Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (766)

Search Parameters:
Keywords = cooking loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 280 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
12 pages, 1392 KiB  
Brief Report
Soft Fillets in a Sustainable Seafood Era: Assessing Texture, Yield Loss and Valorization Potential of ‘Mushy’ Greenland Halibut Fillets
by Natacha L. Severin and Kurt Buchmann
Fishes 2025, 10(8), 367; https://doi.org/10.3390/fishes10080367 - 1 Aug 2025
Viewed by 201
Abstract
‘Mushy halibut syndrome’ (MHS) is associated with inferior fillet quality in Greenland halibut and is reported to occur in commercial catches across the North Atlantic. MHS constitutes a quality issue in fisheries and leads to economic losses and food wastage. Despite the known [...] Read more.
‘Mushy halibut syndrome’ (MHS) is associated with inferior fillet quality in Greenland halibut and is reported to occur in commercial catches across the North Atlantic. MHS constitutes a quality issue in fisheries and leads to economic losses and food wastage. Despite the known challenges associated with MHS, quantitative data on product properties are lacking, and yet they are crucial to assess actual losses and value-adding processing potential. As part of a larger effort to document and characterize MHS in Greenland halibut, we investigated how thaw drip loss (TDL), cooked drip loss (CDL), cooked yield, and tissue compressibility and elasticity differ between normal and ‘mushy’ halibut fillets. The fillets were sorted into three categories: normal, intermediate MHS, and severe MHS. The mean TDL and CDL increased more than three-fold in both MHS categories compared to normal fillets, while cooked yield decreased by approximately 20%. Fillets severely affected by MHS demonstrated high tissue compressibility (56%) and poor elasticity (46%), while the elasticity of the fillets belonging to the intermediate MHS category did not differ significantly from that of normal ones. These findings provide new insights into the product attributes of fillets affected by MHS, which are important for developing utilization and valorization strategies. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

