Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Mesquite Pods Powder and Extract
2.3. Phenolic Content and Antioxidant Activity of Mesquite Pods
2.4. Preparation of the Meat Product
2.5. Meat Quality Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Mesquite Pods
3.2. Meat Quality of the Meat Product
3.2.1. Chemical Proximate Composition
3.2.2. pH and Lipid Oxidation
3.2.3. Instrumental Color Changes
3.2.4. Water Retention and Texture
3.2.5. Sensory Attributes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BHT | Butylhydroxytoluene |
MPP | Mesquite pods powder |
MPE | Mesquite pods extract |
TPC | Total phenolic content |
GAE | Gallic acid equivalent |
TFVC | Total flavonoid content |
QCE | Quercetin equivalent |
RPA | Reducing power activity |
ABTS | 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
CN | Control |
TBARS | Thiobarbituric acid reactive substances |
MDA | Malondialdehyde |
L* | Lightness |
a* | Redness |
b* | Yellowness |
C* | Chroma |
h* | Hue |
WHC | Water-holding capacity |
CWL | Cooking weight loss |
FTA | Fracture texture analysis |
SD | Standard deviation |
References
- Calderón-Oliver, M.; López-Hernández, L.H. Food vegetable and fruit waste used in meat products. Food Rev. Int. 2022, 38, 628–654. [Google Scholar] [CrossRef]
- Kulkarni, V.V.; Devatkal, S.K. Utilization of byproducts and waste materials from meat and poultry processing industry: A review. J. Meat Sci. 2015, 11, 1–10. [Google Scholar]
- Vargas-Sánchez, R.D.; Torres-Martínez, B.M.; Torrescano-Urrutia, G.R.; de la Rosa-Alcaraz, M.D.A.; Sánchez-Escalante, A. Composición, propiedades, y uso del mezquite en la industria alimentaria. In Recursos Naturales de las Zonas Áridas. Diversidad, Aprovechamiento, Salud y Alimentación, 1st ed.; Flores-Rivas, J., Guzmán-Chávez, M.G., González-Córdova, A.F., Martínez-Tagueña, N., Mounzar, O., Escobedo-Moratilla, A., Muñiz-Ramírez, A., Trujillo-Silva, J., Eds.; CERLALC: Puebla, Mexico, 2024; pp. 463–488. [Google Scholar]
- González-Montemayor, A.M.; Solanilla-Duque, J.F.; Flores-Gallegos, A.C.; López-Badillo, C.M.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R. Green bean, pea and mesquite whole pod flours nutritional and functional properties and their effect on sourdough bread. Foods 2021, 10, 2227. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Barron, U.; Dijkshoorn, R.; Maloncy, M.; Finimundy, T.; Carocho, M.; Ferreira, I.C.; Barros, L.; Cadavez, V. Nutritional quality and staling of wheat bread partially replaced with Peruvian mesquite (Prosopis pallida) flour. Food Res. Int. 2020, 137, 109621. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rojo, M.I.; Vargas-Sánchez, R.D.; Torres-Martínez, B.D.M.; Torrescano-Urrutia, G.R.; Lorenzo, J.M.; Sánchez-Escalante, A. Inclusion of ethanol extract of mesquite leaves to enhance the oxidative stability of pork patties. Foods 2019, 8, 631. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, B.D.M.; Vargas-Sánchez, R.D.; Pérez-Alvarez, J.Á.; Fernández-López, J.; Esqueda, M.C.; Rodríguez-Carpena, J.G.; Ibarra-Arias, F.J.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Recovery of an additive for pork meat from Pleurotus ostreatus grown in agro-industrial wastes. Biotecnia 2025, 27, e2396. [Google Scholar]
