Development of Antimicrobial and Antioxidative Chicken Patties Using Liquid-Fermented Ganoderma lucidum and Pleurotus djamor Fruiting Body Biomass
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.1.1. Ganoderma lucidum Flour (GLF)
2.1.2. Pleurotus djamor Flour (PDF)
2.1.3. Endopolysaccharide (ENS)
2.2. Functional Analysis
2.2.1. Elemental Analysis
2.2.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.3. 1H Nuclear Magnetic Resonance (NMR) Spectroscopy
2.2.4. Antimicrobial Activities of the ENS of Ganoderma lucidum and Pleurotus djamor
2.2.5. Antioxidant Assays of the ENS of Ganoderma lucidum and Pleurotus djamor
Preparation of ENS Ethanolic Extracts
DPPH Radical-Scavenging Activity Assay
Ferric-Reducing Antioxidant Power (FRAP) Assay
Total Phenolic Content (TPC) Assay
2.3. Preparation of Mushroom Chicken Patties
2.4. Food Analysis
2.4.1. Cooking Process and Cooking Loss
2.4.2. Colour Analysis
2.4.3. Texture Analysis
2.4.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussions
3.1. Functional Analysis
3.1.1. Elemental Analysis
3.1.2. Fourier Transform Infrared Spectroscopy (FT-IR)
Sample (Absorption Peak, cm−1) | ||||
---|---|---|---|---|
Vibration Mode | ENS-GL | ENS-PD | Laminarin | Reference Wavelength |
Hydroxyl group (O–H) | 3455 | 3432 | 3419 | 3400–3500 |
Methylene group (-CH2) = water bending | 2900 | 2922 | 2915 | 2900–2922 [68] |
Symmetric and asymmetric stretching vibration | 1646 | 1646 | 1638 | 1400–1650 [68] |
Glycosidic linkage (β-configuration) | 1075 | 1054 | 1047 | 850–1200 [67] |
3.1.3. 1H Nuclear Magnetic Resonance (NMR) Spectroscopy
3.1.4. Antimicrobial Activities
3.1.5. Antioxidant Activities
DPPH Radical-Scavenging Activity
Ferric Reducing Antioxidant Power (FRAP)
Total Phenolic Content (TPC)
3.2. Food Analysis
3.2.1. Cooking Loss
3.2.2. Colour Analysis
3.2.3. Texture Analysis
3.2.4. Sensory Acceptance by Consumers
3.3. Comparison and Acceptability of Mushroom-Incorporated Savoury Food Products with Previous Studies
3.4. Significance of the Study
3.5. Potential Future Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GLF | Ganoderma lucidum flour |
Pleurotus djamor flour | |
ENS-GL | Endopolysaccharide of Ganoderma lucidum |
ENS-PD | Endopolysaccharide of Pleurotus djamor |
FT-IR | Fourier Transform Infrared Spectroscopy |
1H NMR | Nuclear Magnetic Resonance with respect to hydrogen-1 nuclei |
References
- Liu, S.; Liu, H.; Li, J.; Wang, Y. Research Progress on Elements of Wild Edible Mushrooms. J. Fungi 2022, 8, 964. [Google Scholar]
- Letcher, A. Shroom: A Cultural History of the Magic Mushroom; Faber & Faber: London, UK, 2024. [Google Scholar]
- Kumar, A.; Devi, R.; Dhalaria, R.; Tapwal, A.; Verma, R.; Rashid, S.; Elossaily, G.M.; Khan, K.A.; Chen, K.T.; Verma, T. Nutritional, Nutraceutical, and Medicinal Potential of Cantharellus cibarius Fr.: A Comprehensive Review. Food Sci. Nutr. 2025, 13, 4641. [Google Scholar]
- El-Ramady, H.; Abdalla, N.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Edible mushrooms for sustainable and healthy human food: Nutritional and medicinal attributes. Sustainability 2022, 14, 4941. [Google Scholar] [CrossRef]
- Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front. Microbiol. 2022, 13, 2022. [Google Scholar]
- Li, H.; Gao, J.A.; Zhao, F.; Liu, X.; Ma, B. Bioactive peptides from edible mushrooms—The preparation, mechanisms, structure—Activity relationships and prospects. Foods 2023, 12, 2935. [Google Scholar] [PubMed]
- Kumar, K.; Mehra, R.; Guiné, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Klaus, A.; Wan-Mohtar, W.A.A.Q.I. Ganoderma in Traditional Culture. In Ganoderma; CRC Press: Boca Raton, FL, USA, 2024; pp. 35–60. [Google Scholar]
- Yangzom, R.; Wangchuk, P. Ganoderma lucidum (Lingzhi Mushroom): Its Medicinal Uses, Biomolecules and Therapeutic Applications; Royal Society of Chemistry: London, UK, 2023; Volume 10, pp. 221–241. [Google Scholar]
- Nguyen, A.N.; Johnson, T.E.; Jeffery, D.W.; Capone, D.L.; Danner, L.; Bastian, S.E. Sensory and chemical drivers of wine consumers’ preference for a new Shiraz wine product containing Ganoderma lucidum extract as a novel ingredient. Foods 2020, 9, 224. [Google Scholar] [CrossRef]
- El Sheikha, A.F. Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: Current scenario and future perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef]
- Wang, J.; Cao, B.; Zhao, H.; Feng, J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017, 8, 691. [Google Scholar]
- Sułkowska-Ziaja, K.; Trepa, M.; Olechowska-Jarząb, A.; Nowak, P.; Ziaja, M.; Kała, K.; Muszyńska, B. Natural compounds of fungal origin with antimicrobial activity—Potential cosmetics applications. Pharmaceuticals 2023, 16, 1200. [Google Scholar] [CrossRef]
- Miller, S.L.; Sayner, A. Cultivation of Medicinal Mushrooms for a World in Need. In Wild Mushrooms and Health: Diversity, Phytochemistry, Medicinal Benefits, and Cultivation; CRC Press: Boca Raton, FL, USA, 2023; Volume 95. [Google Scholar]
- Klaus, A.; Wan-Mohtar, W.A.A.Q.I. Cultivation strategies of edible and medicinal mushrooms. In Wild Mushrooms; CRC Press: Boca Raton, FL, USA, 2022; pp. 23–65. [Google Scholar]
- Mahari, W.A.W.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar]
- Törős, G.H.; El-Ramady, H.; Prokisch, J. Edible mushroom of Pleurotus spp.: A case study of oyster mushroom (Pleurotus ostreatus L.). Environ. Biodivers. Soil Secur. 2022, 6, 51–59. [Google Scholar]
