Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = converter slag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 23738 KB  
Article
Development of a Numerically Inexpensive 3D CFD Model of Slag Reduction in a Submerged Arc Furnace for Phosphorus Recovery from Sewage Sludge
by Daniel Wieser, Benjamin Ortner, René Prieler, Valentin Mally and Christoph Hochenauer
Processes 2026, 14(2), 289; https://doi.org/10.3390/pr14020289 - 14 Jan 2026
Viewed by 194
Abstract
Phosphorus is an essential resource for numerous industrial applications. However, its uneven global distribution makes Europe heavily dependent on imports. Recovering phosphorus from waste streams is therefore crucial for improving resource security. The FlashPhos project addresses this challenge by developing a process to [...] Read more.
Phosphorus is an essential resource for numerous industrial applications. However, its uneven global distribution makes Europe heavily dependent on imports. Recovering phosphorus from waste streams is therefore crucial for improving resource security. The FlashPhos project addresses this challenge by developing a process to recover phosphorus from sewage sludge, in which phosphorus-rich slag is produced in a flash reactor and subsequently reduced in a Submerged Arc Furnace (SAF). In this process, approximately 250 kg/h of sewage sludge is converted into slag, which is further processed in the SAF to recover about 8 kg/h of white phosphorus. This work focuses on the development of a computational model of the SAF, with particular emphasis on slag behaviour. Due to the extreme operating conditions, which severely limit experimental access, a numerically efficient three-dimensional CFD model was developed to investigate the internal flow of the three-phase, AC-powered SAF. The model accounts for multiphase interactions, dynamic bubble generation and energy sinks associated with the reduction reaction, and Joule heating. A temperature control loop adjusts electrode currents to reach and maintain a prescribed target temperature. To further reduce computational cost, a novel simulation approach is introduced, achieving a reduction in simulation time of up to 300%. This approach replaces the solution of the electric potential equation with time-averaged Joule-heating values obtained from a preceding simulation. The system requires transient simulation and reaches a pseudo-steady state after approximately 337 s. The results demonstrate effective slag mixing, with gas bubbles significantly enhancing flow velocities compared to natural convection alone, leading to maximum slag velocities of 0.9–1.0 m/s. The temperature field is largely uniform and closely matches the target temperature within ±2 K, indicating efficient mixing and control. A parameter study reveals a strong sensitivity of the flow behaviour to the slag viscosity, while electrode spacing shows no clear influence. Overall, the model provides a robust basis for further development and future coupling with the gas phase. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 3839 KB  
Article
Characteristics of Steel Slag and Properties of High-Temperature Reconstructed Steel Slag
by Zhiqiang Xu and Xiaojun Hu
Metals 2026, 16(1), 85; https://doi.org/10.3390/met16010085 - 13 Jan 2026
Viewed by 123
Abstract
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden [...] Read more.
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden calculation, the chemical composition ratio of this reconstructed steel slag approximated the silicate phase region. The high-temperature reconstruction process outside the furnace was simulated through reheating. The composition, structure, and cementitious characteristics of the reconstructed steel slag were investigated through X-ray diffraction (XRD), FactSage software (FactSage version 7.0 (GTT-Technologies, Aachen, Germany, 2015))analysis, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) analysis, setting time determination, compressive strength measurement, and thermodynamic computation. The findings indicated that the primary mineral compositions of the reconstructed steel slag were predominantly silicates, such as Ca3Al2O6, Ca2SiO4, Ca2MgSi2O7, Ca2Al(AlSiO7), Ca2(SiO4), and FeAlMgO4. In comparison with the original steel slag, these compositions underwent substantial alterations. The α′-C2S phase appears at 1100 K and gradually transforms into α-C2S at 1650 K. The liquid phase begins to precipitate at approximately 1550 K. Spinel exists in the temperature range from 1300 to 1700 K, and Ca3MgSi2O8 melts into the liquid phase at 1400 K. As the temperature increases to 1600 K, the minerals C2AF, Ca2Fe2O5, and Ca2Al2O5 gradually melt into the liquid phase. Melilite melts into the liquid phase at 1700 K. It was observed that the initial and final setting times of the reconstructed steel slag exhibited reductions of 7 and 43 min, respectively, in comparison to those of the original steel slag. In comparison with steel slag, the compressive strength of the reconstructed steel slag exhibited an increase of 0.6 MPa at the 3-day strength stage, 1.6 MPa at the 7-day strength stage, and 3.4 MPa at the 28-day strength stage. The reduction in setting time and the enhancement in compressive strength verified the improved cementitious activity of the reconstructed steel slag. Thermodynamic calculations of the principal reactions of the reconstructed steel slag at elevated temperatures verified that the primary reaction at 1748 K is thermodynamically favorable. Full article
Show Figures

