Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.3. Proceedings
2.4. Blood and Muscle Biochemical Parameters
2.5. Analysis of Rigor Mortis
2.6. Fillet Yield
2.7. Fillet Quality
2.7.1. Evaluation of pH, Color, and Shear Force
2.7.2. Moisture Content and Water Loss in Fillets
2.7.3. Texture Profile Analysis (TPA)
2.8. Statistical Analysis
3. Results
3.1. Biochemical Parameters
3.2. Fillet Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papaharisis, L.; Tsironi, T.; Dimitroglou, A.; Taoukis, P.; Pavlidis, M. Stress assessment, quality indicators and shelf life of three aquaculture important marine fish, in relation to harvest practices, water temperature and slaughter method. Aquac. Res. 2019, 50, 2608–2620. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Fantini, L.E.; Rodrigues, R.A.; Honorato, C.A.; Goes, E.S.R.; Ferraz, A.L.J.; Lara, J.A.F.; Hansom, T.; Campos, C.M. Resting time before slaughter restores homeostasis, increases rigor mortis time and fillet quality of surubim Pseudoplatystoma spp. PLoS ONE 2020, 15, e0233636. PLoS ONE 2020, 15, e0233636. [Google Scholar] [CrossRef] [PubMed]
- Pongsetkul, J.; Benjakul, S.; Takeungwongtrakul, S.; Sai-Ut, S. Impact of stocking density during live transportation on meat quality of Nile tilapia (Oreochromis niloticus) and their changes during storage. J. Food Process. Preserv. 2022, 46, e16523. [Google Scholar] [CrossRef]
- Xavier, W.S.; Leclercq, E.; Carvalho, P.L.P.F.; Vicente, I.S.T.; Guimarães, M.G.; Rodrigues, E.J.D.; Milanezi, R.C.; Barbé, F.; Sartori, M.M.P.; Pezzato, L.E.; et al. The putative effect of a SOD-rich melon pulp-concentrate on growth performance and antioxidant status of Nile tilapia (Oreochromis niloticus) under heat/dissolved oxygen-induced stress. Aquaculture 2020, 529, 735669. [Google Scholar] [CrossRef]
- Qin, H.; Yu, Z.; Zhu, Z.; Lin, Y.; Xia, J.; Jia, Y. The integrated analyses of metabolomics and transcriptomics in gill of GIFT tilapia in response to long term salinity challenge. Aquac. Fish. 2022, 7, 131–139. [Google Scholar] [CrossRef]
- Nwaigwe, U. Fish preservation and processing. J. Food 2017, 2, 1–31. [Google Scholar]
- Nair, V.R.; Parvathy, U.; Jithin, T.J.; Binsi, P.K.; Ravishankar, C.N. Live transportation of food fishes: Current scenario and future prospects. Curr. Sci. 2023, 124, 418. [Google Scholar] [CrossRef]
- Luz, R.K.; Favero, G.C. Use of Salt, Anesthetics, and Stocking Density in Transport of Live Fish: A Review. Fishes 2024, 9, 286. [Google Scholar] [CrossRef]
- De la Llave-Propín, Á.; Villalba, A.M.; Bermejo-Poza, R.; Villarroel, M.; Pérez, C.; Chávarri, E.G.; Cabezas, A.; Garoz, R.G.; Garrote, M.F.M.; Fluente, J.; et al. Effect of pre-slaughter crowding on rainbow trout welfare and product quality. J. World Aquac. Soc. 2025, 56, e70025. [Google Scholar] [CrossRef]
- Banhara, D.G.A.; Mendonça, W.C.B.; Goes, E.S.R.; Goes, M.D.; Henrique, P. Effect of different stocking densities on pre-slaughter stress based on respiratory parameters in Nile tilapia (Oreochromis niloticus). Pan-Am. J. Aquat. Sci. 2021, 16, 270–275. [Google Scholar]