- Corrêa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar]
- Kotasthane, T. Oyster Mushroom and its value added products. Res. Sq. 2021, preprint. [Google Scholar]
- Wan-Mohtar, W.A.A.Q.I.; Halim-Lim, S.A.; Kamarudin, N.Z.; Rukayadi, Y.; Abd Rahim, M.H.; Jamaludin, A.A.; Ilham, Z. Fruiting-body-base flour from an Oyster mushroom waste in the development of antioxidative chicken patty. J. Food Sci. 2020, 85, 3124–3133. [Google Scholar]
- Shams, E.A.; Yousef, N.S.; El-Shazly, H.A. Chemical, Sensory and Rheological Evaluation of Karish Cheese Made by Oyster Mushroom Mycelium. J. Food Dairy Sci. 2020, 11, 187–193. [Google Scholar]
- Wan-Mohtar, W.; Mahmud, N.; Supramani, S.; Ahmad, R.; Zain, N.A.M.; Hassan, N.A.; Peryasamy, J.; Halim-Lim, S.A. Fruiting-body-base flour from an oyster mushroom-a waste source of antioxidative flour for developing potential functional cookies and steamed-bun. AIMS Agric. Food 2018, 3, 481–492. [Google Scholar]
- Wan Rosli, W.; Maihiza, N.; Raushan, M. The ability of oyster mushroom in improving nutritional composition, β-glucan and textural properties of chicken frankfurter. Int. Food Res. J. 2015, 22, 311–317. [Google Scholar]
- Jegadeesh, R.; Lakshmanan, H.; Kab-Yeul, J.; Sabaratnam, V.; Raaman, N. Cultivation of Pink Oyster mushroom Pleurotus djamor var. roseus on various agro-residues by low cost technique. J. Mycopathol. Res. 2018, 56, 213–220. [Google Scholar]
- Phonemany, M.; Sysouphanthong, P.; Rujanapun, N.; Thongklang, N.; Charoensup, R. Preliminary trial of the cultivation of Pleurotus djamor var. fuscopruinosus from southern Thailand using sawdust substrate and applications. Res. Sq. 2024, preprint. [Google Scholar]
- Hasan, M.; Khatun, M.; Sajib, M.; Rahman, M.; Rahman, M.; Roy, M.; Miah, M.; Ahmed, K. Effect of wheat bran supplement with sugarcane bagasse on growth, yield and proximate composition of pink oyster mushroom (Pleurotus djamor). Am. J. Food Sci. Technol. 2015, 3, 150–157. [Google Scholar]
- Whitaker, R., III. The Effect of Temperature and Substrate Composition on the Cultivation of Pleurotus djamor. Master’s Thesis, North Carolina Agricultural and Technical State University, Greensboro, NC, USA, 2024. [Google Scholar]
- Pirdaus, N.A.; Ahmad, N.; Dahlan, N.Y.; Redzuan, A.N.; Zalizan, A.H.; Muhammad-Sukki, F.; Bani, N.A.; Abdul Patah, M.F.; Wan-Mohtar, W.A.A.Q.I. Performance of yellow and pink oyster mushroom dyes in dye sensitized solar cell. Sci. Rep. 2024, 14, 23757. [Google Scholar]
- Rai, P.K. Role of water-energy-food nexus in environmental management and climate action. Energy Nexus 2023, 11, 100230. [Google Scholar]
- Yaeger, W.; Jawed, M.; Tauman, D.; Ho, P.; Ali, A.; Gomanie, N.N.; Mehta, K. Modular methods for oyster mushroom cultivation in low-resource settings. In Proceedings of the 2022 IEEE Global Humanitarian Technology Conference (GHTC), Santa Clara, CA, USA, 8–11 September 2022; pp. 30–37. [Google Scholar]
- Llanaj, X.; Törős, G.; Hajdú, P.; Abdalla, N.; El-Ramady, H.; Kiss, A.; Solberg, S.Ø.; Prokisch, J. Biotechnological Applications of Mushrooms under the Water-Energy-Food Nexus: Crucial Aspects and Prospects from Farm to Pharmacy. Foods 2023, 12, 2671. [Google Scholar] [PubMed]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Sci. 2019, 156, 174–182. [Google Scholar]
- Mercês, Z.d.C.d.; Salvadori, N.M.; Evangelista, S.M.; Cochlar, T.B.; Rios, A.d.O.; Oliveira, V.R.d. Hybrid and plant-based burgers: Trends, challenges, and physicochemical and sensory qualities. Foods 2024, 13, 3855. [Google Scholar] [CrossRef]
- Mizi, L.; Cofrades, S.; Bou, R.; Pintado, T.; López-Caballero, M.; Zaidi, F.; Jiménez-Colmenero, F. Antimicrobial and antioxidant effects of combined high pressure processing and sage in beef burgers during prolonged chilled storage. Innov. Food Sci. Emerg. Technol. 2019, 51, 32–40. [Google Scholar]
- Ilić, J.; Djekic, I.; Tomasevic, I.; Oosterlinck, F.; van den Berg, M.A. Materials properties, oral processing, and sensory analysis of eating meat and meat analogs. Annu. Rev. Food Sci. Technol. 2022, 13, 193–215. [Google Scholar]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar]
- Losoya-Sifuentes, C.; Cruz, M.; del Refugio Rocha-Pizaña, M.; Loredo-Treviño, A.; Belmares, R. Edible Mushrooms: A Nutrient-Rich Ingredient for Healthier Food Products–A Review. Curr. Nutr. Rep. 2025, 14, 9. [Google Scholar]
- Banach, J.; van der Berg, J.; Kleter, G.; van Bokhorst-van de Veen, H.; Bastiaan-Net, S.; Pouvreau, L.; van Asselt, E. Alternative proteins for meat and dairy replacers: Food safety and future trends. Crit. Rev. Food Sci. Nutr. 2023, 63, 11063–11080. [Google Scholar] [PubMed]
- Vetter, J. Biological values of cultivated mushrooms—A review. Acta Aliment. 2019, 48, 229–240. [Google Scholar]
- Vlaicu, P.A.; Untea, A.E.; Varzaru, I.; Saracila, M.; Oancea, A.G. Designing nutrition for health—Incorporating dietary by-products into poultry feeds to create functional foods with insights into health benefits, risks, bioactive compounds, food component functionality and safety regulations. Foods 2023, 12, 4001. [Google Scholar]
- Pandey, A.K.; Rajan, S.; Sarsaiya, S.; Jain, S.K. Mushroom for the national circular economy. Int. J. Sci. Res. Biol. Sci. 2020, 7, 61–69. [Google Scholar]
