Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Raw Flours
2.2. Pasting Properties (RVA)
2.3. Production of Extruded Flours
2.4. Physical Characterization in the Extrusion and Drying Processes
2.5. Physical and Chemical Characterization of Extruded Flours
2.6. Noodle Production
2.7. Noodle Cooking Tests
2.8. Texture Profile Analysis of Noodles
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximal Composition of Blends
3.2. Pasting Properties of Raw Ingredients
3.3. Physical Characterization in the Extrusion and Drying Processes
3.4. Physical Characterization of Extruded Flours
3.5. Chemical Composition of Extruded Flours
3.6. Visual Characteristics of the Extruded and Noodles Produced
3.7. Noodles Characterization
3.7.1. Cooking Tests
3.7.2. Texture Profile Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mordor Intelligence Research & Advisory. Tamanho do mercado de alimentos e bebidas sem glúten do Brasil e análise de ações—Tendências e previsões de crescimento (2024–2029). 2024. Available online: https://www.mordorintelligence.com/pt/industry-reports/brazil-gluten-free-foods-beverages-market-industry (accessed on 19 June 2024).
- Hashim, N.; Ali, M.M.; Mahadi, M.R.; Abdullah, A.F.; Wayayok, A.; Kassim, M.S.M.; Jamaluddin, A. Smart farming for sustainable rice production: An insight into application, challenge, and future prospect. Rice Sci. 2024, 31, 47–61. [Google Scholar] [CrossRef]
- Wu, C.; Gong, X.; Zhang, J.; Zhang, C.; Qian, J.Y.; Zhu, W. Effect of Rice Protein on the Gelatinization and Retrogradation Properties of Rice Starch. Int. J. Biol. Macromol. 2023, 242, 125061. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Suzuki, K.; Hori, K.; Ebana, K.; Kimura, K.; Tsujii, Y.; Takano, K. Endosperm Enzyme Activity Is Responsible for Texture and Eating Quality of Cooked Rice Grains in Japanese Cultivars. Biosci. Biotechnol. Biochem. 2019, 83, 502–510. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Front Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef] [PubMed]
- Ascheri, J.L.R. Why Food Technology by Extrusion-Cooking? Discov. Agric. Food Sci. 2024, 12, 110–144. [Google Scholar] [CrossRef]
- Blandino, M.; Bresciani, A.; Locatelli, M.; Loscalzo, M.; Travaglia, F.; Vanara, F.; Marti, A. Pulse type and extrusion conditions affect phenolic profile and physical properties of extruded products. Food Chem. 2023, 403, 134369. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N. Gluten-free precooked rice noodle enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT Food Sci. Technol. 2016, 74, 67–75. [Google Scholar] [CrossRef]
- Suo, X.; Dall’Asta, M.; Giuberti, G.; Minucciani, M.; Wang, Z.; Vittadini, E. The effect of chickpea flour and its addition levels on quality and in vitro starch digestibility of corn–rice-based gluten-free noodle. Int. J. Food Sci. Nutr. 2022, 73, 600–609. [Google Scholar] [CrossRef]
- Scarton, M.; Clerici, M.T.P.S. Gluten-free noodles: Ingredients and processing for technological and nutritional quality improvement. Food Sci Technol. 2022, 42, e65622. [Google Scholar] [CrossRef]
- Ramos, M.J.S.; Rocha, E.B.M.; Gusmão, T.A.S.; Nascimento, A.; Lisboa, H.M.; Gusmão, R.P. Optimizing gluten-free noodle quality: The impacts of transglutaminase concentration and kneading time on cooking properties, nutritional value, and rheological characteristics. LWT Food Sci. Technol. 2023, 189, 115485. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Jothi, J.S.; Saifullah, M.; Hannan, M.A.; Mohibbullah, M. Impact of drying temperature on textural, cooking quality, and microstructure of gluten-free noodle. In Development of Gluten-Free Noodle; Gull, A., Nayik, G.A., Brennan, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 65–110. [Google Scholar] [CrossRef]
