waste as a Resource for a Circular Economy: A Review—Part II. Miner. Eng. 2021, 172, 107150. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Avella, E.; Ramírez-Zamora, R.M.; Schouwenaars, R. Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review. Sustainability 2019, 11, 2470. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Acevedo-Peña, P.; Zanella, R.; Ramírez-Zamora, R.-M. Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production. Top. Catal. 2021, 64, 131–141. [Google Scholar] [CrossRef]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Gao, F.Y.; Yu, P.C.; Gao, M.R. Seawater Electrolysis Technologies for Green Hydrogen Production: Challenges and Opportunities. Curr. Opin Chem. Eng. 2022, 36, 100827. [Google Scholar] [CrossRef]
- Bamba, J.N.; Dumlao, A.T.; Lazaro, R.M.; Matienzo, D.D.; Ocon, J. Green Hydrogen from Seawater Electrolysis: Recent Developments and Future Perspectives. Curr. Opin. Electrochem. 2024, 48, 101592. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Alcántar-Vázquez, B.C.; Solís-López, M.; Tabla-Vázquez, C.G.; Morales-Pérez, A.A.; Schouwenaars, R.; Ramírez-Zamora, R.M. Photocatalytic H2 Production and Carbon Dioxide Capture Using Metallurgical Slag and Slag-Derived Materials. In Handbook of Ecomaterials; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–19. [Google Scholar]
- Yu, J.; Zhao, C.X.; Liu, J.N.; Li, B.Q.; Tang, C.; Zhang, Q. Seawater-Based Electrolyte for Zinc–Air Batteries. Green. Chem. Eng. 2020, 1, 117–123. [Google Scholar] [CrossRef]
- Pavez, O.; Nazer, A.; Rivera, O.; Salinas, M.; Araya, B. Copper Slag from Different Dumps in the Atacama Region Used in Mortars as Partial Replacement of Cement. Rev. Mater. 2019, 24, e12349. [Google Scholar] [CrossRef]
- Soni, I.; Kumar, P.; Sharma, S.; Kudur Jayaprakash, G. A Short Review on Electrochemical Sensing of Commercial Dyes in Real Samples Using Carbon Paste Electrodes. Electrochem 2021, 2, 274–294. [Google Scholar] [CrossRef]
- Giggenbach, W.F. The isotopic composition of waters from the El Tatio geothermal field, Northern Chile. Geochemica et Cosmochimica Acta 1978, 42, 979–998. [Google Scholar] [CrossRef]
- Munoz-Saez, C.; Manga, M.; Hurwitz, S.; Rudolph, M.L.; Namiki, A.; Wang, C.Y. Dynamics within Geyser Conduits, and Sensitivity to Environmental Perturbations: Insights from a Periodic Geyser in the El Tatio Geyser Field, Atacama Desert, Chile. J. Volcanol. Geotherm. Res. 2015, 292, 41–55. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Shi, C.; Zhang, Z.; Zhu, D. A Review on Seawater Sea-Sand Concrete: Mixture Proportion, Hydration, Microstructure and Properties. Constr. Build. Mater. 2021, 295, 123602. [Google Scholar] [CrossRef]
- Mangi, S.A.; Makhija, A.; Saleem Raza, M.; Khahro, S.H.; Ashfaque; Jhatial, A. A Comprehensive Review on Effects of Seawater on Engineering Properties of Concrete. Silicon 2021, 13, 4519–4526. [Google Scholar] [CrossRef]
- Cáceres, L.; Vargas, T.; Parra, M. Study of the Variational Patterns for Corrosion Kinetics of Carbon Steel as a Function of Dissolved Oxygen and NaCl Concentration. Electrochim. Acta 2009, 54, 7435–7443. [Google Scholar] [CrossRef]
- Allibai Mohanan, V.M.; Kacheri Kunnummal, A.; Biju, V.M.N. Electrochemical Sensing of Hydroxylamine Using a Wax Impregnated Graphite Electrode Modified with a Nanocomposite Consisting of Ferric Oxide and Copper Hexacyanoferrate. Microchim. Acta 2016, 183, 2013–2021. [Google Scholar] [CrossRef]
- Li, Z.; Ma, G.; Zhang, X.; Li, J. Characteristics and Chemical Speciation of Waste Copper Slag. Environ. Sci. Pollut. Res. 2021, 28, 20012–20022. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive Review on Metallurgical Recycling and Cleaning of Copper Slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Giddaerappa; Naseem, K.; Sharath, K.; Hojamberdiev, M.; Sannegowda, L.K. Substrate-Driven Electrocatalysis of Natural and Earth-Abundant Pyrite Towards Oxygen Evolution Reaction. Electrochim. Acta 2024, 475, 143575. [Google Scholar] [CrossRef]
- Gao, M.R.; Zheng, Y.R.; Jiang, J.; Yu, S.H. Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Acc. Chem. Res. 2017, 50, 2194–2204. [Google Scholar] [CrossRef]