19 pages, 3046 KiB  
Article
The Effect of the Incorporation Level of Rosa rugosa Fruit Pomace and Its Drying Method on the Physicochemical, Microstructural, and Sensory Properties of Wheat Pasta
by Grażyna Cacak-Pietrzak, Agata Marzec, Aleksandra Rakocka, Andrzej Cendrowski, Sylwia Stępniewska, Renata Nowak, Anna Krajewska and Dariusz Dziki
Molecules 2025, 30(15), 3170; https://doi.org/10.3390/molecules30153170 - 29 Jul 2025
Viewed by 213
Abstract
This study investigated the effects of the addition of Rosa rugosa fruit pomace and drying methods on the properties of pasta, such as culinary properties, color, texture, microstructure, phenolics, antioxidant capacity, and sensory properties. In laboratory conditions, the pasta was produced using low-extraction [...] Read more.
This study investigated the effects of the addition of Rosa rugosa fruit pomace and drying methods on the properties of pasta, such as culinary properties, color, texture, microstructure, phenolics, antioxidant capacity, and sensory properties. In laboratory conditions, the pasta was produced using low-extraction wheat flour with the addition of pomace at 0, 2, 4, 6, and 8% (g/100 g flour) and dried using either convective or microwave–vacuum drying. The incorporation of pomace into the pasta caused a notable reduction in lightness and increased redness and yellowness, as well as a decrease in pasta hardness and sensory acceptability. The RFP addition also increased the polyphenol content and antioxidant potential. The microwave–vacuum drying resulted in pasta with shorter cooking times, lower cooking loss, and higher total phenolic content and antioxidant activity compared to convective drying. Although the drying method did not markedly affect sensory attributes, ultrastructural analysis revealed that samples subjected to convective drying had a more compact structure, while microwave–vacuum dried pasta exhibited larger pores and smaller starch granules. Total porosity was higher in microwave–vacuum dried pasta. Taking into account both the level of pomace enrichment and the drying technique, the most optimal outcomes were achieved when microwave–vacuum drying was applied and the pomace addition did not exceed 4%. Full article
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Shaping Goose Meat Quality: The Role of Genotype and Soy-Free Diets
by Patrycja Dobrzyńska, Łukasz Tomczyk, Jerzy Stangierski, Marcin Hejdysz and Tomasz Szwaczkowski
Appl. Sci. 2025, 15(15), 8230; https://doi.org/10.3390/app15158230 - 24 Jul 2025
Viewed by 264
Abstract
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed [...] Read more.
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed a standard soybean-based diet and an LPS diet group fed a yellow lupin-based diet. Birds were reared under identical management conditions and slaughtered at 17 weeks of age. The following traits were recorded: meat colour (CIELab), pH24, cooking loss, breast and thigh muscle texture (shear force and energy), and sensory traits. The results showed a significant effect of both genotype and diet on meat quality. The LPS diet lowered shear force and energy (by ~11%, p < 0.001), reduced cooking loss in breast muscles (by ~5%, p < 0.001), and improved the juiciness and flavour of thigh muscles. The ET genotype positively influenced the meat colour intensity (lower L*, higher a*), while the lupin-based diet improved technological parameters, especially the water-holding capacity. The results confirm that replacing soybean meal with yellow lupin protein is an effective nutritional strategy that can improve goose meat quality and sustainability without compromising the sensory quality. These outcomes support developing soy-free feeding strategies in goose production to meet consumer expectations and reduce reliance on imported feed. Full article
(This article belongs to the Section Food Science and Technology)
17 pages, 1205 KiB  
Article
Feeding a Bitter Mix of Gentian and Grape Seed Extracts with Caffeine Reduces Appetite and Body Fat Deposition and Improves Meat Colour in Pigs
by Maximiliano Müller, Xinle Tan, Fan Liu, Marta Navarro, Louwrens C. Hoffman and Eugeni Roura
Animals 2025, 15(14), 2129; https://doi.org/10.3390/ani15142129 - 18 Jul 2025
Viewed by 326
Abstract
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in [...] Read more.
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in feed due to their bitterness and antiadipogenic effects. The effect of caffeine (0.5 g/kg), GG (2 g/kg) alone or in combination with caffeine (BM) at increasing concentrations (0.5, 1, 1.5, or 2 g/kg) on feed efficiency, carcass, and meat quality was assessed in finishing pigs (Large White × Landrace). Growth performance and carcass traits were evaluated at a pen level (n = 14). Loins (longissimus thoracis) were removed from eight pig/treatment at the abattoir to assess drip loss, lightness (L*), redness (a*), yellowness (b*), chroma (C*), hue angle (h°), pH, cook loss, and shear force. A linear increase (p < 0.05) in loin a*, b*, and C* values and a linear decrease (p < 0.05) in ADFI, ADG, backfat, dressing percentage, and HSCW were observed with increasing BM levels. At 1.5 g/kg, BM increased the loins a* (p < 0.05), b* (p < 0.05) and C* values (p < 0.05) compared to the control. Twenty-two proteins related to energy metabolism and myofibril assembly were identified to be upregulated (FDR < 0.05) in BM vs. control loins. In conclusion, GG could be used in combination with low doses of caffeine to modulate appetite and carcass leanness and improve pork colour. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 12002 KiB  
Article
Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours
by Simone de Souza Fernandes, Jhony Willian Vargas-Solórzano, Carlos Wanderlei Piler Carvalho and José Luis Ramírez Ascheri
Foods 2025, 14(14), 2524; https://doi.org/10.3390/foods14142524 - 18 Jul 2025
Viewed by 369
Abstract
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed [...] Read more.
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed to develop a gluten-free fusilli noodle using extruded flours based on mixtures of Japanese rice (JR) and chickpea (CP) particles. Methods: A 23 factorial design with augmented central points was applied to evaluate the effects of flour ratio (X1, CP/JR, 20–40%), feed moisture (X2, 24–30%), and extrusion temperature (X3, 80–120 °C) on responses from process properties (PPs), extruded flours (EFs), and noodle properties (NPs). Results: Interaction effects of X3 with X1 or X2 were observed on responses. On PP, X1 at 120 °C reduced the mechanical energy input (181.0 to 136.2 kJ/kg) and increased moisture retention (12.0 to 19.8%). On EF, X1 increased water-soluble solids (2.3 to 4.2 g/100 g, db) and decreased water absorption (8.6 to 5.7 g/g insoluble solids). On NP, X1 also affected their cooking properties. The mass increase was greater at 80°C (140 to 174%), and the soluble-solids loss was greater at 120 °C (9.3 to 4.5%). The optimal formulation (X1X2X3: 40–30%–80 °C) yielded noodles with improved elasticity, augmented protein, and enhanced textural integrity. Conclusions: Extruded flours derived from 40% chickpea flour addition and processed under mild conditions proved to be an effective strategy for enhancing both the nutritional and technological properties of rice-based noodles and supporting clean-label alternative products for gluten-intolerant and health-conscious consumers. Full article
Show Figures