Graphical abstract

18 pages, 3440 KB  
Article
Influence of Vanadium-Titanium Slag Substitution on Properties and Microstructure of Blast Furnace Slag-Steel Slag-Desulfurization Gypsum Gel System
by Junyao Liu, Siqi Zhang, Huifen Yang, Wen Ni, Dongshang Guan, Xingyang Xu and Yu Zhan
Gels 2026, 12(1), 3; https://doi.org/10.3390/gels12010003 - 19 Dec 2025
Viewed by 258
Abstract
The comprehensive utilisation of solid waste is a primary approach to enhancing the utilisation efficiency of mineral resources. However, vanadium-titanium slag has long faced insufficient resource utilisation due to its low activity. To address this issue, this study integrated macro and micro analytical [...] Read more.
The comprehensive utilisation of solid waste is a primary approach to enhancing the utilisation efficiency of mineral resources. However, vanadium-titanium slag has long faced insufficient resource utilisation due to its low activity. To address this issue, this study integrated macro and micro analytical methods to systematically investigate the effect of mechanical grinding on the activity of vanadium-titanium slag, as well as its performance when partially replacing blast furnace slag in the system of slag—converter steel slag-desulfurization gypsum ternary gel system. Additionally, the hydration mechanism of this cementitious system was analysed. The research results indicate that mechanical grinding can significantly improve the activity index of vanadium-titanium slag and increase its specific surface area. Replacing an appropriate amount of slag with vanadium-titanium slag in the slag-steel slag-desulfurization gypsum ternary gel system can effectively enhance the mechanical properties of the cementitious system. The optimal mix proportion of vanadium-titanium slag:slag:steel slag:desulfurization gypsum as 10.5:31.5:42:16 with a water-to-binder ratio of 0.32, under which the 28-day compressive strength of the specimen reached 33.50 MPa. Through multiple microscopic analysis techniques, it was found that in the alkaline environment and sulfate excitation (provided by steel slag hydration and desulfurization gypsum), the cementitious system generates hydration products such as ettringite (AFt), C–S–H, and C–A–S–H gels. Some unreacted vanadium-titanium slag particles are wrapped and intertwined by hydrated calcium silicate (aluminium) gels, forming a stable dendritic structure that provides support for the system’s strength development. Full article
(This article belongs to the Special Issue Innovative Gels: Structure, Properties, and Emerging Applications)
Show Figures

Figure 1

17 pages, 2190 KB  
Article
The Mechanism of Calcium Leaching from Steel Slag Based on the “Water-Acetic Acid” Two-Step Leaching Route
by Kai Zhang, Qiong Cang, Lijie Peng, Yitong Wang, Shan Zhang, Hongyang Li, Shan Yu, Baojia Hu, Xin Yao, Peipei Du and Yajun Wang
Processes 2025, 13(12), 4077; https://doi.org/10.3390/pr13124077 - 17 Dec 2025
Viewed by 434
Abstract
Converter steel slag (BOFS) contains abundant reactive Ca-bearing minerals and represents a promising feedstock for indirect CO2 mineralization. However, conventional acid leaching suffers from excessive reagent consumption and low process sustainability. This study develops a “water–acetic acid” two-step leaching strategy aimed at [...] Read more.
Converter steel slag (BOFS) contains abundant reactive Ca-bearing minerals and represents a promising feedstock for indirect CO2 mineralization. However, conventional acid leaching suffers from excessive reagent consumption and low process sustainability. This study develops a “water–acetic acid” two-step leaching strategy aimed at reducing acid/alkali usage while enhancing calcium recovery. Thermodynamic calculations were performed to elucidate the hydrolysis behaviors of primary phases (f-CaO, C3S, and β-C2S) and the stability of secondary minerals in BOFS. The kinetic behavior and dissolution mechanisms of water-leached residues in acetic acid were further analyzed. Parametric experiments were conducted to evaluate the effects of the liquid-to-solid ratio (L/S), temperature, stirring rate, and acid concentration. Results show that the L/S is the dominant factor controlling Ca dissolution in both steps, while temperature exerts opposite effects: lower temperatures favor water leaching due to the exothermic nature of silicate hydrolysis, whereas higher temperatures enhance acid leaching. The proposed two-step route achieves a Ca recovery of 75.9%, representing a 7.6% improvement over direct acid leaching, while lowering acid consumption by ∼90%. This work provides mechanistic insight and process evidence supporting the efficient and sustainable utilization of BOFS for indirect CO2 mineralization. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