- Vargas-Solórzano, J.W.; Ascheri, J.L.R.; Carvalho, C.W.P.; Takeiti, C.Y. Impact of the pretreatment of grains on the interparticle porosity of feed material and the torque supplied during the extrusion of brown rice. Food Bioprocess Technol. 2020, 13, 88–100. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2010. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Romero Rodríguez, J.A.; Ascheri, J.L.R.; da Silva Lopes, A.J.; Vargas-Solórzano, J.W.; Pacheco, S.; de Jesus, M.S.C. Physical Characterization of Maize Grits Expanded Snacks and Changes in the Carotenoid Profile. Plant Foods Hum. Nutr. 2021, 76, 68–75. [Google Scholar] [CrossRef]
- Vargas-Solórzano, J.W.; Carvalho, C.W.P.; Takeiti, C.Y.; Ascheri, J.L.R.; Queiroz, V.A.V. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Res. Int. 2014, 55, 37–44. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 9th ed.; AACC: Saint Paul, MN, USA, 1995; Volumes 1 and 2. [Google Scholar]
- Altaf, U.; Hussain, S.Z.; Qadri, T.; Iftikhar, F.; Naseer, B.; Rather, A.H. Investigation on mild extrusion cooking for development of snacks using rice and chickpea flour blends. J. Food Sci. Technol. 2021, 58, 1143–1155. [Google Scholar] [CrossRef]
- Delgado-Murillo, S.A.; Zazueta-Morales, J.D.; Quintero-Ramos, A.; Castro-Montoya, Y.A.; Ruiz-Armenta, X.A.; Limón-Valenzuela, V.; Delgado-Nieblas, C.I. Effect of the extrusion process on the physicochemical, phytochemical, and cooking properties of gluten-free noodle made from broken rice and chickpea flours. Biotecnia 2024, XXVI, 112–121. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A. Gluten-free rice instant noodle: Effect of extrusion-cooking parameters on selected quality attributes and microstructure. Processes 2021, 9, 693. [Google Scholar] [CrossRef]
- Mironeasa, S.; Coţovanu, I.; Mironeasa, C.; Ungureanu-Iuga, M. A review of the changes produced by extrusion cooking on the bioactive compounds from vegetal sources. Antioxidants 2023, 12, 1453. [Google Scholar] [CrossRef]
- Gremasqui, I.d.L.A.; Giménez, M.A.; Lobo, M.O.; Sammán, N.C.; Díaz-Calderón, P. Effect of the addition of hydrolyzed broad bean flour (Vicia faba L.) on the functional, pasting and rheological properties of a wheat-broad bean flour paste. Food Meas. 2024, 19, 1362–1372. [Google Scholar] [CrossRef]
- Yeasmen, N.; Orsat, V. Industrial processing of chickpeas (Cicer arietinum) for protein production. Crop Sci. 2025, 65, e21361. [Google Scholar] [CrossRef]
- Ismail, B.B.; Gambo, A.; Garba, U.; Ayub, K.A. Gluten-free noodle’s consumer appeal and qualities. In Development of Gluten-Free Noodle; Gull, A., Nayik, G.A., Brennan, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Bayomy, H.; Alamri, E. Technological and nutritional properties of instant noodles enriched with chickpea or lentil flour. J. King Saud. Univ. Sci. 2022, 34, 101833. [Google Scholar] [CrossRef]
- Namir, M.; Iskander, A.; Alyamani, A.; Sayed-Ahmed, E.T.A.; Saad, A.M.; Elsahy, K.; El-Tarabily, K.A.; Conte-Junior, C.A. Upgrading common wheat noodle by fiber-rich fraction of potato peel byproduct at different particle sizes: Effects on physicochemical, thermal, and sensory properties. Molecules 2022, 27, 2868. [Google Scholar] [CrossRef]
- Cotovanu, I.; Mironeasa, S.; Ungureanu-Iuga, M.; Mironeasa, C. Effect of Extrusion Parameters on the Extruded Products Features. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Sofia, Bulgaria, 3–9 July 2023; Volume 23. [Google Scholar] [CrossRef]
Experimental | Treatment | Process Properties | Extruded Flour Properties | ||||||||||||||||||||
Design | Extrusion | Drying | Hydration | Instrumental Color | Chemical Composition | ||||||||||||||||||
X1 | X2 | X3 | Code | EO | FSS | SME | EM | EMD | WSI | WAI | L* | a* | b* | PRO | CHO | LIP | ASH | FIB | |||||