- Daskalova, A. Farmed fish welfare: Stress, post-mortem muscle metabolism, and stress-related meat quality changes. Inter-Natl. Aquat. Res. 2019, 11, 113–124. [Google Scholar] [CrossRef]
- Hong, J.; Chen, X.; Liu, S.; Fu, Z.; Han, M.; Wang, Y.; Gu, Z.; Ma, Z. Impact of fish density on water quality and physiological response of golden pompano (Trachinotus ovatus) flingerlings during transportation. Aquaculture 2019, 507, 260–265. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Ni, Q.; Liu, H.; Wu, F.; Wang, X. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 219, 25–34. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Ghelichpour, M. Effects of anesthesia and salt treatment on stress responses, and immunological and hydromineral characteristics of common carp (Cyprinus carpio, Linnaeus, 1758) subjected to transportation. Aquaculture 2019, 501, 1–6. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Teiba, I.I.; Shahin, S.A.; Mourad, M.M.; Zaki, M.A.; Labib, E.M.; Azra, M.N.; Sewilam, H.; El-Dakroury, M.F.; Dawood, M.A. Dietary Guduchi (Tinospora cordifolia) enhanced the growth performance, antioxidative capacity, immune response and ameliorated stress-related markers induced by hypoxia stress in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2022, 120, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Goes, E.S.R.; Goes, M.D.; Castro, P.L.D.; Lara, J.A.F.D.; Vital, A.C.P.; Ribeiro, R.P. Imbalance of the redox system and quality of tilapia fillets subjected to pre-slaughter stress. PLoS ONE 2019, 14, e0210742. [Google Scholar] [CrossRef]
- Hematyar, N.; Rahimnejad, S.; Gorakh Waghmare, S.; Malinovskyi, O.; Policar, T. Effects of Stocking Density and Pre-Slaughter Handling on the Fillet Quality of Largemouth Bass (Micropterus salmoides): Implications for Fish Welfare. Foods 2024, 13, 1477. [Google Scholar] [CrossRef]
- Refaey, M.M.; Tian, X.; Tang, R.; Li, D. Changes in physiological responses, muscular composition and flesh quality of channel catfish Ictalurus punctatus suffering from transport stress. Aquaculture 2017, 478, 9–15. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Liu, Y.; Adányi, N.; Zhang, X. Effects of waterless live transportation on survivability, physiological responses and flesh quality in Chinese farmed sturgeon (Acipenser schrenckii). Aquaculture 2020, 518, 734834. [Google Scholar] [CrossRef]
- Anders, N.; Eide, I.; Lerfall, J.; Roth, B.; Breen, M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS ONE 2020, 15, e0228454. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; You, X.; Sun, W.; Xiong, G.; Shi, L.; Qiao, Y.; Wu, W.; Li, X.; Wang, J.; Ding, A.; et al. Insight into acute heat stress on meat qualities of rainbow trout (Oncorhynchus mykiss) during short-time transportation. Aquaculture 2021, 543, 737013. [Google Scholar] [CrossRef]