- Movileanu, I.; Núñez de González, M.T.; Hafley, B.; Miller, R.K.; Keeton, J.T. Comparison of dried plum puree, rosemary extract, and BHA/BHT as antioxidants in irradiated ground beef patties. Int. J. Food Sci. 2013, 2013, 360732. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.A.; Seo, J.K.; Parvin, R.; Ko, J.; Yang, H.S. Comparison of butylated hydroxytoluene, ascorbic acid, and clove extract as antioxidants in fresh beef patties at refrigerated storage. Food Sci. Anim. Resour. 2019, 39, 768. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Wang, X.; Du, W.; Cheng, J.; Zhang, J.; Zhang, Y.; Klinjapo, R.; Asavasanti, S.; Yasurin, P. Recent advances, challenges, and functional applications of natural phenolic compounds in the meat products industry. Antioxidants 2025, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; Barretto, A.C.D.S. Addition of natural extracts with antioxidant function to preserve the quality of meat products. Biomolecules 2022, 12, 1506. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Overview of plant extracts as natural preservatives in meat. J. Food Process. Preserv. 2022, 46, e16796. [Google Scholar] [CrossRef]
- Kukhtenko, H.; Bevz, N.; Konechnyi, Y.; Kukhtenko, O.; Jasicka-Misiak, I. Spectrophotometric and chromatographic assessment of total polyphenol and flavonoid content in Rhododendron tomentosum extracts and their antioxidant and antimicrobial activity. Molecules 2024, 29, 1095. [Google Scholar] [CrossRef] [PubMed]
- Berker, K.I.; Demirata, B.; Apak, R. Determination of total antioxidant capacity of lipophilic and hydrophilic antioxidants in the same solution by using ferric–ferricyanide assay. Food Anal. Methods 2012, 5, 1150–1158. [Google Scholar] [CrossRef]
- Wołosiak, R.; Drużyńska, B.; Derewiaka, D.; Piecyk, M.; Majewska, E.; Ciecierska, M.; Worobiej, E.; Pakosz, P. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—A practical approach. Molecules 2022, 27, 50. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis. In Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2020. [Google Scholar]
- Pfalzgraf, A.; Frigg, M.; Steinhart, H. Alpha-tocopherol contents and lipid oxidation in pork muscle and adipose tissue during storage. J. Agric. Food Chem. 1995, 43, 1339–1342. [Google Scholar] [CrossRef]
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J.M. CIELAB color coordinates versus relative proportions of myoglobin redox forms in the description of fresh meat appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.; Lammert, A.; Madden, J.; Cahn, A.; Kang, I.; Amin, S. Addition of carrot pomace to enhance the physical, sensory, and functional properties of beef patties. Foods 2025, 13, 3910. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-García, D.A.; Torres-Martínez, B.D.M.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Valorization of potato peel waste as natural additive for use in meat products. Resources 2023, 12, 148. [Google Scholar] [CrossRef]
- NCSS LLC. NCSS 2007 Statistical Software [Computer Software]. Version 07.1.21. Kaysville (UT). Available online: www.ncss.com (accessed on 20 June 2025).
- Armijo-Nájera, M.G.; Moreno-Reséndez, A.; Blanco-Contreras, E.; Borroel-García, V.J.; Reyes-Carrillo, J.L. Mesquite pod (Prosopis spp.) food for goats in the semi-desert. Rev. Mex. Cienc. Agric. 2019, 10, 113–122. [Google Scholar]