Figure 1

16 pages, 2767 KiB  
Article
Three-Dimensional-Printed Meat Products with Lycopene-Functionalized Yeast Pickering Emulsions as Fat Replacer
by Zihan Cao, Yu Xing, Shasha Zhou, Feifan Li, Lixin Wang, Juanjuan Zhang, Xiaoxi Yang and Yumiao Lang
Foods 2025, 14(14), 2518; https://doi.org/10.3390/foods14142518 - 18 Jul 2025
Viewed by 231
Abstract
Due to the health-driven demand for fat replacers in meat products, Lycopene (Lyc)-loaded yeast protein (YP) high internal phase Pickering emulsions (HIPPEs) were explored as fat replacers for 3D-printed meat products. HIPPEs with varying Lyc concentrations were formulated, and their encapsulation efficiency and [...] Read more.
Due to the health-driven demand for fat replacers in meat products, Lycopene (Lyc)-loaded yeast protein (YP) high internal phase Pickering emulsions (HIPPEs) were explored as fat replacers for 3D-printed meat products. HIPPEs with varying Lyc concentrations were formulated, and their encapsulation efficiency and antioxidant activity (DPPH and ABTS assays) were evaluated. The encapsulation efficiency of Lyc exceeded 90% for all samples. Microscopic analysis revealed significant droplet enlargement in emulsions containing Lyc concentrations of 1.25 mg/mL and 1.50 mg/mL. Antioxidant activity peaked at a Lyc concentration of 1.00 mg/mL. Three-dimensional-printed meat products with different fat replacement ratios (0%, 25%, 50%, 75% and 100%) were prepared using both Lyc-loaded and non-loaded emulsions, and their printing precision, cooking loss, color, pH, texture, and lipid oxidation were assessed. The replacement ratio had no significant impact on printing precision, while cooking yield improved with higher fat replacement levels. Lyc emulsions notably influenced meat color, resulting in lower lightness and higher redness and yellowness. pH values remained stable across formulations. Lipid oxidation decreased with increasing fat replacement levels. The results indicate that Lyc-loaded YP Pickering emulsions have great potential as effective fat replacers for 3D-printed meat products, enhancing antioxidant performance while preserving product quality. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product
by Karla Joanna Aispuro-Sainz, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Brisa del Mar Torres-Martínez and Armida Sánchez-Escalante
Processes 2025, 13(7), 2286; https://doi.org/10.3390/pr13072286 - 17 Jul 2025
Viewed by 255
Abstract
The present study aimed to characterize the total phenolic content and antioxidant activity of mesquite pods (Prosopis velutina) and evaluate the effect on meat qualities in a meat product, with a view to their application as a natural functional ingredient. Mesquite [...] Read more.
The present study aimed to characterize the total phenolic content and antioxidant activity of mesquite pods (Prosopis velutina) and evaluate the effect on meat qualities in a meat product, with a view to their application as a natural functional ingredient. Mesquite pods were subjected to chemical characterization, revealing the presence of polyphenol contents with antioxidant activity (reducing power and antiradical effect). In addition, pork patties were formulated with different levels of mesquite pods powder (MPP, 2% and 5%) and mesquite pods extract (MPE, 0.1% and 0.3%), and were compared with control (CN) samples. The proximate composition of mesquite pod powder revealed a high proportion of carbohydrates and a low fat content. Additionally, the presence of polyphenols with antioxidant activity, including antiradical and reducing power, was evident. No significant differences were observed in the pork patties’ proximate composition. During 9 days of storage at 2 °C, patties treated with MPP and MPE exhibited higher pH values and lower TBARS values compared to the CN, with MPE-0.3% being the most effective in retarding lipid oxidation. Color parameters (L*, a*, b*, C*, and h*) were positively influenced by MPP and MPE, and both treatments improved water-holding capacity and reduced cooking weight loss, especially at 5% MPP. Fracture texture analysis showed that 5% MPP enhances firmness. Sensory attributes did not differ significantly from the CN. These results indicate that MPP and MPE are promising natural ingredients for extending the shelf life and maintaining the quality of pork patties without compromising sensory acceptability. Full article
Show Figures