- Lerfall, J.; Roth, B.; Skare, E.F.; Herriksen, A.; Betten, T.; Dziatkowiak-Stefaniak, M.A.; Rotabakk, B.T. Pre-morten and the subsequent effect on flesh quality of pre-rigor filleted Atlantic salmon (Salmo salar L.) during ice storage. Food Chem. 2015, 175, 157–165. [Google Scholar] [CrossRef]
- Li, D.; Qin, N.; Zhang, L.; Li, Q.; Prinyawiwatkul, W.; Luo, Y. Degradation of adenosine triphosphate, water loss and textural changes in frozen common carp (Cyprinus carpio) fillets during storage at different temperatures. Int. J. Refrig. 2019, 98, 294–301. [Google Scholar] [CrossRef]
- Ventura, A.S.; Jerônimo, G.T.; Oliveira, S.N.; Gabriel, A.M.A.; Cardoso, C.A.L.; Teodoro, G.C.; Filho, R.A.C.C.; Povh, J.A. Natural anesthetics in the transport of Nile tilapia: Hematological and biochemical responses and residual concentration in the fillet. Aquaculture 2020, 526, 735365. [Google Scholar] [CrossRef]
- Santos, S.P.; Silva, M.I.; Godoy, A.C.; Banhara, D.G.A.; Goes, M.D.; Goes, E.S.R.; Honorato, C.A. Respiratory and muscular effort during pre-slaughter stress affect Nile tilapia fillet quality. PLoS ONE 2024, 19, e0306880. [Google Scholar]
- Mendes, J.M.; Dairiki, J.K.; Inoue, L.A.K.A.; Jesus, R.S.D. Advantages of recovery from pre-slaughter stress in tambaqui (Colossoma macropomum). Food Sci. Technol. 2017, 37, 383–388. [Google Scholar] [CrossRef]
- Kubitza, F. Boas práticas no transporte de peixes vivos. Manejo na produção de peixes. Panor. Aquicultura 2009, 19, 114. [Google Scholar]
- Barcellos, L.J.G. Manual de Abate Humanitário de Peixes, 1st ed.; Ministério da Agricultura Pecuária e Abastecimento-MAPA: Brasília, Brazil, 2022; p. 55. [Google Scholar]
- Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Krisman, C.R. A method for the colorimetric estimation of glycogen with lodine. Anal. Biochem. 1962, 4, 17–23. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Hunt, J.V.; Wolff, S.P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 1992, 202, 384–389. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods in Enzymology; Packer, L., Ed.; Elsevier Science: London, UK, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jacoby, W.B. Glutatione-S-tranferases: The first enzymatic step in mescapturic acid formation. J. Biol. Chem. 1976, 249, 7130–7139. [Google Scholar] [CrossRef]
- Crouch, R.K.; Gandy, S.E.; Kimsey, G. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes 1981, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, C.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [PubMed]
- Bito, M. Studies on rigor-mortis of fish-1. Difference in the mode of rigor-mortis among some varieties of fish by modified cutting’s method. Bull. Tokai Reg. Rab. 1983, 109, 89–96. [Google Scholar]
- AOAC. Official Method of Analysis, 18th ed.; Method 935.14 and 992.24; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Barbut, S. Estimates and detection of the PSE problem in young turkey breast meat. Can. J. Anim. Sci. 1996, 76, 455–457. [Google Scholar] [CrossRef]