- Gonzales-Barron, U.; Dijkshoorn, R.; Maloncy, M.; Finimundy, T.; Calhelha, R.C.; Pereira, C.; Stojković, D.; Soković, M.; Ferreira, I.C.F.R.; Barros, L.; et al. Nutritive and bioactive properties of mesquite (Prosopis pallida) flour and its technological performance in breadmaking. Foods 2020, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Ziara Hashim, A.; Hasan Hussein, F.; Divan Khosroshahi, E.; Razavi, H. Enhancing functional characteristics and antioxidant activity of Prosopis juliflora pods’ protein isolate through pH adjustment, while detecting the physicochemical properties and antibacterial inhibition activity. J. Food Sci. Technol. 2025, 22, 62–77. [Google Scholar]
- García-Andrade, M.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Rosales-Castro, M.; Medina-Torres, L. Mesquite leaves (Prosopis laevigata), a natural resource with antioxidant capacity and cardioprotection potential. Ind. Crops Prod. 2013, 44, 336–342. [Google Scholar] [CrossRef]
- Díaz-Batalla, L.; Hernández-Uribe, J.P.; Román-Gutiérrez, A.D.; Cariño-Cortés, R.; Castro-Rosas, J.; Téllez-Jurado, A.; Gómez-Aldapa, C.A. Chemical and nutritional characterization of raw and thermal-treated flours of Mesquite (Prosopis laevigata) pods and their residual brans. CyTA-J. Food 2018, 16, 444–451. [Google Scholar] [CrossRef]
- de Melo Cavalcante, A.M.; de Melo, A.M.; da Silva, A.V.F.; da Silva Neto, G.J.; Barbi, R.C.T.; Ikeda, M.; Silva, G.B.; Steel, C.J.; da Silva, O.S. Mesquite (Prosopis juliflora) grain flour: New ingredient with bioactive, nutritional and physical-chemical properties for food applications. Future Foods 2022, 5, 100114. [Google Scholar] [CrossRef]
- Young, O.A.; Frost, D.A.; Agnew, M. Analytical methods for meat and meat products. In Handbook of Meat and Meat Processing, 2nd ed.; Hui, Y.H., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 140–159. [Google Scholar]
- de Melo Cavalcante, A.M.; de Melo, A.M.; Almeida, F.L.C.; Diniz, N.C.M.; Luna, L.C.; da Silva, G.F.G.; da Nóbrega, S.E.; de Alburquerque, S.T.C.; Ribeiro, N.L.; da Silva, O.S. Study of mesquite grain flour (Prosopis juliflora Sw. DC) in hamburger storage. J. Food Process. Preserv. 2022, 46, e16377. [Google Scholar] [CrossRef]
- Kim, T.W.; Kim, C.W.; Kwon, S.G.; Hwang, J.H.; Park, D.H.; Kang, D.G.; Ha, J.; Yang, M.R.; Kim, S.W.; Kim, I.S. pH as analytical indicator for managing pork meat quality. Sains Malays. 2016, 45, 1097–1103. [Google Scholar]
- Prasajak, P.; Renumarn, P.; Sriwichai, W.; Detchewa, P. Antioxidant and antimicrobial properties of Moringa oleifera leaves and pods extracts in pork meatballs during cold storage. CMUJ Nat. Sci. 2021, 20, e2021033. [Google Scholar] [CrossRef]
- Das, A.; Biswas, S.; Nanda, P.K.; Chatterjee, N.; Pal, S.; Dhar, P.; Verma, A.K.; Bhattacharya, D.; Koshy, R.; Das, A.K. Moringa pod derived antioxidant dietary fiber as a quality enhancer in goat meat nuggets. Sustain. Food Technol. 2024, 2, 232–242. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Munekata, P.E.; Lorenzo, J.M.; Chabani, Z.; Farag, M.A.; Domínguez, R. Measurement of antioxidant capacity of meat and meat products: Methods and applications. Molecules 2021, 26, 3880. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Lee, H.C.; Lammert, R., Jr.; Wolberg, C., Jr.; Ma, D.; Immoos, C.; Casassa, F.; Kang, I. Effects of red-wine grape pomace on the quality and sensory attributes of beef hamburger patty. Int. J. Food Sci. Technol. 2022, 57, 1814–1823. [Google Scholar] [CrossRef]