Figure 1

17 pages, 9983 KiB  
Article
Integrated Multi-Omics of the Longissimus Dorsal Muscle Transcriptomics and Metabolomics Reveals Intramuscular Fat Accumulation Mechanism with Diet Energy Differences in Yaks
by Jingying Deng, Pengjia Bao, Ning Li, Siyuan Kong, Tong Wang, Minghao Zhang, Qinran Yu, Xinyu Cao, Jianlei Jia and Ping Yan
Biomolecules 2025, 15(7), 1025; https://doi.org/10.3390/biom15071025 - 16 Jul 2025
Viewed by 253
Abstract
IMF (intramuscular fat, IMF), as a key index for evaluating meat quality traits (shear force and cooking loss, etc.), and its deposition process are jointly regulated by nutritional and genetic factors. In this study, we analyzed the molecular regulation mechanism of IMF deposition [...] Read more.
IMF (intramuscular fat, IMF), as a key index for evaluating meat quality traits (shear force and cooking loss, etc.), and its deposition process are jointly regulated by nutritional and genetic factors. In this study, we analyzed the molecular regulation mechanism of IMF deposition in the LD (longissimus dorsal muscle, LD) by dietary energy level in Pamir yaks. Meat quality assessment showed that the meat quality of the High-energy diet group (1.53 MJ/Kg, G) and the Medium-energy diet group (1.38 MJ/Kg, Z) were significantly improved compared with that of the Low-energy diet group (0.75 MJ/Kg, C), in which IMF content in the LD of yaks in G group was significantly higher (p < 0.05) compared with Z and C groups. Further analysis by combined transcriptomics and lipid metabolomics revealed that the differences in IMF deposition mainly originated from the metabolism of lipids, such as TG (triglycerides, TG), PS (phosphatidylserine, PS), and LPC (lysophosphatidylcholine, LPC), and were influenced by SFRP4, FABP4, GADD45A, PDGFRA, RBP4, and DGAT2 genes, further confirming the importance of lipid–gene interactions in IMF deposition. This study reveals the energy-dependent epigenetic regulatory mechanism of IMF deposition in plateau ruminants, which provides molecular targets for optimizing yak nutritional strategies and quality meat production, while having important theoretical and practical value for the sustainable development of livestock husbandry on the Tibetan Plateau. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

18 pages, 10798 KiB  
Article
Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance
by Xiaoxue Zhang, Liming Zhao, Huibin Tian, Zongwu Ma, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaobin Yang, Xiaolong Li, Weiwei Wu, Fadi Li and Weimin Wang
Foods 2025, 14(14), 2477; https://doi.org/10.3390/foods14142477 - 15 Jul 2025
Viewed by 325
Abstract
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the [...] Read more.
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the molecular mechanisms underlying meat quality differences in Hu sheep with high (HHS, n = 10) and low (LHS, n = 10) carcass performance. Phenotypic analysis revealed that the HHS group exhibited superior meat quality traits, including higher intramuscular fat (IMF) content (reflected in elevated marbling scores), along with lower shear force, drip loss, and cooking loss, compared to the LHS group. Transcriptomic analysis identified 376 differentially expressed genes (DEGs) enriched in pathways linked to lipid metabolism, such as the PPAR signaling pathway and long-chain fatty acid metabolic process. Weighted gene co-expression network analysis (WGCNA) revealed important modules and key genes (e.g., ELOVL6, PLIN1, and ARHGEF2) associated with meat quality traits. Metabolomic profiling identified 132 differentially accumulated metabolites (DAMs), with significant enrichment in amino acid metabolism pathways, including D-amino acid metabolism, arginine biosynthesis, and glycine, serine, and threonine metabolism. Integrative analysis of transcriptomic and metabolomic data highlighted six co-enriched pathways, such as the mTOR signaling pathway and amino acid metabolism, underscoring their role in regulating meat quality. These findings provide valuable insights into the genetic and metabolic networks driving meat quality variation and offer potential biomarkers for genetic selection and nutritional strategies to enhance both carcass yield and eating quality in Hu sheep. This research enhances knowledge of the molecular basis of meat quality and supports precision breeding in livestock production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