- Cason, J.A.; Lyon, C.E.; Papa, C.M. Effect of muscle opposition during rigor on development of broiler breast meat tenderness. Poult. Sci. 1997, 76, 785–787. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M.; Rustad, T.; Nordtvedt, T.S. Changes in water holding capacity and drip loss of Atlantic salmon (Salmo salar) muscle during superchilled storage. LWT Food Sci. Technol. 2014, 55, 528–535. [Google Scholar] [CrossRef]
- Rodrigues, B.L.; Costa, M.P.; Frasão, B.S.; Fa, S.; Mársico, E.T.; Alvares, T.S.; Conte-Junior, C.A. Parâmetros instrumentais de textura como indicadores de frescor em cinco espécies de peixes de água doce brasileiros cultivados. Métodos Analíticos Aliment. 2017, 10, 3589–3599. [Google Scholar]
- Dong, Y.; Zhang, H.; Guo, M.; Mei, J.; Xie, J. Effect of different slaughter/stunning methods on stress response, quality indicators and susceptibility to oxidation of large yellow croaker (Larimichthys crocea). Vet. Res. Commun. 2023, 47, 1879–1891. [Google Scholar] [CrossRef] [PubMed]
- Shahjahan, M.; Islam, M.J.; Hossain, M.T.; Mishu, M.A.; Hasan, J.; Brown, C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Sci. Total Environ. 2022, 843, 156910. [Google Scholar] [CrossRef]
- Goes, E.S.R.; Lara, J.A.F.; Gasparino, E.; Goes, M.D.; Zuanazzi, J.S.G.; Lopera-Barrero, N.M.; Rodrigues, M.P.R.; Castro, P.L.; Ribeiro, R.P. Effects of Transportation stress on quality and sensory profiles of nile tilápia fillets. Sci. Agrícola 2018, 75, 321–328. [Google Scholar] [CrossRef]
- Swain, H.S.; Das, B.K.; Upadhyay, A.; Ramteke, M.H.; Kumar, V.; Meena, D.K.; Sarkar, U.K.; Chadha, N.K.; Rawat, K.D. Stocking density mediated stress modulates growth attributes in cage reared Labeo rohita (Hamilton) using multifarious biomarker approach. Sci. Rep. 2022, 12, 9869. [Google Scholar] [CrossRef]
- Terlouw, E.C.; Picard, B.; Deiss, V.; Berri, C.; Hocquette, J.F.; Lebret, B.; Lefevre, F.; Hamill, R.; Gagaoua, M. Understanding the determination of meat quality using biochemical characteristics of the muscle: Stress at slaughter and other missing keys. Foods 2021, 10, 84. [Google Scholar] [CrossRef]
- Mendes, J.M.; Inoue, L.A.K.A.; Jesus, R.S. Influência do estresse causado pelo transporte e método de abate sobre o rigor mortis do tambaqui (Colossoma macropomum). Braz. J. Food Technol. 2015, 18, 162–169. [Google Scholar] [CrossRef]
- Concollato, A.; Parisi, G.; Olsen, R.E.; Kvamme, B.O.; Slinde, E.; Dalle Zotte, A. Effect of carbon monoxide for Atlantic salmon (Salmo salar L.) slaughtering on stress response and fillet shelf life. Aquaculture 2014, 433, 13–18. [Google Scholar] [CrossRef]
- Demirci-Cekic, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Aldini, G.; Dalle-Donne, I.; Facino, R.M.; Milzani, A.; Carini, M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med. Res. Rev. 2007, 27, 817–868. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Aftret, K.C.; Rustad, T. The effect of sous-vide cooking parameters, chilled storage and antioxidants on quality characteristics of Atlantic mackerel (Scomber scombrus) in relation to structural changes in proteins. Food Technol. Biotechnol. 2019, 57, 191–199. [Google Scholar] [CrossRef]