- Shariati-Ievari, S.; Ryland, D.; Edel, A.; Nicholson, T.; Suh, M.; Aliani, M. Sensory and physicochemical studies of thermally micronized chickpea (Cicer arietinum) and green lentil (Lens culinaris) flours as binders in low-fat beef burgers. J. Food Sci. 2016, 81, S1230–S1242. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.K.; Lee, J.Y.; Jang, H.W. Quality characteristics and volatile compounds of plant-based patties supplemented with biji powder. Food Chem. X 2024, 23, 101576. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Delgado-Pando, G. Sensory analysis and consumer research in new meat products development. Foods 2021, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, W.T.; Wanasundara, J.P.; Pietrasik, Z.; Shand, P.J. Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Res. Int. 2010, 43, 617–626. [Google Scholar] [CrossRef]
Parameter | Concentration (mg/mL) | BHT | ||
---|---|---|---|---|
0.1 | 0.05 | 0.025 | ||
TPHC (mg GAE/g) | 247.41 ± 0.96 c | 217.72 ± 0.85 b | 158.94 ± 0.62 a | |
TFVC (mg QE/g) | 10.35 ± 0.88 c | 8.80 ± 0.67 b | 6.60 ± 0.50 a | |
RPA (abs 700 nm) | 0.93 ± 0.01 c | 0.81 ± 0.01 b | 0.74 ± 0.02 a | 1.10 ± 0.12 d |
ABTS (% inhibition) | 15.33 ± 0.93 c | 9.96 ± 0.30 b | 6.20 ± 0.28 a | 75.59 ± 0.95 d |
DPPH (% inhibition) | 35.99 ± 1.00 c | 30.23 ± 0.29 b | 26.01 ± 0.65 a | 88.44 ± 1.11 d |
Parameter | MPP | Treatments | ||||
---|---|---|---|---|---|---|
CN | MPP-2% | MPP-5% | MPE-0.1% | MPE-0.3% | ||
Moisture (%) | 4.41 ± 0.28 | 64.65 ± 2.40 | 65.52 ± 0.99 | 62.96 ± 3.32 | 65.78 ± 2.02 | 66.80 ± 2.17 |
Protein (%) | 11.23 ± 0.46 | 19.52 ± 0.45 | 19.20 ± 1.27 | 21.28 ± 1.38 | 18.39 ± 0.83 | 18.53 ± 0.48 |
Fat (%) | 0.39 ± 0.01 | 11.86 ± 1.68 | 11.46 ± 1.74 | 11.92 ± 2.12 | 11.98 ± 2.00 | 11.22 ± 1.81 |
Ash (%) | 3.08 ± 0.03 | 2.55 ± 0.15 | 2.76 ± 0.23 | 2.45 ± 0.13 | 2.56 ± 0.22 | 2.31 ± 0.32 |
Carbohydrate (%) | 81.31 ± 0.79 | 1.41 ± 0.57 | 1.06 ± 0.51 | 1.39 ± 0.31 | 1.28 ± 0.25 | 1.15 ± 0.32 |
Parameter | Day of Storage | Treatments | ||||
---|---|---|---|---|---|---|
CN | MPP-2% | MPP-5% | MPE-0.1% | MPE-0.3% | ||
L* | 0 | 51.82 ± 1.68 aA | 52.76 ± 1.69 aA | 56.65 ± 0.74 bA | 52.36 ± 1.57 aA | 55.54 ± 0.74 bA |
3 | 54.87 ± 2.98 aAB | 56.02 ± 2.74 aAB | 57.08 ± 1.43 aAB | 54.81 ± 2.42 aAB | 57.20 ± 2.15 aAB | |
6 | 57.22 ± 2.83 aB | 55.55 ± 2.14 aAB | 58.53 ± 1.07 aAB | 58.15 ± 2.94 aB | 58.46 ± 2.94 aB | |
9 | 61.44 ± 3.33 bB | 60.63 ± 3.00 bB | 58.96 ± 1.26 abB | 57.58 ± 1.14 aB | 56.59 ± 1.04 aB | |
a* | 0 | 12.22 ± 0.95 aC | 12.20 ± 0.52 aB | 13.06 ± 0.49 abB | 13.66 ± 0.70 bB | 13.14 ± 0.33 bB |
3 | 12.40 ± 0.96 aC | 13.13 ± 0.59 aB | 13.62 ± 1.00 aB | 13.32 ± 0.98 aB | 13.49 ± 1.03 aB | |
6 | 10.75 ± 0.68 aB | 11.72 ± 1.06 abB | 12.70 ± 0.33 bB | 12.64 ± 1.18 bAB | 12.99 ± 0.89 bAB | |
9 | 8.18 ± 0.64 aA | 8.89 ± 0.74 abA | 10.25 ± 0.75 bA | 11.63 ± 0.75 cA | 11.75 ± 0.44 cA | |
b* | 0 | 11.44 ± 1.44 aA | 14.76 ± 1.30 bA | 15.43 ± 1.03 bA | 13.28 ± 0.92 abA | 15.36 ± 0.55 bA |
3 | 13.44 ± 1.26 aAB | 15.83 ± 0.62 bA | 17.32 ± 0.67 bB | 13.91 ± 1.32 aA | 16.14 ± 0.85 bA | |
6 | 13.70 ± 1.21 aB | 15.34 ± 1.55 abA | 17.50 ± 0.80 bB | 13.60 ± 1.04 aA | 14.64 ± 1.37 aA | |
9 | 14.40 ± 1.03 aB | 13.74 ± 0.75 aA | 17.36 ± 0.51 bB | 14.32 ± 0.95 aA | 15.52 ± 0.82 aA | |