28 pages, 1598 KiB  
Article
Development of Antimicrobial and Antioxidative Chicken Patties Using Liquid-Fermented Ganoderma lucidum and Pleurotus djamor Fruiting Body Biomass
by Nur Asyiqin Zahia-Azizan, Chong Shin Yee, Muhammad Ameer Ushidee-Radzi, Zul Ilham, Muhamad Hafiz Abd Rahim, Siva Raseetha, Nazimah Hamid, Adi Ainurzaman Jamaludin and Wan Abd Al Qadr Imad Wan-Mohtar
Fermentation 2025, 11(7), 393; https://doi.org/10.3390/fermentation11070393 - 9 Jul 2025
Viewed by 626
Abstract
Medicinal mushroom production utilising rural cultivation (solid state fermentation) requires approximately six months compared to culinary mushroom production (7 days). Urban cultivation (submerged liquid fermentation) can be used as a sustainable method of producing medicinal mushroom biomass. In this study, chicken patties were [...] Read more.
Medicinal mushroom production utilising rural cultivation (solid state fermentation) requires approximately six months compared to culinary mushroom production (7 days). Urban cultivation (submerged liquid fermentation) can be used as a sustainable method of producing medicinal mushroom biomass. In this study, chicken patties were fortified with liquid-fermented Ganoderma lucidum flour (GLF) and Pleurotus djamor mushroom biomass flour (PDF) at concentrations of 3%, 6%, and 9%. These were compared to a negative control (0% mushroom flour chicken patty) and a commercial patty. Chicken patties fortified with 3% PDF and 9% GLF recorded the lowest cooking loss, at 5.55% and 10.3%, respectively. Mushroom chicken patties exhibited lower cooking losses and significant changes in colour and texture compared to control samples. Notably, 3% GLF chicken patty achieved the highest overall acceptability score of 6.55 followed by 9% PDF chicken patty (6.08) (p < 0.05). Biomass flour of liquid-fermented Ganoderma lucidum (ENS-GL) and Pleurotus djamor (ENS-PD) were extracted for their endopolysaccharide and analysed for their functional properties. All elemental, FT-IR, and NMR spectroscopy analyses revealed the existence of a comparable beta-glucan polymer structure, linkages, and absorptions when compared to the Laminarin standard. In addition, ENS-GL also proved to possess higher antimicrobial activities and significant antioxidant levels (DPPH-scavenging activity, ferric reduction potential and total phenolic content) compared to ENS-PD. Overall, this study revealed that sustainable liquid-fermented Ganoderma lucidum, a medicinal mushroom, outperformed Pleurotus djamor, a culinary mushroom, as a potential alternative flour for combating hunger in the future. Full article
(This article belongs to the Special Issue Advances in Fermented Foods and Beverages)
Show Figures