- Celano, R.; Campone, L.; Piccinelli, A.L.; Acernese, F.; Nabavi, S.M.; Di Bella, G.; Rastrelli, L. Fatty acid composition, antioxidant levels and oxidation products development in the muscle tissue of Merluccius merluccius and Dicentrarchus labrax during ice storage. LWT 2016, 73, 654–662. [Google Scholar] [CrossRef]
- Bastıoğlu, A.Z.; Serdaroğlu, M.; Nacak, B. Protein Oxidation in Meat and Meat Products. Food Health 2016, 2, 171–183. [Google Scholar] [CrossRef]
- Contreras-Guzmán, E.S. Bioquímica de Pescados e Derivados; FUNEP: Jaboticabal, Brazil, 1994; 409p. [Google Scholar]
- Almeida, T.P.D.O.; Fuchs, R.H.B.; Droval, A.A.; Marques, L.L.M.; Cardoso, F.A.R. Study on antemortem stress and seasonal influence to mitigate the incidence of disaggregated fillets in the fish slaughtering industry. J. Food Process. Preserv. 2022, 46, e16943. [Google Scholar]
- Ikape, S.I.; Cheikyula, J.O. Fish spoilage in the tropics: A review. Octa J. Biosci. 2017, 5, 34–37. [Google Scholar]
- Garcia, R.G.; Royer, A.F.; Naas, I.A.; Borille, R.; Santana, M.; Caldeira, F.R. Boiler pre-slaughter water diet with grass lemongrass (Cymbopogon citratus stapl). Braz. J. Poult. Sci. 2017, 19, 725–731. [Google Scholar] [CrossRef]
- Carvalho, R.H.; Ida, E.I.; Madruga, M.S.; Martínez, S.L.; Shimokomaki, M.; Estévez, M. Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in pale, soft and exudative (PSE) poultry meat. Food Chem. 2017, 215, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, L.; Brum, J.S. Incidence of pale, soft and exudative (PSE) pork meat in rea-son of extrinsic stress factors. An. Da Acad. Bras. Ciências 2020, 92, e20190086. [Google Scholar] [CrossRef]
- Chan, S.S.; Roth, B.; Jessen, F.; Jakobsen, A.N.; Lerfall, J. Water holding properties of Atlantic salmon. Compr. Rev. Food Sci. Food Saf. 2022, 21, 477–498. [Google Scholar] [CrossRef]
Stocking Density + Resting Time After Transportation | Muscle Glycogen (g/L) | Glucose (mg dL−1) | Lactate Serum (mmol/L) | Muscle Lactate (mmol/L) |
---|---|---|---|---|
250 kg/m3 + 0 h | 9.08 ± 0.86 bcd | 149.57 ± 14.08 | 143.37 ± 19.63 | 12.34 ± 2.63 |
250 kg/m3 +2 h | 11.84 ± 1.62 abc | 155.07 ± 15.23 | 67.73 ± 16.70 | 10.75 ± 1.08 |
250 kg/m3 + 4 h | 8.39 ± 0.61 bcd | 109.01 ± 8.01 | 37.48 ± 6.50 | 10.22 ± 0.75 |
250 kg/m3 + 6 h | 12.84 ± 2.01a | 76.95 ± 6.60 | 22.98 ± 3.32 | 10.68 ± 0.79 |
500 kg/m3 + 0 h | 12.31 ± 1.81 ab | 146.60 ± 11.76 | 137.33 ± 17.21 | 11.66 ± 1.18 |
500 kg/m3 + 2 h | 7.20 ± 0.91 d | 130.85 ± 7.59 | 43.51 ± 10.35 | 12.59 ± 1.46 |
500 kg/m3 + 4 h | 8.19 ± 0.90 cd | 95.77 ± 9.00 | 27.87 ± 8.61 | 12.53 ± 2.82 |
500 kg/m3 + 6 h | 7.09 ± 0.84 d | 80.04 ± 6.37 | 15.88 ± 2.66 | 11.25 ± 1.17 |
Control | 8.77 ± 2.31 | 59.75 ± 2.01 | 16.99 ± 3.36 | 17.28 ± 6.37 |
p Values | 0.005 | 0.575 | 0.873 | 0.807 |
Stocking density | ||||
250 kg/m3 | 10.41 ± 0.74 a | 122.65 ± 9.03 | 67.90 ± 12.72 | 11.00 ± 0.72 |
500 kg/m3 | 8.78 ± 0.75 b | 113.31 ± 7.35 | 56.14 ± 12.09 | 12.01 ± 0.83 |
p Values | 0.049 | 0.211 | 0.178 | 0.396 |