- Pandey, P.; Pal, R.; Koli, M.; Malakar, R.K.; Verma, S.; Kumar, N.; Kumar, P. A traditional review: The utilization of nutraceutical as a traditional cure for the modern world at current prospectus for multiple health conditions. J. Drug Deliv. Ther. 2024, 14, 154–163. [Google Scholar]
- Mingyi, Y.; Belwal, T.; Devkota, H.P.; Li, L.; Luo, Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci. Technol. 2019, 92, 94–110. [Google Scholar]
- Bell, V.; Silva, C.; Guina, J.; Fernandes, T. Mushrooms as future generation healthy foods. Front. Nutr. 2022, 9, 1050099. [Google Scholar]
- Wan-Mohtar, W.A.A.Q.I.; Zahia-Azizan, N.A.; Rui Yeong, T.; Ilham, Z.; Jamaludin, A.A. Mushroom-bioreactor biomass as bioactive protein source: Synergy of mushroom rural and urban cultivation. Org. Agric. 2024, 14, 459–466. [Google Scholar]
- Taufek, N.M.; Harith, H.H.; Abd Rahim, M.H.; Ilham, Z.; Rowan, N.; Wan-Mohtar, W.A.A.Q.I. Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red hybrid Tilapia (Oreochromis sp.) in Zebrafish embryo. Aquac. Rep. 2020, 17, 100322. [Google Scholar]
- Aa, B.; Ab, O.; M, P.; Ns, Y. Mushroom cultivation in tropical Africa: Successes, challenges, and opportunities. J. Agric. Food Res. 2024, 18, 101264. [Google Scholar]
- Phonemany, M.; Sysouphanthong, P.; Rujanapun, N.; Sarker, S.D.; Nahar, L.; Puttarak, P.; Hiransai, P.; Thongklang, N.; Charoensup, R. Identification and therapeutic efficacy of Pleurotus djamor var fuscopruinosus. Sci. Rep. 2025, 15, 18929. [Google Scholar]
- Moutia, I.; Lakatos, E.; Kovács, A.J. Impact of Dehydration Techniques on the Nutritional and Microbial Profiles of Dried Mushrooms. Foods 2024, 13, 3245. [Google Scholar] [CrossRef]
- Sangeeta, S.; Sharma, D.; Ramniwas, S.; Mugabi, R.; Uddin, J.; Nayik, G.A. Revolutionizing Mushroom processing: Innovative techniques and technologies. Food Chem. X 2024, 23, 101774. [Google Scholar] [PubMed]
- Xie, S.; Li, H.; Li, N.; Liu, Z.; Xu, D.; Hu, L.; Mo, H. Lentinus edodes Powder Improves the Quality of Wheat Flour Gluten Sticks. Foods 2023, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Vargas, E.; Rodriguez, J.A.; Domínguez, R.; Lorenzo, J.M.; Sosa, M.E.; Andrés, S.C.; Rosmini, M.; Pérez-Alvarez, J.A.; Teixeira, A.; Santos, E.M. Edible Mushrooms as a Natural Source of Food Ingredient/Additive Replacer. Foods 2021, 10, 2687. [Google Scholar] [CrossRef]
- Bermúdez, R.; Rangel-Vargas, E.; Lorenzo, J.M.; Rodríguez, J.A.; Munekata, P.E.S.; Teixeira, A.; Pateiro, M.; Romero, L.; Santos, E.M. Effect of Partial Meat Replacement by Hibiscus sabdariffa By-Product and Pleurotus djamor Powder on the Quality of Beef Patties. Foods 2023, 12, 391. [Google Scholar] [CrossRef]
- Supramani, S.; Rahayu Ahmad, Z.I.; Annuar, M.S.M.; Klaus, A.; Wan-Mohtar, W.A.A.Q.I. Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiol. 2019, 5, 19. [Google Scholar]
- Abdullah, N.R.; Sharif, F.; Azizan, N.H.; Hafidz, I.F.M.; Supramani, S.; Usuldin, S.R.A.; Ahmad, R.; Wan-Mohtar, W.A.A.Q.I. Pellet diameter of Ganoderma lucidum in a repeated-batch fermentation for the trio total production of biomass-exopolysaccharide-endopolysaccharide and its anti-oral cancer beta-glucan response. AIMS Microbiol. 2020, 6, 379. [Google Scholar]
- Nik Ubaidillah, N.H.; Abdullah, N.; Sabaratnam, V. Isolation of the intracellular and extracellular polysaccharides of Ganoderma neojaponicum (Imazeki) and characterization of their immunomodulatory properties. Electron. J. Biotechnol. 2015, 18, 188–195. [Google Scholar]
- Wan-Mohtar, W.A.A.Q.I.; Young, L.; Abbott, G.M.; Clements, C.; Harvey, L.M.; McNeil, B. Antimicrobial properties and cytotoxicity of sulfated (1, 3)-β-D-glucan from the mycelium of the mushroom Ganoderma lucidum. J. Microbiol. Biotechnol. 2016, 26, 999–1010. [Google Scholar]
- Roque-Borda, C.A.; da Silva, P.B.; Rodrigues, M.C.; Azevedo, R.B.; Di Filippo, L.; Duarte, J.L.; Chorilli, M.; Festozo Vicente, E.; Pavan, F.R. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics 2021, 13, 773. [Google Scholar] [PubMed]
- Ben Akacha, B.; Švarc-Gajić, J.; Elhadef, K.; Ben Saad, R.; Brini, F.; Mnif, W.; Smaoui, S.; Ben Hsouna, A. The Essential Oil of Tunisian Halophyte Lobularia maritima: A Natural Food Preservative Agent of Ground Beef Meat. Life 2022, 12, 1571. [Google Scholar] [CrossRef]
- Vamanu, E. In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules 2012, 17, 3653–3671. [Google Scholar] [CrossRef] [PubMed]
- Elhadef, K.; Chaari, M.; Akermi, S.; Ennouri, K.; Ben Hlima, H.; Fourati, M.; Chakchouk Mtibaa, A.; Ennouri, M.; Sarkar, T.; Shariati, M.A.; et al. Gelatin-sodium alginate packaging film with date pits extract: An eco-friendly packaging for extending raw minced beef shelf life. Meat Sci. 2024, 207, 109371. [Google Scholar]
- Wan Rosli, W.; Solihah, M. Effect on the addition of Pleurotus sajor-caju (PSC) on physical and sensorial properties of beef patty. Int. Food Res. J. 2012, 19, 993–999. [Google Scholar]
- Pang, B.; Bowker, B.; Zhuang, H.; Yang, Y.; Zhang, J. Research Note: Comparison of 3 methods used for estimating cook loss in broiler breast meat. Poult. Sci. 2020, 99, 6287–6290. [Google Scholar]