- Dai, W.; Pan, Y.; Ren, K.; Zhu, Y.A.; Lu, T. Heteroatom Ni Alloyed Pyrite-Phase FeS2 as a Pre-Catalyst for Enhanced Oxygen Evolution Reaction. Electrochim. Acta 2020, 355, 136821. [Google Scholar] [CrossRef]
- Chang, C.C.; Li, S.R.; Chou, H.L.; Lee, Y.C.; Patil, S.; Lin, Y.S.; Chang, C.C.; Chang, Y.J.; Wang, D.Y. Photoactive Earth-Abundant Iron Pyrite Catalysts for Electrocatalytic Nitrogen Reduction Reaction. Small 2019, 15, 1904723. [Google Scholar] [CrossRef]
- Shit, S.; Samanta, P.; Bolar, S.; Murmu, N.C.; Khanra, P.; Kuila, T. Synthesis of Iron Pyrite with Efficient Bifunctional Electrocatalytic Activity towards Overall Water Splitting in Alkaline Medium. Bull. Mater. Sci. 2021, 44, 169. [Google Scholar] [CrossRef]
- Faber, M.S.; Dziedzic, R.; Lukowski, M.A.; Kaiser, N.S.; Ding, Q.; Jin, S. High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS 2) Micro- and Nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061. [Google Scholar] [CrossRef]
- Liu, W.; Hu, E.; Jiang, H.; Xiang, Y.; Weng, Z.; Li, M.; Fan, Q.; Yu, X.; Altman, E.I.; Wang, H. A Highly Active and Stable Hydrogen Evolution Catalyst Based on Pyrite-Structured Cobalt Phosphosulfide. Nat. Commun. 2016, 7, 10771. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wang, Y.; Zhang, Y.; Duan, J.; Guan, F.; Hou, B. Effects of Marine Eutrophication Environment on Microbial Corrosion: A Review. Mar. Pollut. Bull. 2024, 205, 116637. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, A.; Baawain, M.S.; Dhar, B.R.; Kim, I.S. Improved Recovery of Bioenergy and Osmotic Water in an Osmotic Microbial Fuel Cell Using Micro-Diffuser Assisted Marine Aerobic Biofilm on Cathode. Biochem. Eng. J. 2017, 128, 235–242. [Google Scholar] [CrossRef]
- Erable, B.; Lacroix, R.; Etcheverry, L.; Féron, D.; Delia, M.L.; Bergel, A. Marine Floating Microbial Fuel Cell Involving Aerobic Biofilm on Stainless Steel Cathodes. Bioresour. Technol. 2013, 142, 510–516. [Google Scholar] [CrossRef]
- Zhang, H.M.; Li, J. Strategies for Overcoming Seawater Adverse Effects on Cathodic Hydrogen Evolution Reaction Electrocatalysts. Fuel 2024, 367, 131505. [Google Scholar] [CrossRef]
- Chen, R.; Yang, C.; Cai, W.; Wang, H.Y.; Miao, J.; Zhang, L.; Chen, S.; Liu, B. Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Lett. 2017, 2, 1070–1075. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Zheng, L.; Yan, Y.; Zhang, Y.; Chen, G.; Sun, S.; Zhang, J. Highly Active, Stable Oxidized Platinum Clusters as Electrocatalysts for the Hydrogen Evolution Reaction. Energy Environ. Sci. 2017, 10, 2450–2458. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Xu, Y.; Ren, X.; Liu, X.; Li, Z. Synthesis of Ni3S4/NiS2/FeS2 Nanoparticles for Hydrogen and Oxygen Evolution Reaction. Appl. Surf. Sci. 2021, 560, 149985. [Google Scholar] [CrossRef]
- She, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar]
- Ma, Z.; Lian, X.; Yuan, K.; Sun, S.; Gu, C.; Zhang, J.L.; Lyu, J.; Zhong, J.Q.; Liu, L.; Li, H.; et al. Pressure-Dependent Band-Bending in ZnO: A near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study. J. Energy Chem. 2021, 60, 25–31. [Google Scholar] [CrossRef]
- Wang, H.; Lee, H.W.; Deng, Y.; Lu, Z.; Hsu, P.C.; Liu, Y.; Lin, D.; Cui, Y. Bifunctional Non-Noble Metal Oxide Nanoparticle Electrocatalysts through Lithium-Induced Conversion for Overall Water Splitting. Nat. Commun. 2015, 6, 7261. [Google Scholar] [CrossRef] [PubMed]
- Skúlason, E.; Karlberg, G.S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jónsson, H.; Nørskov, J.K. Density Functional Theory Calculations for the Hydrogen Evolution Reaction in an Electrochemical Double Layer on the Pt(111) Electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241–3250. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Chen, L. A Review of the Influence of Copper Slag on the Properties of Cement-Based Materials. Materials 2022, 15, 8594. [Google Scholar] [CrossRef]
- Sarfo, P.; Wyss, G.; Ma, G.; Das, A.; Young, C. Carbothermal Reduction of Copper Smelter Slag for Recycling into Pig Iron and Glass. Miner. Eng. 2017, 107, 8–19. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J. Application of Raman Spectroscopy to Identify Iron Minerals Commonly Found in Mine Wastes. Chem. Geol. 2011, 290, 101–108. [Google Scholar] [CrossRef]