Post-transport rest time | ||||
0 h | 10.70 ± 1.09 | 148.09 ± 8.66 a | 140.35 ± 12.35 a | 12.00 ± 1.37 |
2 h | 9.78 ± 1.24 | 142.96 ± 8.98 a | 54.27 ± 9.71 b | 11.67 ± 0.91 |
4 h | 8.29 ± 0.52 | 102.39 ± 6.09 b | 32.67 ± 5.33 b | 11.38 ± 1.43 |
6 h | 9.65 ± 1.37 | 78.49 ± 4.36 c | 19.43 ± 2.33 c | 10.96 ± 0.67 |
p Values | 0.283 | 0.000 | 0.000 | 0.935 |
Stocking Density + Resting Time After Transportation | CAT (U/mL) | SOD (U. mg prot−1) | GST (μmol.min−1.mg prot−1) | LPO (nmol.mg prot−1) | PCO (μmol.min−1.mg prot−1) | |
---|---|---|---|---|---|---|
250 kg/m3 + 0 h | 1.88 ± 0.25 b | 3.18 ± 0.14 | 0.03 ± 0.00 b | 4.68 ± 3.24 | 8.36 ± 1.38 | |
250 kg/m3 +2 h | 1.48 ± 0.33 b | 4.48 ± 0.92 | 0.03 ± 0.00 b | 2.74 ± 1.07 | 4.18 ± 1.20 | |
250 kg/m3 + 4 h | 2.13 ± 0.32 b | 1.82 ± 0.70 | 0.03 ± 0.01 b | 2.21 ± 0.35 | 4.36 ± 0.74 | |
250 kg/m3 + 6 h | 4.10 ± 1.05 a | 2.64 ± 0.91 | 0.11 ± 0.05 a | 2.03 ± 0.45 | 5.00 ± 1.19 | |
500 kg/m3 + 0 h | 2.28 ± 0.19 b | 2.48 ± 0.48 | 0.06 ± 0.02 b | 2.61 ± 0.14 | 6.18 ± 1.14 | |
500 kg/m3 + 2 h | 2.60 ± 0.39 b | 2.99 ± 0.66 | 0.06 ± 0.02 b | 4.48 ± 2.74 | 5.45 ± 2.09 | |
500 kg/m3 + 4 h | 2.20 ± 0.16 b | 2.71 ± 0.71 | 0.03 ± 0.01 b | 4.49 ± 1.29 | 5.91 ± 2.75 | |
500 kg/m3 + 6 h | 2.08 ± 0.12 b | 3.18 ± 0.93 | 0.04 ± 0.00 b | 2.22 ± 0.99 | 5.27 ± 2.10 | |
Control | 3.12 ± 0.01 | 3.01 ± 1.31 | 0.04 ± 0.01 | 3.30 ± 0.10 | 9.01 ± 1.00 | |
p Values | 0.009 | 0.343 | 0.046 | 0.601 | 0.669 | |
Stocking density | ||||||
250 kg/m3 | 2.39 ± 0.36 | 3.03 ± 0.40 | 0.05 ± 0.01 | 2.91 ± 0.83 | 5.48 ± 0.66 | |
500 kg/m3 | 2.29 ± 0.12 | 2.84 ± 0.33 | 0.05 ± 0.01 | 3.45 ± 0.84 | 5.70 ± 0.94 | |
p Values | 0.739 | 0.713 | 0.854 | 0.665 | 0.848 | |
Post-transport rest time | ||||||
0 h | 2.08 ± 0.16 | 2.83 ± 0.26 | 0.05 ± 0.01 | 3.64 ± 1.70 | 7.27 ± 0.92 | |
2 h | 2.04 ± 0.31 | 3.73 ± 0.59 | 0.04 ± 0.01 | 3.61 ± 1.42 | 4.82 ± 1.15 | |
4 h | 2.16 ± 0.17 | 2.27 ± 0.49 | 0.03 ± 0.01 | 3.35 ± 0.74 | 5.14 ± 1.29 | |
6 h | 3.09 ± 0.60 | 2.91 ± 0.62 | 0.07 ± 0.02 | 2.13 ± 0.51 | 5.14 ± 1.14 | |
p Values | 0.077 | 0.265 | 0.252 | 0.797 | 0.437 |
Stocking Density + Resting Time After Transportation | Pre-Rigor Mortis Time (min) | Fillet Yield (%) | pH | Colorimetry | Shear Force (g) | ||
---|---|---|---|---|---|---|---|
L * | a * | b * | |||||
250 kg/m3 + 0 h | 312 ± 22 ab | 35.53 ± 0.33 | 6.40 ± 0.04 | 43.38 ± 0.43 | 0.12 ± 0.27 b | −4.38 ± 0.20 b | 4621.00 ± 198.39 |
250 kg/m3 +2 h | 312 ± 21 ab | 35.70 ± 0.63 | 6.54 ± 0.04 | 43.47 ± 0.40 | 0.24 ± 0.17 b | −3.92 ± 0.15 ab | 4990.40 ± 288.41 |
250 kg/m3 + 4 h | 300 ± 30 ab | 35.89 ± 0.46 | 6.64 ± 0.08 | 43.51 ± 0.57 | 1.14 ± 0.26 a | −3.18 ± 0.31 a | 5660.00 ± 246.18 |
250 kg/m3 + 6 h | 351 ± 28 ab | 34.96 ± 0.38 | 6.57 ± 0.04 | 42.06 ± 0.35 | 0.62 ± 0.15 ab | −4.04 ± 0.18 ab | 5638.50 ± 286.70 |
500 kg/m3 + 0 h | 261 ± 25 b | 36.85 ± 0.72 | 6.63 ± 0.05 | 43.29 ± 0.66 | 0.53 ± 0.12 ab | −4.13 ± 0.25 ab | 4838.80 ± 201.01 |
500 kg/m3 + 2 h | 246 ± 35 b | 36.52 ± 0.37 | 6.70 ± 0.06 | 42.75 ± 0.37 | −0.16 ± 0.21 b | −4.43 ± 0.24 b | 4811.50 ± 219.04 |