- Tomasevic, I.; Tomovic, V.; Ikonic, P.; Rodriguez, J.M.L.; Barba, F.J.; Djekic, I.; Nastasijevic, I.; Stajic, S.; Zivkovic, D. Evaluation of poultry meat colour using computer vision system and colourimeter: Is there a difference? Br. Food J. 2019, 121, 1078–1087. [Google Scholar]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Biswas, S.; McClements, D.J.; Lorenzo, J.M. Application of enoki mushroom (Flammulina Velutipes) stem wastes as functional ingredients in goat meat nuggets. Foods 2020, 9, 432. [Google Scholar] [CrossRef]
- Marek, S.; Piotr, R.; Przemysław, N.; Anna, B.; Monika, G.; Kalač, P.; Agnieszka, J.; Sylwia, B.; Lidia, K.; Mirosław, M. Comparison of multielemental composition of Polish and Chinese mushrooms (Ganoderma spp.). Eur. Food Res. Technol. 2017, 243, 1555–1566. [Google Scholar]
- Chen, C.; Shao, Y.; Tao, Y.; Wen, H. Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity. LWT-Food Sci. Technol. 2015, 64, 1263–1269. [Google Scholar]
- Usuldin, S.R.A.; Mahmud, N.; Ilham, Z.; Ikram, N.K.K.; Ahmad, R.; Wan-Mohtar, W.A.A.Q.I. In-depth spectral characterization of antioxidative (1, 3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. Biocatal. Agric. Biotechnol. 2020, 23, 101455. [Google Scholar]
- Zhang, J.; Liu, Y.; Tang, Q.; Zhou, S.; Feng, J.; Chen, H. Polysaccharide of Ganoderma and its bioactivities. Ganoderma Health Biol. Chem. Ind. 2019, 1181, 107–134. [Google Scholar]
- Idu, M.; Okojie, S.O.; Gabriel, B.O. In-vitro microbicidal activity of Ganoderma lucidum aqueous extract against selected pathogenic bacteria and yeast. J. Herb. Med. 2025, 50, 100990. [Google Scholar]
- Swallah, M.S.; Bondzie-Quaye, P.; Wu, Y.; Acheampong, A.; Sossah, F.L.; Elsherbiny, S.M.; Huang, Q. Therapeutic potential and nutritional significance of Ganoderma lucidum–a comprehensive review from 2010 to 2022. Food Funct. 2023, 14, 1812–1838. [Google Scholar] [PubMed]
- Zhou, J.; Cai, Y.; Liu, Y.; An, H.; Deng, K.; Ashraf, M.A.; Zou, L.; Wang, J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front. Microbiol. 2022, 13, 952633. [Google Scholar]
- Mustafin, K.; Bisko, N.; Blieva, R.; Al-Maali, G.; Krupodorova, T.; Narmuratova, Z.; Saduyeva, Z.; Zhakipbekova, A. Antioxidant and antimicrobial potential of Ganoderma lucidum and Trametes versicolor. Turk. J. Biochem. 2022, 47, 483–489. [Google Scholar]
- Stephens, M.; von der Weid, P.-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes 2020, 11, 421–432. [Google Scholar]
- Jubeh, B.; Breijyeh, Z.; Karaman, R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 2020, 25, 2888. [Google Scholar] [CrossRef]
- Illuri, R.; Eyini, M.; Kumar, M.; Prema, P.; Nguyen, V.-H.; Bukhari, N.A.; Hatamleh, A.A.; Balaji, P. Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards Gram positive and Gram negative microbial pathogens causing infectious disease. J. Infect. Public Health 2022, 15, 297–306. [Google Scholar]
- Kedare, S.B.; Singh, R. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar]
- Esmaelifar, M.; Hatamian-Zarmi, A.; Alvandi, H.; Azizi, M.; Mokhtari-Hosseini, Z.B.; Ebrahimi-Hoseinzadeh, B. Optimization of antioxidant activities and intracellular polysaccharide contents using Agaricus bisporus extract as elicitor in submerged fermenting Ganoderma lucidum: Optimization of IPS production from Ganoderma lucidum. Appl. Food Biotechnol. 2021, 8, 297–306. [Google Scholar]
- Ekiz, E.; Oz, E.; Abd El-Aty, A.; Proestos, C.; Brennan, C.; Zeng, M.; Tomasevic, I.; Elobeid, T.; Çadırcı, K.; Bayrak, M. Exploring the potential medicinal benefits of Ganoderma lucidum: From metabolic disorders to coronavirus infections. Foods 2023, 12, 1512. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.N.A.D. The role of free radicals and reactive oxygen species in biological systems-a comprehensive review. Int. J. Drug Res. Dent. Sci. 2022, 4, 28–41. [Google Scholar]
- Clare, K.; Dillon, J.F.; Brennan, P.N. Reactive oxygen species and oxidative stress in the pathogenesis of MAFLD. J. Clin. Transl. Hepatol. 2022, 10, 939. [Google Scholar]
- Modi, H.; Shah, P.; Shukla, M.; Lahiri, S.K. Determination of total phenolic content and antioxidant activity of Ganoderma lucidum collected from Dang district of Gujarat, India. Nat. Prod. Indian J. 2014, 10, 75–83. [Google Scholar]
- Shah, P.; Modi, H. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 636–641. [Google Scholar]
- Raman, J.; Sivakumar, A.; Lakshmanan, H.; Raaman, N.; Shin, H.-J. Antioxidant activity of partially characterized polysaccharides from the edible mushroom Pleurotus djamor var. roseus. J. Mushroom 2021, 19, 140–149. [Google Scholar]
- Swargiary, A.; Roy, M.K.; Verma, A.K. In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district, India. J. Parasit. Dis. 2021, 45, 1123–1134. [Google Scholar]
- Daniel, A.; Temikotan, T. Antioxidant and Radical Scavenging of Piliostigma reticulatum using FRAP and DPPH. J. Pharm. Res. Dev. 2021, 2, 1–6. [Google Scholar]
- Mohammadifar, S.; Fallahi Gharaghoz, S.; Asef Shayan, M.R.; Vaziri, A. Comparison between antioxidant activity and bioactive compounds of Ganoderma applanatum (Pers.) Pat. and Ganoderma lucidum (Curt.) P. Karst from Iran. Iran. J. Plant Physiol. 2020, 11, 3417–3424. [Google Scholar]