- Kuebler, K.E.; Jolliff, B.L.; Wang, A.; Haskin, L.A. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochim. Cosmochim. Acta 2006, 70, 6201–6222. [Google Scholar] [CrossRef]
- Marshall, C.P.; Dufresne, W.J.B.; Rufledt, C.J. Polarized Raman Spectra of Hematite and Assignment of External Modes. J. Raman Spectrosc. 2020, 51, 1522–1529. [Google Scholar] [CrossRef]
- Dudek, M.; Grabarczyk, J.; Jakubowski, T.; Zaręba, P.; Karczemska, A. Raman Spectroscopy Investigations of Ribbeck Meteorite. Materials 2024, 17, 5105. [Google Scholar] [CrossRef]
- Wang, H.; Fang, P.; Wang, Y.; Xin, Y.; Xiong, S.; Liu, S.; Xue, Y.; Zhang, L.; Wan, X. Rapid Determination of Meteorolite Composition Based on X-Ray Phase Contrast Imaging-Assisted Raman Spectroscopy. Chemosensors 2023, 11, 563. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen Production by Alkaline Water Electrolysis. Química Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef]
- Cui, T.; Chi, J.; Liu, K.; Zhu, J.; Guo, L.; Mao, H.; Liu, X.; Lai, J.; Guo, H.; Wang, L. Manipulating the Electron Redistribution of Fe3O4 for Anion Exchange Membrane Based Alkaline Seawater Electrolysis. Appl. Catal. B Environ. Energy 2024, 357, 124269. [Google Scholar] [CrossRef]
- Grimm, E. The Study of Copper Corrosion Mechanisms Using Electrochemical Experimental Techniques. Master’s Thesis, University of Louisville, Louisville, KY, USA, 2021. [Google Scholar]
- Kaiser, S.; Salim, M. A comparative study of chemical and physical properties of copper and copper alloys affected by acidic, alkaline and saline environments. J. Electrochem. Sci. Eng. 2020, 10, 373–384. [Google Scholar] [CrossRef]
- Yaro, A.; Khadom, A.; Idan, M. Electrochemical Approaches of Evaluating Galvanic Corrosion Kinetics of Copper Alloy—Steel Alloy Couple in Inhibited Cooling Water System. J. Mater. Environ. Sci. 2015, 6, 1101–1104. [Google Scholar]
- Khadom, A.; Abod, B.M. Mathematical model for galvanic corrosion of steel-cooper couple in petroleum waste water in presence of friendly corrosion inhibitor. J. Appl. Res. Technol. 2017, 15, 14–20. [Google Scholar] [CrossRef]
- Metikoš-Huković, M.; Babić, R.; Škugor Rončević, I.; Grubač, Z. Corrosion Science Section Corrosion Behavior of the Filmed Copper Surface in Saline Water Under Static and Jet Impingement Conditions. J. Sci. Eng. 2012, 68. [Google Scholar] [CrossRef]
Parameters | 0.5 M NaCl | Seawater | Geothermal Water (El Tatio) |
---|---|---|---|
, A m−2 | 0.1066 | 0.0021 | 0.0011 |
, mV dec−1 | 338 | 140 | 157 |
, A m−2 | 0.097 | 0.380 | 0.0186 |
, mV dec−1 | −587 | −764 | −417 |
, A m−2 | −7.8 | −11.9 | −2.1 |
, A m−2 | −0.383 | −84.896 | −0.132 |
, mV dec−1 | −263 | −126 | −221.4 |
, mV | −1.124 | 12.539 | 30 |
, A m−2 | 2.117 | 3.668 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva-Guajardo, S.I.; Fuentes Maya, M.; Cáceres, L.; Jimenez-Arevalo, V.M.; Soliz, Á.; Toro, N.; Cobos Murcia, J.Á.; Cruz, V.E.R.; Morel, M.; Fuentealba, E.; et al. Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting. Materials 2025, 18, 3092. https://doi.org/10.3390/ma18133092
Leiva-Guajardo SI, Fuentes Maya M, Cáceres L, Jimenez-Arevalo VM, Soliz Á, Toro N, Cobos Murcia JÁ, Cruz VER, Morel M, Fuentealba E, et al. Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting. Materials. 2025; 18(13):3092. https://doi.org/10.3390/ma18133092
Chicago/Turabian StyleLeiva-Guajardo, Susana I., Manuel Fuentes Maya, Luis Cáceres, Víctor M. Jimenez-Arevalo, Álvaro Soliz, Norman Toro, José Ángel Cobos Murcia, Victor E. Reyes Cruz, Mauricio Morel, Edward Fuentealba, and et al. 2025. "Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting" Materials 18, no. 13: 3092. https://doi.org/10.3390/ma18133092
APA StyleLeiva-Guajardo, S. I., Fuentes Maya, M., Cáceres, L., Jimenez-Arevalo, V. M., Soliz, Á., Toro, N., Cobos Murcia, J. Á., Cruz, V. E. R., Morel, M., Fuentealba, E., & Galleguillos Madrid, F. M. (2025). Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting. Materials, 18(13), 3092. https://doi.org/10.3390/ma18133092