500 kg/m3 + 4 h | 393 ± 30 a | 36.02 ± 0.96 | 6.71 ± 0.05 | 42.48 ± 0.43 | 0.03 ± 0.18 b | −4.37 ± 0.28 b | 5159.40 ± 226.83 |
500 kg/m3 + 6 h | 357 ± 24 ab | 35.48 ± 0.60 | 6.66 ± 0.04 | 41.74 ± 0.22 | 0.10 ± 0.11 b | −4.56 ± 0.17 b | 5257.10 ± 282.31 |
Control | 360 ± 46 | 33.15 ± 0.42 | 6.48 ± 0.04 | 43.09 ± 0.24 | 0.52 ± 0.16 | −4.56 ± 0.18 | 5530.90 ± 279.90 |
p Values | 0.023 | 0.785 | <0.001 | 0.728 | 0.002 | 0.026 | 0.488 |
Stocking density | |||||||
250 (kg/m3) | 319 ± 12 | 35.52 ± 0.23 | 6.54 ± 0.03 b | 43.11 ± 0.23 | 0.53 ± 0.12 a | −3.88 ± 0.13 a | 5227.44 ± 142.51 |
500 (kg/m3) | 314 ± 17 | 36.22 ± 0.34 | 6.68 ± 0.02 a | 42.56 ± 0.23 | 0.13 ± 0.09 b | −4.37 ± 0.12 b | 5016.73 ± 116.79 |
p Values | 0.819 | 0.100 | 0.021 | 0.090 | 0.004 | 0.003 | 0.230 |
Resting time after transportation | |||||||
0 h | 287 ± 17 b | 36.19 ± 0.41 | 6.51 ± 0.04 b | 43.34 ± 0.38 a | 0.32 ± 0.15 ab | −4.25 ± 0.16 | 4729.90 ± 139.70 b |
2 h | 279 ± 21 b | 36.11 ± 0.37 | 6.62 ± 0.04 ab | 43.11 ± 0.28 a | 0.04 ± 0.14 b | −4.18 ± 0.15 | 4900.91 ± 177.44 b |
4 h | 347 ± 23 ab | 35.95 ± 0.52 | 6.67 ± 0.05 a | 42.99 ± 0.37 ab | 0.59 ± 0.20 a | −3.78 ± 0.25 | 5409.71 ± 172.73 a |
6 h | 354 ± 18 a | 35.22 ± 0.35 | 6.62 ± 0.03 ab | 41.90 ± 0.20 b | 0.36 ± 0.11 ab | −4.30 ± 0.13 | 5447.82 ± 200.64 a |
p Values | 0.011 | 0.343 | 0.385 | 0.010 | 0.049 | 0.100 | 0.008 |
Stocking Density + Resting Time After Transportation | Moisture Content (%) | WHC (%) | CWL (%) | Drip Loss (%) |
---|---|---|---|---|
250 kg/m3 + 0 h | 75.3 ± 0.411 | 60.77 ± 1.90 | 13.87 ± 0.94 b | 3.90 ± 0.15 |
250 kg/m3 +2 h | 75.9 ± 0.551 | 60.92 ± 1.02 | 14.81 ± 0.77 b | 4.02 ± 0.21 |
250 kg/m3 + 4 h | 76.2 ± 0.562 | 60.33 ± 1.08 | 17.90 ± 2.09 ab | 3.78 ± 0.17 |
250 kg/m3 + 6 h | 75.5 ± 0.199 | 63.53 ± 1.44 | 13.96 ± 0.64 b | 3.04 ± 0.34 |
500 kg/m3 + 0 h | 75.7 ± 0.464 | 57.71 ± 1.18 | 20.05 ± 0.87 a | 4.14 ± 0.05 |
500 kg/m3 + 2 h | 76.2 ± 0.455 | 59.55 ± 1.32 | 16.68 ± 1.26 ab | 5.05 ± 0.50 |
500 kg/m3 + 4 h | 75.6 ± 0.233 | 61.40 ± 0.79 | 16.33 ± 0.54 ab | 3.65 ± 0.10 |
500 kg/m3 + 6 h | 75.7 ± 0.472 | 63.56 ± 0.95 | 15.90 ± 0.51 ab | 4.06 ± 0.60 |
Control | 75.2 ± 0.377 | 61.02 ± 1.09 | 14.26 ± 0.88 | 3.89 ± 0.59 |
p Values | 0.664 | 0.150 | 0.007 | 0.230 |
Stocking density | ||||
250 kg/m3 | 75.70 ± 0.22 | 60.98 ± 0.74 | 15.14 ± 0.66 b | 3.68 ± 0.15 b |
500 kg/m3 | 75.80 ± 0.20 | 60.56 ± 0.62 | 17.24 ± 0.49 a | 4.22 ± 0.22 a |
p Values | 0.844 | 0.636 | 0.007 | 0.032 |
Post-transport rest time | ||||
0 h | 75.50 ± 0.30 | 59.24 ± 1.15 b | 16.96 ± 0.94 | 4.02 ± 0.08 a |
2 h | 76.01 ± 0.34 | 60.24 ± 0.82 b | 15.75 ± 0.75 | 4.53 ± 0.33 a |
4 h | 75.92 ± 0.30 | 60.06 ± 0.78 ab | 17.12 ± 1.06 | 3.72 ± 0.09 ab |
6 h | 75.63 ± 0.25 | 63.55 ± 0.84 a | 14.93 ± 0.46 | 3.55 ± 0.38 b |
p Values | 0.568 | 0.006 | 0.139 | 0.030 |
Stocking Density + Resting Time After Transportation | Hardness (N) | Fracturability (g) | Elasticity | Cohesiveness | Chewiness (Nmm) | Resilience |
---|---|---|---|---|---|---|