- Sen, S.; Chakraborty, R. Food in health preservation and promotion: A special focus on the interplay between oxidative stress and pro-oxidant/antioxidant. In Exploring the Nutrition and Health Benefits of Functional Foods; IGI Global: Hershey, PA, USA, 2017; pp. 265–300. [Google Scholar]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrović, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The antioxidant potential of different edible and medicinal mushrooms. Biomed. Pharmacother. 2022, 147, 112621. [Google Scholar]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Wang, W.; Tan, J.; Nima, L.; Sang, Y.; Cai, X.; Xue, H. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem. X 2022, 15, 100414. [Google Scholar]
- Bristy, A.T.; Islam, T.; Ahmed, R.; Hossain, J.; Reza, H.M.; Jain, P. Evaluation of total phenolic content, HPLC analysis, and antioxidant potential of three local varieties of mushroom: A comparative study. Int. J. Food Sci. 2022, 2022, 3834936. [Google Scholar]
- Bustillos, R.; Francisco, C.; Dulay, R. Liquid culture and antioxidant properties of Ganoderma lucidum and Pleurotus djamor. Int. J. Biol. Pharm. Allied Sci. 2018, 7, 576–583. [Google Scholar]
- Hong, S.; Shen, Y.; Li, Y. Physicochemical and functional properties of texturized vegetable proteins and cooked patty textures: Comprehensive characterization and correlation analysis. Foods 2022, 11, 2619. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Marais, J.; Strydom, P.E.; Hoffman, L.C. Effects of increasing internal end-point temperatures on physicochemical and sensory properties of meat: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2843–2872. [Google Scholar]
- Wang, J.; Yang, P.; Han, D.; Huang, F.; Li, X.; Song, Y.; Wang, H.; Liu, J.; Zheng, J.; Zhang, C. Role of intramuscular connective tissue in water holding capacity of porcine muscles. Foods 2022, 11, 3835. [Google Scholar] [CrossRef]
- Wan Rosli, W.; Solihah, M.; Aishah, M.; Nik Fakurudin, N.; Mohsin, S. Colour, textural properties, cooking characteristics and fibre content of chicken patty added with oyster mushroom (Pleurotus sajor-caju). Int. Food Res. J. 2011, 18, 621–627. [Google Scholar]
- Lee, S.; Jo, K.; Jeon, H.; Choi, Y.-S.; Jung, S. Recent strategies for improving the quality of meat products. J. Anim. Sci. Technol. 2023, 65, 895. [Google Scholar]
- Mazumder, M.A.R.; Sujintonniti, N.; Chaum, P.; Ketnawa, S.; Rawdkuen, S. Developments of plant-based emulsion-type sausage by using grey oyster mushrooms and chickpeas. Foods 2023, 12, 1564. [Google Scholar]
- Abdul-Malek, A.; Nazimah, H.; Razifah, M.; Bellere, A.; Raseetha, S. Beneficial properties of edible mushrooms and their potential utilisation of mushroom waste in food products. Food Res 2023, 7, 21–36. [Google Scholar]
- Ibrahim, H.S.S.; Huda-Faujan, N. Physicochemical Properties and Nutritional Composition of Chicken Patties with Grey Oyster Mushroom Stems. Malays. J. Sci. Health Technol. 2024, 10, 50–57. [Google Scholar]
- Paredes, J.; Cortizo-Lacalle, D.; Imaz, A.M.; Aldazabal, J.; Vila, M. Application of texture analysis methods for the characterization of cultured meat. Sci. Rep. 2022, 12, 3898. [Google Scholar]
- Botella-Martínez, C.; Muñoz-Tebar, N.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of chemical, physico-chemical and sensory properties of low-sodium beef burgers formulated with flours from different mushroom types. Foods 2023, 12, 3591. [Google Scholar]
- Stone, H.; Bleibaum, R.; Thomas, H.A. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Marsanasco, M.; Márquez, A.L.; Wagner, J.R.; Chiaramoni, N.S.; Alonso, S.d.V. Bioactive compounds as functional food ingredients: Characterization in model system and sensory evaluation in chocolate milk. J. Food Eng. 2015, 166, 55–63. [Google Scholar]
- Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Delgado-Pando, G. Sensory analysis and consumer research in new meat products development. Foods 2021, 10, 429. [Google Scholar] [CrossRef]
- Miran, B.; Thomas, T.W. Consumer priorities in food quality characteristics:: Empirical findings from Turkiye. South-East. Eur. J. Econ. 2023, 21, 7–40. [Google Scholar]
- Liu, J.; Ellies-Oury, M.; Stoyanchev, T.; Hocquette, J. Consumer perception of beef quality and how to control, improve and predict it? Focus on eating quality. Foods 2022, 11, 1732. [Google Scholar] [CrossRef]
- Ahmad, N.; Vunduk, J.; Klaus, A.; Dahlan, N.Y.; Ghosh, S.; Muhammad-Sukki, F.; Dufossé, L.; Bani, N.A.; Wan-Mohtar, W.A.A.Q.I. Roles of medicinal mushrooms as natural food dyes and dye-sensitised solar cells (DSSC): Synergy of zero hunger and affordable energy for sustainable development. Sustainability 2022, 14, 13894. [Google Scholar] [CrossRef]
- Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019, 174, 130–141. [Google Scholar]
- Wannasupchue, W.; Siriamornpun, S.; Huaisan, K.; Huaisan, J.; Meeso, N. Effect of adding Ling-zhi (Ganoderma lucidum) on oxidative stability, textural and sensory properties of smoked fish sausage. Thai J. Agric. Sci. 2011, 5, 505–512. [Google Scholar]
- Ghobadi, R.; Mohammadi, R.; Chabavizade, J.; Sami, M. Effect of Ganoderma lucidum powder on oxidative stability, microbial and sensory properties of emulsion type sausage. Adv. Biomed. Res. 2018, 7, 24. [Google Scholar]
- Süfer, Ö.; Bozok, F.; Demir, H. Usage of edible mushrooms in various food products. Turk. J. Agric.-Food Sci. Technol. 2016, 4, 144–149. [Google Scholar]
- United Nations, End Hunger, Achieve Food Security and Improved Nutrition and Promote Sustainable Agriculture. 2021. Available online: https://unstats.un.org/sdgs/report/2020/goal-02/ (accessed on 16 March 2025).