C* | 0 | 18.60 ± 0.68 aB | 20.48 ± 0.74 bB | 20.78 ± 1.03 bA | 19.82 ± 0.80 bA | 20.25 ± 0.53 bA |
3 | 18.83 ± 0.48 aB | 20.86 ± 0.74 bB | 20.85 ± 0.54 bA | 19.75 ± 0.79 bA | 19.97 ± 1.39 bA | |
6 | 17.25 ± 0.98 aA | 19.86 ± 0.74 bB | 20.31 ± 0.57 bA | 20.01 ± 0.64 bA | 19.97 ± 1.39 bA | |
9 | 15.78 ± 0.98 aA | 18.05 ± 0.74 bA | 20.01 ± 1.12 bA | 19.05 ± 0.93 bA | 19.37 ± 0.94 bA | |
h* | 0 | 44.45 ± 1.38 aA | 47.91 ± 1.81 bA | 50.98 ± 1.06 bA | 45.51 ± 1.19 abA | 48.79 ± 1.44 bA |
3 | 46.88 ± 0.89 aA | 50.73 ± 1.39 bcA | 52.92 ± 1.16 cB | 48.57 ± 1.42 bA | 48.82 ± 0.70 bA | |
6 | 52.61 ± 0.86 bB | 53.41 ± 0.86 bB | 53.54 ± 1.64 bB | 49.92 ± 1.99 aA | 50.22 ± 1.67 aA | |
9 | 61.05 ± 0.54 cC | 58.96 ± 1.33 bC | 58.23 ± 1.17 bC | 51.65 ± 1.09 aB | 53.33 ± 0.85 aB | |
ΔE | 0 | - | 3.45 | 6.32 | 2.40 | 5.48 |
3 | - | 2.75 | 4.63 | 1.03 | 3.73 | |
6 | - | 2.53 | 4.47 | 2.20 | 3.14 | |
9 | - | 1.26 | 4.39 | 5.19 | 6.05 | |
RGB value | 0 | 151, 116, 105 | 155, 118, 101 | 167, 127, 110 | 155, 116, 103 | 164, 124, 113 |
3 | 160, 123, 109 | 166, 125, 106 | 170, 128, 108 | 162, 122, 108 | 170, 128, 110 | |
6 | 164, 130, 114 | 162, 125, 107 | 173, 132, 111 | 170, 131, 117 | 172, 132, 116 | |
9 | 172, 143, 123 | 171, 140, 123 | 170, 135, 112 | 167, 130, 114 | 165, 128, 109 | |
RGB color | 0 | |||||
3 | ||||||
6 | ||||||
9 |
Item | Sensory Attribute | Treatments | ||||
---|---|---|---|---|---|---|
CN | MPP-2% | MPP-5% | MPE-0.1% | MPE-0.3% | ||
Raw patty | Color | 6.60 ± 0.70 | 5.70 ± 0.67 | 5.30 ± 0.95 | 6.60 ± 0.52 | 6.20 ± 0.63 |
Appearance | 6.50 ± 0.85 | 5.50 ± 0.85 | 5.20 ± 0.92 | 6.40 ± 0.52 | 6.10 ± 0.74 | |
Cooked patty | Color | 5.70 ± 0.82 | 5.50 ± 0.71 | 5.90 ± 0.74 | 5.70 ± 0.67 | 5.60 ± 0.84 |
Appearance | 5.70 ± 0.67 | 5.50 ± 0.53 | 5.50 ± 0.97 | 5.30 ± 0.95 | 5.70 ± 0.82 | |
Odor | 5.40 ± 1.35 | 5.20 ± 1.03 | 5.50 ± 1.08 | 4.40 ± 0.97 | 4.50 ± 0.85 | |
Flavor | 5.60 ± 1.58 | 5.60 ± 0.84 | 5.20 ± 1.14 | 4.00 ± 1.05 | 5.10 ± 1.37 | |
Juiciness | 5.60 ± 0.97 | 5.60 ± 0.84 | 5.30 ± 0.95 | 5.50 ± 0.85 | 5.20 ± 1.03 | |
Fat sensation | 5.50 ± 0.97 | 5.50 ± 0.71 | 5.60 ± 0.97 | 5.40 ± 0.84 | 5.50 ± 0.71 | |
Texture | 5.50 ± 1.18 | 5.60 ± 0.84 | 5.40 ± 0.84 | 5.80 ± 0.92 | 5.90 ± 0.57 | |
Overall acceptability | 5.90 ± 0.74 | 5.50 ± 0.71 | 5.40 ± 1.07 | 5.10 ± 0.74 | 5.30 ± 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aispuro-Sainz, K.J.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Torres-Martínez, B.d.M.; Sánchez-Escalante, A. Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product. Processes 2025, 13, 2286. https://doi.org/10.3390/pr13072286
Aispuro-Sainz KJ, Vargas-Sánchez RD, Torrescano-Urrutia GR, Torres-Martínez BdM, Sánchez-Escalante A. Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product. Processes. 2025; 13(7):2286. https://doi.org/10.3390/pr13072286
Chicago/Turabian StyleAispuro-Sainz, Karla Joanna, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Brisa del Mar Torres-Martínez, and Armida Sánchez-Escalante. 2025. "Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product" Processes 13, no. 7: 2286. https://doi.org/10.3390/pr13072286
APA StyleAispuro-Sainz, K. J., Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Torres-Martínez, B. d. M., & Sánchez-Escalante, A. (2025). Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product. Processes, 13(7), 2286. https://doi.org/10.3390/pr13072286