% | % | °C | - | - | rpm | kJ/kg | % | % | % 1 | g/g 2 | - | - | - | % | % | % | % | % | |||||
20 | 24 | 80 | T1 | 4° | 8 | 254.39 | 13.68 | 8.71 | 2.32 | 7.67 | 90.01 | 0.05 | 15.67 | 9.84 | 74.32 | 1.81 | 1.39 | 3.56 | |||||
40 | 24 | 80 | T2 | 11° | 10 | 200.75 | 16.72 | 12.51 | 3.00 | 7.96 | 89.27 | −0.19 | 19.04 | 11.38 | 75.01 | 2.92 | 1.71 | 5.81 | |||||
20 | 30 | 80 | T3 | 5° | 17 | 172.26 | 15.27 | 10.02 | 2.40 | 8.41 | 87.20 | 1.77 | 24.55 | 9.85 | 74.29 | 1.79 | 1.41 | 3.56 | |||||
40 | 30 | 80 | T4 | 10° | 19 | 161.40 | 19.08 | 14.22 | 1.85 | 8.72 | 90.44 | 0.15 | 16.65 | 11.29 | 71.01 | 2.85 | 1.72 | 5.77 | |||||
20 | 24 | 120 | T5 | 2° | 8 | 160.33 | 13.53 | 8.97 | 2.23 | 7.51 | 90.02 | −0.03 | 17.06 | 9.81 | 74.38 | 1.84 | 1.42 | 3.49 | |||||
40 | 24 | 120 | T6 | 7° | 10 | 163.80 | 15.14 | 10.60 | 2.85 | 6.89 | 87.51 | 1.05 | 24.22 | 11.29 | 71.24 | 2.77 | 1.69 | 5.79 | |||||
20 | 30 | 120 | T7 | 1° | 17 | 138.37 | 11.29 | 5.77 | 2.90 | 8.33 | 90.55 | 0.14 | 15.90 | 9.79 | 74.22 | 1.82 | 1.36 | 3.48 | |||||
40 | 30 | 120 | T8 | 8° | 19 | 141.04 | 16.45 | 11.03 | 4.31 | 5.49 | 88.93 | 0.13 | 20.02 | 11.40 | 72.11 | 2.81 | 1.73 | 5.82 | |||||
30 | 27 | 100 | T9 | 3° | 14 | 171.32 | 16.37 | 10.33 | 3.09 | 7.13 | 90.13 | −0.15 | 17.11 | 10.52 | 6.91 | 2.32 | 1.55 | 4.66 | |||||
30 | 27 | 100 | T10 | 6° | 14 | 168.81 | 15.69 | 11.03 | 3.34 | 7.26 | 89.12 | −0.17 | 18.92 | 10.55 | 72.64 | 2.35 | 1.53 | 4.59 | |||||
30 | 27 | 100 | T11 | 9° | 14 | 157.39 | 16.95 | 12.00 | 3.48 | 7.67 | 89.05 | −0.25 | 18.67 | 10.50 | 71.98 | 2.31 | 1.56 | 4.69 | |||||
30 | 27 | 100 | T12 | 12° | 14 | 174.76 | 16.47 | 11.88 | 3.04 | 7.37 | 90.14 | −0.17 | 17.29 | 10.51 | 72.12 | 2.41 | 1.54 | 4.68 |
Treatment | Cooking Tests 1 | Texture Parameters 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OCT | MI | VI | SSL | HA | EL | CO | GO | CW | |||
min | % | % | % | N | - | - | N | N | |||
T1 | 10 | 145.82 | 155.60 | 5.86 | 29.17 | 0.93 | 0.74 | 21.09 | 19.70 | ||
T2 | 11 | 165.93 | 154.12 | 10.17 | 14.04 | 0.88 | 0.73 | 10.17 | 9.54 | ||
T3 | 10 | 151.51 | 160.02 | 9.11 | 19.50 | 1.09 | 0.79 | 15.64 | 14.09 | ||
T4 | 10 | 172.50 | 205.04 | 7.72 | 9.21 | 2.30 | 0.80 | 7.12 | 9.21 | ||
T5 | 9 | 143.94 | 151.99 | 6.48 | 4.56 | 2.05 | 0.75 | 3.45 | 4.49 | ||
T6 | 9 | 147.36 | 152.40 | 6.53 | 6.51 | 2.02 | 0.73 | 5.52 | 5.20 | ||
T7 | 9 | 139.37 | 147.07 | 8.72 | 20.15 | 0.94 | 0.75 | 15.13 | 13.67 | ||
T8 | 9 | 138.51 | 160.44 | 4.12 | 14.11 | 1.07 | 0.84 | 11.47 | 11.19 | ||
T9 | 9 | 158.76 | 191.59 | 9.06 | 4.12 | 2.22 | 0.77 | 3.02 | 3.11 | ||
T10 | 10 | 155.36 | 175.28 | 8.68 | 5.70 | 0.95 | 0.71 | 3.15 | 3.02 | ||
T11 | 10 | 156.39 | 176.36 | 7.77 | 5.11 | 2.21 | 0.79 | 4.17 | 4.14 | ||
T12 | 10 | 152.02 | 152.55 | 9.25 | 18.52 | 0.89 | 0.71 | 12.08 | 10.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, S.d.S.; Vargas-Solórzano, J.W.; Carvalho, C.W.P.; Ascheri, J.L.R. Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours. Foods 2025, 14, 2524. https://doi.org/10.3390/foods14142524
Fernandes SdS, Vargas-Solórzano JW, Carvalho CWP, Ascheri JLR. Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours. Foods. 2025; 14(14):2524. https://doi.org/10.3390/foods14142524
Chicago/Turabian StyleFernandes, Simone de Souza, Jhony Willian Vargas-Solórzano, Carlos Wanderlei Piler Carvalho, and José Luis Ramírez Ascheri. 2025. "Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours" Foods 14, no. 14: 2524. https://doi.org/10.3390/foods14142524
APA StyleFernandes, S. d. S., Vargas-Solórzano, J. W., Carvalho, C. W. P., & Ascheri, J. L. R. (2025). Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours. Foods, 14(14), 2524. https://doi.org/10.3390/foods14142524