- World Health Organisation. In Brief, The State of Food Security and Nutrition in the World. 2020. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/9a0fca06-5c5b-4bd5-89eb-5dbec0f27274/content (accessed on 9 April 2025).
- Niazi, A.R.; Ghafoor, A. Different ways to exploit mushrooms: A review. All Life 2021, 14, 450–460. [Google Scholar]
- United Nations. Zero Hunger. 2022. Available online: https://www.un.org/sustainabledevelopment/hunger/2022 (accessed on 1 March 2025).
- Nigam, A. Improving global hunger index. Agric. Res. 2019, 8, 132–139. [Google Scholar]
- FAO, 2022. The World is at a Critical Juncture. 2022. Available online: https://www.fao.org/interactive/state-of-food-security-nutrition/2021/en/ (accessed on 24 February 2025).
- Mansoor, S.; Khan, T.; Farooq, I.; Shah, L.R.; Sharma, V.; Sonne, C.; Rinklebe, J.; Ahmad, P. Drought and global hunger: Biotechnological interventions in sustainability and management. Planta 2022, 256, 97. [Google Scholar]
- Zeifman, L.; Hertog, S.; Kantorova, V.; Wilmoth, J. A World of 8 Billion; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022. [Google Scholar]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Cruz-Martins, N.; Dhanjal, D.S.; Singh, R.; Chopra, C.; Verma, R.; Abd-Elsalam, K.A. Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications. J. Fungi 2021, 7, 427. [Google Scholar]
- Islam, S.M.F.; Karim, Z. World’s demand for food and water: The consequences of climate change. In Desalination-Challenges and Opportunities; Abadi Farahani, M.H.D., Vatanpour, V., et al., Eds.; IntechOpen: London, UK, 2019; pp. 1–27. [Google Scholar]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Islam, M.S.; Kasim, S.; Alam, K.M.; Amin, A.M.; Geok Hun, T.; Haque, M.A. Changes in chemical properties of banana pseudostem, mushroom media waste, and chicken manure through the co-composting process. Sustainability 2021, 13, 8458. [Google Scholar] [CrossRef]
- Atallah, E.; Zeaiter, J.; Ahmad, M.N.; Leahy, J.J.; Kwapinski, W. Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis. Fuel Process. Technol. 2021, 216, 106795. [Google Scholar]
- Zaini, N.A.M.; Azizan, N.A.Z.; Abd Rahim, M.H.; Jamaludin, A.A.; Raposo, A.; Raseetha, S.; Zandonadi, R.P.; BinMowyna, M.N.; Raheem, D.; Lho, L.H. A narrative action on the battle against hunger using mushroom, peanut, and soybean-based wastes. Front. Public Health 2023, 11, 1175509. [Google Scholar]
- Akhil, G. Comparative Evaluation of Different Species of Oyster Mushroom Suitable to Kerala. Ph.D. Thesis, Department of Plant Pathology, College of Agriculture, Padannakkad, Padanakkad, India, 2022. [Google Scholar]
- Zheng, C.; Li, J.; Liu, H.; Wang, Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res. Int. 2023, 173, 113223. [Google Scholar]
- Al-Thani, N.A.; Al-Ansari, T. Comparing the convergence and divergence within industrial ecology, circular economy, and the energy-water-food nexus based on resource management objectives. Sustain. Prod. Consum. 2021, 27, 1743–1761. [Google Scholar]
- Fassio, F.; Tecco, N. Circular economy for food: A systemic interpretation of 40 case histories in the food system in their relationships with SDGs. Systems 2019, 7, 43. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022, 34, 257–270. [Google Scholar]
- Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-based meat analogue (PBMA) as a sustainable food: A concise review. Eur. Food Res. Technol. 2021, 247, 2499–2526. [Google Scholar]
- Sogari, G.; Li, J.; Wang, Q.; Lefebvre, M.; Huang, S.; Mora, C.; Gómez, M.I. Toward a reduced meat diet: University North American students’ acceptance of a blended meat-mushroom burger. Meat Sci. 2022, 187, 108745. [Google Scholar]