Figure 1

13 pages, 1890 KiB  
Article
Compound Salt-Based Coagulants for Tofu Gel Production: Balancing Quality and Protein Digestibility
by Zhaolu Li, Sisi Zhang, Zihan Gao, Xinyue Guo, Ruohan Wang, Maoqiang Zheng and Guangliang Xing
Gels 2025, 11(7), 524; https://doi.org/10.3390/gels11070524 - 6 Jul 2025
Viewed by 412
Abstract
Tofu quality is critically influenced by coagulants, though their impact on protein digestibility remains underexplored. This study aimed to investigate the effects of calcium sulfate (CaSO4), magnesium chloride (MgCl2), and their combination (CaSO4 + MgCl2) on [...] Read more.
Tofu quality is critically influenced by coagulants, though their impact on protein digestibility remains underexplored. This study aimed to investigate the effects of calcium sulfate (CaSO4), magnesium chloride (MgCl2), and their combination (CaSO4 + MgCl2) on the physicochemical properties and protein digestibility of tofu. Water-holding capacity, cooking loss, texture, protein composition, and protein digestibility were analyzed. The results showed that the CaSO4 + MgCl2 combination yielded a water-holding capacity of 99.16%, significantly higher than CaSO4 tofu (93.73%) and MgCl2 tofu (96.82%), while reducing cooking loss to 2.03% and yielding the highest hardness (897.27 g) and gumminess (765.72). Electrophoresis revealed distinct protein retention patterns, with MgCl2 (0.6% w/v) forming denser gels that minimized protein leakage into soy whey. During in vitro digestion, MgCl2-coagulated tofu exhibited superior soluble protein release (5.33 mg/mL after gastric digestion) and higher intestinal peptide (5.89 mg/mL) and total amino acid (123.06 μmol/mL) levels, indicating enhanced digestibility. Conversely, the CaSO4 + MgCl2 combination showed delayed proteolysis in electrophoresis analysis. These findings demonstrate that coagulant selection directly modulates tofu’s texture, water retention, and protein bioavailability, with MgCl2 favoring digestibility and the hybrid coagulant optimizing physical properties. This provides strategic insights for developing nutritionally enhanced tofu products. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Graphical abstract

20 pages, 3956 KiB  
Article
Application of Fermented Wheat, Acorns, and Sorghum in Processing of Couscous: Effect on Culinary Quality, Pasting Properties, and Microstructure
by Rayene Belmouloud, Hayat Bourekoua, Loucif Chemache, Marcin Mitrus, Leila Benatallah, Renata Różyło and Agnieszka Wójtowicz
Appl. Sci. 2025, 15(13), 7418; https://doi.org/10.3390/app15137418 - 2 Jul 2025
Viewed by 328
Abstract
This study explores the application of three fermented plant materials—wheat, acorns, and sorghum—in couscous preparation, as well as their impact on its properties. A survey was conducted in some localities in Algeria. The aim is to reproduce the diagrams for the manufacture of [...] Read more.
This study explores the application of three fermented plant materials—wheat, acorns, and sorghum—in couscous preparation, as well as their impact on its properties. A survey was conducted in some localities in Algeria. The aim is to reproduce the diagrams for the manufacture of different types of couscous incorporated with fermented materials and to evaluate the pasting properties, culinary qualities, and microstructure of each type of couscous produced. The survey identified four couscous formulations made with durum wheat semolina: couscous 1 (4% sorghum, 4% wheat, 8% acorns), couscous 2 (8% acorns), couscous 3 (0.8% sorghum, 6% acorns), and couscous 4 (4% wheat, 4% acorns). A comparative study of the four types of couscous showed significant differences in their physicochemical and microstructural properties. Formulations C3 and C4 showed the best functional performance among all the couscous samples studied. In terms of the swelling index, measured at 25 °C and 95 °C, C3 reached 131.11% and 165.55%, respectively, while C4 recorded 124.9% and 157.0%. Furthermore, these two formulations had the highest viscosity values: initial viscosity of 25 mPas (C3) and 27 mPas (C4), maximum viscosity of 31 mPas (C3) and 30 mPas (C4), and final viscosity of 49 mPas (C3) and 46 mPas (C4). Analysis of the cooking loss revealed higher values for couscous 1 and 2. The microstructure of couscous 2 revealed the presence of native starch particles, open porosity, and a state of partial gelatinization. The study revealed that formulations C3 and C4 significantly (p < 0.05) impact couscous structure by enhancing functionality while preserving quality. It also maintained ancestral knowledge and offered valuable insights for future industrial applications. Full article
Show Figures