250 kg/m3 + 0 h | 7.85 ± 1.70 | 622.89 ± 234.21 | 0.37 ± 0.01 | 0.25 ± 0.01 | 0.71 ± 0.15 | 0.067 ± 0.004 |
250 kg/m3 +2 h | 10.07 ± 1.60 | 757.77 ± 205.45 | 0.39 ± 0.01 | 0.25 ± 0.01 | 0.97 ± 0.16 | 0.072 ± 0.004 |
250 kg/m3 + 4 h | 13.82 ± 2.40 | 823.37 ± 219.72 | 0.39 ± 0.01 | 0.24 ± 0.01 | 1.28 ± 0.21 | 0.071 ± 0.004 |
250 kg/m3 + 6 h | 8.69 ± 2.05 | 626.12 ± 254.38 | 0.37 ± 0.01 | 0.26 ± 0.01 | 0.82 ± 0.18 | 0.072 ± 0.006 |
500 kg/m3 + 0 h | 8.15 ± 1.18 | 944.19 ± 320.83 | 0.40 ± 0.02 | 0.27 ± 0.01 | 0.80 ± 0.09 | 0.077 ± 0.006 |
500 kg/m3 + 2 h | 12.01 ± 2.12 | 648.36 ± 143.62 | 0.40 ± 0.02 | 0.27 ± 0.01 | 1.12 ± 0.13 | 0.079 ± 0.005 |
500 kg/m3 + 4 h | 10.00 ± 1.85 | 686.69 ± 182.42 | 0.42 ± 0.01 | 0.27 ± 0.01 | 1.09 ± 0.23 | 0.078 ± 0.004 |
500 kg/m3 + 6 h | 17.38 ± 4.14 | 662.42 ± 292.45 | 0.37 ± 0.02 | 0.26 ± 0.02 | 1.59 ± 0.45 | 0.077 ± 0.010 |
Control | 9.22 ± 1.70 | 342.54 ± 190.80 | 0.34 ± 0.01 | 0.25 ± 0.01 | 0.71 ± 0.08 | 0.069 ± 0.006 |
p Values | 0.070 | 0.764 | 0.759 | 0.815 | 0.203 | 0.976 |
Stocking density | ||||||
250 kg/m3 | 9.95 ± 1.01 | 702.50 ± 108.74 | 0.38 ± 0.01 | 0.25 ± 0.01 | 0.93 ± 0.09 | 0.071 ± 0.002 |
500 kg/m3 | 11.88 ± 1.40 | 735.41 ± 117.52 | 0.40 ± 0.01 | 0.27 ± 0.01 | 1.15 ± 0.14 | 0.078 ± 0.003 |
p Values | 0.279 | 0.870 | 0.079 | 0.082 | 0.202 | 0.091 |
Post-transport rest time | ||||||
0 h | 8.00 ± 0.99 | 783.54 ± 195.46 | 0.38 ± 0.01 | 0.26 ± 0.01 | 0.76 ± 0.09 | 0.072 ± 0.004 |
2 h | 11.04 ± 1.30 | 703.06 ± 120.64 | 0.39 ± 0.01 | 0.26 ± 0.01 | 1.05 ± 0.10 | 0.076 ± 0.003 |
4 h | 11.74 ± 1.53 | 748.82 ± 135.34 | 0.41 ± 0.01 | 0.25 ± 0.01 | 1.17 ± 0.15 | 0.075 ± 0.003 |
6 h | 13.03 ± 2.56 | 644.27 ± 184.86 | 0.37 ± 0.01 | 0.26 ± 0.01 | 1.21 ± 0.26 | 0.074 ± 0.006 |
p Values | 0.161 | 0.940 | 0.092 | 0.829 | 0.185 | 0.943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.I.d.; Silva, V.F.d.; Goes, M.D.; Cardoso, S.U.; Baumgartner, L.A.; Souza, M.L.R.d.; Honorato, C.A.; Bombardelli, R.A.; Goes, E.S.d.R. Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities. Foods 2025, 14, 2279. https://doi.org/10.3390/foods14132279
Silva MId, Silva VFd, Goes MD, Cardoso SU, Baumgartner LA, Souza MLRd, Honorato CA, Bombardelli RA, Goes ESdR. Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities. Foods. 2025; 14(13):2279. https://doi.org/10.3390/foods14132279
Chicago/Turabian StyleSilva, Maria Ildilene da, Valfredo Figueira da Silva, Marcio Douglas Goes, Sara Ugulino Cardoso, Leonardo Aluisio Baumgartner, Maria Luiza Rodrigues de Souza, Claucia Aparecida Honorato, Robie Allan Bombardelli, and Elenice Souza dos Reis Goes. 2025. "Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities" Foods 14, no. 13: 2279. https://doi.org/10.3390/foods14132279
APA StyleSilva, M. I. d., Silva, V. F. d., Goes, M. D., Cardoso, S. U., Baumgartner, L. A., Souza, M. L. R. d., Honorato, C. A., Bombardelli, R. A., & Goes, E. S. d. R. (2025). Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities. Foods, 14(13), 2279. https://doi.org/10.3390/foods14132279