- Yahya, F.; Ting, H.T. Effect of Different Ratios of Chicken Meat to Fresh Osyter Mushroom (Pleurotus sajor-caju) on the Physicochemical Properties and Sensory Acceptability of Sausages. Int. J. Food Agric. Nat. Resour. 2020, 1, 7–14. [Google Scholar]
Ingredients (%) | Mushroom Flour Percentages (%) | |||
---|---|---|---|---|
0 | 3 | 6 | 9 | |
Chicken breast meat | 66 | 66 | 66 | 66 |
Mushroom flour (GLF and PDF) | 0 | 3 | 6 | 9 |
Fat | 8 | 8 | 8 | 8 |
Iced water | 15 | 15 | 15 | 15 |
Potato starch | 10 | 7 | 4 | 1 |
Seasoning | 1 | 1 | 1 | 1 |
Total | 100 | 100 | 100 | 100 |
w/w (%) | ||||
---|---|---|---|---|
Sample Name | C | H | N | S |
ENS-GL | 36.77 ± 1.38 | 6.06 ± 0.29 | 2.14 ± 1.01 | 0.14 ± 0.33 |
ENS-PM | 37.26 ± 1.38 | 5.75 ± 0.29 | 1.75 ± 1.01 | 0.05 ± 0.33 |
Laminarin-control | 33.89 ± 1.38 | 6.21 ± 0.29 | 0 | 0.25 ± 0.33 |
ENS-GL | ENS-PD | ||||||||
---|---|---|---|---|---|---|---|---|---|
Diameter of Inhibition Zone (mm) | Diameter of Inhibition Zone (mm) | ||||||||
No./G | Bacteria | 200 mg/mL | 300 mg/mL | Gentamicin 30 µg | Distilled Water | 200 mg/mL | 300 mg/mL | Gentamicin 30 µg | Distilled Water |
1 (G+) | Actinobacteria | 12 ± 2.8 | 15.5 ± 6.3 | 10 ± 0.0 | 8.5 ± 0.7 | 9 ± 2.8 | 9.5 ± 6.3 | 10 ± 0.0 | 7.5 ± 0.7 |
2 (G+) | Bacillus ATTC | 8.5 ± 0.7 | 8.5 ± 0.7 | 10.5 ±0.7 | 7.5 ±2.1 | 7.5 ± 2.1 | 7.5 ± 2.1 | 10 ± 2.1 | 7.5 ±2.1 |
3 (G+) | Staphylococcus epidermis | 8 ± 1.4 | 13 ± 0.0 | 11 ± 0.0 | 7.5 ±2.1 | 8 ± 1.4 | 9 ± 0.0 | 11 ± 0.0 | 7.5 ±2.1 |
4 (G+) | Staphylococcus aureus | 8 ± 2.8 | 8 ± 2.8 | 10.5 ± 0.7 | 7.5 ±2.1 | 8 ± 2.8 | 8 ± 2.8 | 10 ± 0.7 | 7.5 ±2.1 |
5 (G+) | Micrococcus luteus | 9 ± 0.0 | 9 ± 0.0 | 10.5 ± 0.7 | 7 ± 0.0 | 8 ± 0.0 | 8 ± 0.0 | 10 ± 0.0 | 7 ± 0.0 |
6 (G−) | Proteus | 9 ± 0.0 | 11 ± 0.0 | 12 ± 0.7 | 7.5 ±2.1 | 8 ± 0.0 | 8.5 ± 0.0 | 10 ± 0.0 | 7.5 ±2.1 |
7 (G−) | Ralstonia | 9.5 ± 0.7 | 9.5 ±2.1 | 10.5 ± 0.7 | 8 ± 0.0 | 8 ± 0.0 | 8 ± 0.0 | 10 ± 0.0 | 7 ± 0.0 |
8 (G−) | Klebsiella | 9 ± 1.4 | 12 ± 0.0 | 10.5 ± 0.7 | 8 ± 0.0 | 8 ± 0.0 | 9 ± 1.4 | 10.5 ± 0.7 | 7 ± 0.0 |
9 (G−) | Xanthomonas | 9.5 ± 0.7 | 10.5 ± 0.7 | 10.5 ± 0.7 | 8.5 ± 0.7 | 8 ± 0.0 | 8.5 ± 0.7 | 10.5 ± 0.7 | 7 ± 0.0 |
10 (G−) | Erwinia | 9 ± 0.0 | 9 ± 0.0 | 10.5 ± 0.7 | 7.5 ± 0.7 | 8 ± 0.0 | 9 ± 0.0 | 10.5 ± 0.7 | 7.5 ± 0.7 |
ENS-GL | ENS-PD | ||||
---|---|---|---|---|---|
No./G | Bacteria | MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) |
1 (G+) | Actinobacteria | 1 | 5 | 5 | 20 |
2 (G+) | Bacillus ATTC | 3 | 10 | 8 | 20 |
3 (G+) | Staphylococcus epidermis | 5 | 10 | 8 | 20 |
4 (G+) | Staphylococcus aureus | 5 | 20 | 5 | 20 |
5 (G+) | Micrococcus luteus | 5 | 20 | 8 | 20 |
6 (G−) | Proteus | 3 | 10 | 5 | 10 |
7 (G−) | Ralstonia | 3 | 10 | 8 | 20 |
8 (G−) | Klebsiella | 5 | 20 | 10 | 20 |
9 (G−) | Xanthomonas | 5 | 10 | 10 | 10 |
10 (G−) | Erwinia | 5 | 20 | 20 | 100 |
0% (Control) | 3% GLF | 6% GLF | 9% GLF | 3% PDF | 6% PDF | 9% PDF | Commercial | |
---|---|---|---|---|---|---|---|---|
L* | 68.56 ± 1.24 d | 47.43 ± 1.74 bc | 44.45 ± 6.06 b | 34.66 ± 3.17 a | 55.47 ± 3.26 c | 52.11 ± 2.40 bc | 49.88 ± 1.31 bc | 55.98 ± 2.73 c |
a* | 2.63 ± 0.16 a | 12.03 ± 1.42 cd | 8.94 ± 1.80 bc | 9.80 ± 0.67 bcd | 7.39 ± 0.36 b | 7.39 ± 0.36 b | 12.75 ± 1.47 d | 8.15 ± 2.49 b |
b* | 23.38 ± 0.84 bc | 25.93 ± 1.52 cd | 21.66 ± 1.20 b | 15.47 ± 2.49 a | 24.71 ± 1.24 bc | 24.71 ± 1.24 bc | 29.68 ± 1.00 de | 30.77 ± 1.59 e |
0% | 3%GLF | 6%GLF | 9%GLF | 3%PDF | 6%PDF | 9%PDF | Commercial | |
---|---|---|---|---|---|---|---|---|
Hardness | 1137.63± 468.34 a | 1214.25± 1176.46 a | 1453.86± 919.56 a | 1653.62± 936.68 ab | 2003.49± 617.93 b | 2192.08± 472.11 b | 919.03± 270.76 c | 1520.83± 1011.47 a |
Springiness | 0.376± 0.13 a | 0.42 ± 0.12 a | 0.46± 0.18 a | 0.43 ± 0.15 a | 0.51 ± 0.17 a | 0.57 ± 0.07 a | 0.39 ± 0.046 a | 0.41 ± 0.16 a |