Figure 1

16 pages, 305 KiB  
Article
Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities
by Maria Ildilene da Silva, Valfredo Figueira da Silva, Marcio Douglas Goes, Sara Ugulino Cardoso, Leonardo Aluisio Baumgartner, Maria Luiza Rodrigues de Souza, Claucia Aparecida Honorato, Robie Allan Bombardelli and Elenice Souza dos Reis Goes
Foods 2025, 14(13), 2279; https://doi.org/10.3390/foods14132279 - 27 Jun 2025
Viewed by 573
Abstract
This study evaluated the impact of transporting Nile tilapia at stocking densities of 250 kg/m3 and 500 kg/m3 for 1 h, with post-transport resting periods of 0, 2, 4, and 6 h, on biochemical parameters and fillet quality. A 2 × [...] Read more.
This study evaluated the impact of transporting Nile tilapia at stocking densities of 250 kg/m3 and 500 kg/m3 for 1 h, with post-transport resting periods of 0, 2, 4, and 6 h, on biochemical parameters and fillet quality. A 2 × 4 factorial design was employed for the experiment, with 15 repetitions per treatment. The density of 500 kg/m3 resulted in a longer time to rigor mortis after 4 h of rest, while shorter rigor times were observed at 0 and 2 h. Fillets taken from fish transported at 250 kg/m3 for 4 h exhibited greater intensities of red and yellow color. The highest weight loss during cooking occurred in fish transported at 500 kg/m3 without rest. High-density stocking increased the pH of the fillets, reduced color intensity, and increased weight loss and drip loss. Resting periods of 4 and 6 h resulted in firmer fillets with improved water retention. Fish rested for 6 h at 250 kg/m3 recovered glycogen and glucose levels, indicating restored homeostasis. In contrast, fish subjected to high-density transport showed impaired metabolic recovery and compromised fillet quality. These results support the use of resting periods to improve fish welfare and product quality in aquaculture systems. Full article
(This article belongs to the Special Issue Effect of Pre-slaughter and Stunning Methods on Farmed Fish Quality)
Show Figures

Graphical abstract

11 pages, 981 KiB  
Article
Fortification of Cereal-Based Food with Lactobacillus rhamnosus GG and Bacillus coagulans GBI-30 and Their Survival During Processing
by Junyan Wang, Peng Wu, Xiao Dong Chen, Aibing Yu and Sushil Dhital
Foods 2025, 14(13), 2250; https://doi.org/10.3390/foods14132250 - 25 Jun 2025
Viewed by 559
Abstract
Functional foods are evolving beyond basic nutrition to address nutrition-related diseases and enhance well-being. While probiotic-fortified products dominate this sector, most remain dairy-based. This study investigated the incorporation of Lactobacillus rhamnosus GG and Bacillus coagulans GBI-30 into cereal-based pasta and noodles, evaluating bacterial [...] Read more.
Functional foods are evolving beyond basic nutrition to address nutrition-related diseases and enhance well-being. While probiotic-fortified products dominate this sector, most remain dairy-based. This study investigated the incorporation of Lactobacillus rhamnosus GG and Bacillus coagulans GBI-30 into cereal-based pasta and noodles, evaluating bacterial survival during processing and cooking. Extrusion-based pasta production exerted greater stress on Lactobacillus rhamnosus GG, whereas Bacillus coagulans GBI-30 demonstrated higher thermal resistance. In sheeted noodles, both strains maintained ≥8 log CFU/g viability pre-cooking. After 7 min boiling, Lactobacillus rhamnosus GG retained 6.88 log CFU/g and Bacillus coagulans GBI-30 5.75 log CFU/g in noodles, meeting the recommended 106–107 CFU/g threshold for probiotic efficacy. Cooking performance analysis revealed lower cooking loss in noodles (2.4–4.04%) versus extruded pasta (10.6–19.05%), indicating superior structural integrity. These results confirm cereal matrices as viable non-dairy carriers for probiotics, with sheeting processes better preserving bacterial viability than extrusion. The findings highlight a practical strategy for developing functional foods that sustain probiotic viability through processing and consumption, potentially enhancing gut microbiota balance. This approach expands probiotic delivery options beyond traditional dairy formats while maintaining therapeutic bacterial concentrations critical for health benefits. Full article
Show Figures

Figure 1

Back to TopTop