Cohesiveness | 0.85± 0.01 b | 0.83 ± 0.08 b | 0.81± 0.09 b | 0.84 ± 0.06 b | 0.66 ± 0.14 ab | 0.47 ± 0.12 b | 0.54 ± 0.00 b | 0.86 ± 0.08 b |
Gumminess | 963.77± 389.32 ab | 948.83± 836.05 ab | 1126.1± 633.50 bc | 1347.23± 700.74 cd | 1275.67± 205.22 cd | 1058.13± 456.34 b | 425.03± 117.29 e | 1247.27± 759.03 cd |
Chewiness | 396.93± 257.99 cd | 442.03± 140.67 d | 588.63± 48.07 a | 648.8 ± 47.36 b | 645.89± 244.66 b | 619.75± 115.99 b | 168.26± 67.50 e | 589.33± 44.25 bc |
Formulation | Appearance | Colour | Aroma | Texture | Taste | Aftertaste | Overall Acceptability |
---|---|---|---|---|---|---|---|
0% GLF (Positive control) | 6.33 ± 1.5 a | 6.12 ± 1.55 a | 6.27 ± 1.56 a | 6.67 ± 1.37 a | 6.98 ± 1.40 a | 6.96 ± 1.36 a | 6.78 ± 1.22 a |
3% GLF | 6.43 ± 1.81 a | 6.37 ± 1.60 a | 6.24 ± 1.67 a | 6.65 ± 1.40 a | 6.59 ± 1.58 a | 6.35 ± 1.66 a | 6.55 ± 1.65 a |
6% GLF | 5.9 ± 1.94 a | 5.86 ± 1.71 a | 5.92 ± 1.67 a | 6.16 ± 1.70 a | 5.75 ± 1.86 a | 5.67 ± 1.93 b | 5.86 ± 1.87 a |
9% GLF | 5.08 ± 2.10 b | 5.16 ± 2.05 a | 5.37 ± 1.72 b | 5.18 ± 2.0 b | 4.18 ± 2.04 b | 4.22 ± 1.98 b | 4.59 ± 1.93 b |
3% PDF | 6.53 ± 1.47 a | 6.43 ± 1.47 a | 5.18 ± 1.68 b | 5.37 ± 1.67 b | 4.61 ± 1.78 b | 4.49 ± 1.73 b | 5.02 ± 1.68 b |
6% PDF | 6.78 ± 1.32 a | 6.76 ± 1.52 a | 5.57 ± 1.75 b | 6.49 ± 1.46 a | 5.67 ± 1.77 b | 5.47 ± 1.99 b | 5.88 ± 1.73 b |
9% PDF | 6.55 ± 1.35 a | 6.65 ± 1.20 a | 5.65 ± 1.21 a | 5.96 ± 1.90 b | 5.9 ± 1.81 b | 5.76 ± 1.85 b | 6.08 ± 1.62 a |
Commercial (Negative control) | * 6.92 ± 1.35 a | * 6.92 ± 1.45 a | * 7.69 ± 1.35 a | * 7.22 ± 1.45 a | * 7.47 ± 1.39 a | * 7.41 ± 1.30 a | * 7.45 ± 1.24 a |
Mushroom Species | Food Products | Flour Concentration | Overall Acceptability | Reference |
---|---|---|---|---|
Ganoderma lucidum liquid-fermented biomass flour Pleurotus djamor mushroom flour | Chicken patty | 3% 9% | 6.55 6.08 | Current study |
Ganoderma lucidum (Fruiting body powder) | Smoked Fish Sausage | 0.25% | 4.35 | [112] |
Sausage | 1% | 5.73 | [113] | |
Chicken patty | 10% and 20% | 3.03 and 2.10 | [45] | |
Pleurotus sapidus (Fruiting-body-base flour) | Chicken patty | 10%, | 5.73 | [20] |
Meatballs | 5% | 3.38 | [114] | |
Agaricus bisporus (Fruiting body powder) | Meatballs | 5% | 2.71 | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahia-Azizan, N.A.; Yee, C.S.; Ushidee-Radzi, M.A.; Ilham, Z.; Abd Rahim, M.H.; Raseetha, S.; Hamid, N.; Jamaludin, A.A.; Wan-Mohtar, W.A.A.Q.I. Development of Antimicrobial and Antioxidative Chicken Patties Using Liquid-Fermented Ganoderma lucidum and Pleurotus djamor Fruiting Body Biomass. Fermentation 2025, 11, 393. https://doi.org/10.3390/fermentation11070393
Zahia-Azizan NA, Yee CS, Ushidee-Radzi MA, Ilham Z, Abd Rahim MH, Raseetha S, Hamid N, Jamaludin AA, Wan-Mohtar WAAQI. Development of Antimicrobial and Antioxidative Chicken Patties Using Liquid-Fermented Ganoderma lucidum and Pleurotus djamor Fruiting Body Biomass. Fermentation. 2025; 11(7):393. https://doi.org/10.3390/fermentation11070393
Chicago/Turabian StyleZahia-Azizan, Nur Asyiqin, Chong Shin Yee, Muhammad Ameer Ushidee-Radzi, Zul Ilham, Muhamad Hafiz Abd Rahim, Siva Raseetha, Nazimah Hamid, Adi Ainurzaman Jamaludin, and Wan Abd Al Qadr Imad Wan-Mohtar. 2025. "Development of Antimicrobial and Antioxidative Chicken Patties Using Liquid-Fermented Ganoderma lucidum and Pleurotus djamor Fruiting Body Biomass" Fermentation 11, no. 7: 393. https://doi.org/10.3390/fermentation11070393
APA StyleZahia-Azizan, N. A., Yee, C. S., Ushidee-Radzi, M. A., Ilham, Z., Abd Rahim, M. H., Raseetha, S., Hamid, N., Jamaludin, A. A., & Wan-Mohtar, W. A. A. Q. I. (2025). Development of Antimicrobial and Antioxidative Chicken Patties Using Liquid-Fermented Ganoderma lucidum and Pleurotus djamor Fruiting Body Biomass. Fermentation, 11(7), 393. https://doi.org/10.3390/fermentation11070393