25 pages, 21144 KB  
Article
Study on Improving the Stability of Steel Slag Fine Aggregate by Boiling Pretreatment Combined with Microbial Mineralization
by Zhe Wang, Haihe Yi, Whenyu Du, Dachao Jiang, Yonghua Jiao, Hongyi Zhao and Tian Su
Coatings 2025, 15(11), 1358; https://doi.org/10.3390/coatings15111358 - 20 Nov 2025
Viewed by 608
Abstract
The volume stability of steel slag fine aggregate (SSFA) is poor due to the hydration expansion of f-CaO/f-MgO, which limits its resource utilization. In this paper, a green modification route combining simple boiling water pretreatment with carbonic anhydrase (CA) -mediated microbial mineralization (MICP) [...] Read more.
The volume stability of steel slag fine aggregate (SSFA) is poor due to the hydration expansion of f-CaO/f-MgO, which limits its resource utilization. In this paper, a green modification route combining simple boiling water pretreatment with carbonic anhydrase (CA) -mediated microbial mineralization (MICP) was proposed and evaluated from macro–micro multi-scale. Compared with direct carbonization, CA-MICP accelerated CO2 hydration and carbonate precipitation. Boiling water pretreatment enhanced ion release and pore accessibility, and the two synergistically improved the reaction kinetics. At 0.3 MPa, 100 h boiling pretreatment combined with 12 h microbial mineralization (K8 group) performed best: CO2 absorption rate reached 4.98%, carbonization rate reached 3.93%; the content of f-CaO and f-MgO decreased to 0.16% and 0.12% (conversion rate 91.82% and 87.43%), respectively. The linear expansion of SSFA mortar decreased to 0.0176% after 55 h of water bath. XRD/FTIR showed that the carbonate peak was enhanced and the O-H characteristics were weakened. The weight loss of TG-DTG at 600–800 °C increased. SEM/BET observed that flake/cluster carbonates filled the pores and increased the interface density. Innovations: For the first time, the synergistic effect of boiling water pretreatment and CA-MICP was verified in the steel slag fine aggregate system, and a feasible process window was given to efficiently convert expansive oxides into stable carbonates, significantly improve volume stability, and provide a feasible path for the high-value utilization of SSFA. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

51 pages, 13018 KB  
Review
Advances in Magnesia–Dolomite Refractory Materials: Properties, Emerging Technologies, and Industrial Applications: A Review
by Leonel Díaz-Tato, Luis Angel Iturralde Carrera, Jesús Fernando López-Perales, Marcos Aviles, Edén Amaral Rodríguez-Castellanos and Juvenal Rodríguez-Resendiz
Technologies 2025, 13(11), 523; https://doi.org/10.3390/technologies13110523 - 13 Nov 2025
Viewed by 1982
Abstract
Magnesia-dolomite refractories have emerged as sustainable alternatives to traditional carbon- or chromium-containing linings in steelmaking and cement industries. Their outstanding thermochemical stability, high refractoriness, and strong basic slag compatibility make them suitable for converters, electric arc furnaces (EAF), and argon–oxygen decarburization (AOD) units. [...] Read more.
Magnesia-dolomite refractories have emerged as sustainable alternatives to traditional carbon- or chromium-containing linings in steelmaking and cement industries. Their outstanding thermochemical stability, high refractoriness, and strong basic slag compatibility make them suitable for converters, electric arc furnaces (EAF), and argon–oxygen decarburization (AOD) units. However, their practical application has long been constrained by hydration and thermal shock sensitivity associated with free CaO and open porosity. Recent advances, including optimized raw material purity, fused co-clinker synthesis, nano-additive incorporation (TiO2, MgAl2O4 spinel, FeAl2O4), and improved sintering strategies, have significantly enhanced density, mechanical strength, and hydration resistance. Emerging technologies such as co-sintered magnesia–dolomite composites and additive-assisted microstructural tailoring have enabled superior corrosion resistance and extended service life. This review provides a comprehensive analysis of physicochemical mechanisms, processing routes, and industrial performance of magnesia–dolomite refractories, with special emphasis on their contribution to technological innovation, decarbonization, and circular economy strategies in high-temperature industries. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

11 pages, 3193 KB  
Article
Phase Transformation of Fayalite from Copper Slag During Oxidation Roasting
by Xiaoxue Zhang, Yuqi Zhao, Huili Zhou, Xiangyu Wang, Zhonglin Gao and Hongyang Wang
Processes 2025, 13(10), 3317; https://doi.org/10.3390/pr13103317 - 16 Oct 2025
Viewed by 635
Abstract
The phase transformation of fayalite from copper slag during oxidation roasting was systematically studied in this work with an analysis using X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer, scanning electronic microscope, and energy dispersive spectrometer. The results show that the oxidation of [...] Read more.
The phase transformation of fayalite from copper slag during oxidation roasting was systematically studied in this work with an analysis using X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer, scanning electronic microscope, and energy dispersive spectrometer. The results show that the oxidation of fayalite occurs at ≥300 °C. Fayalite is first oxidized into amorphous Fe3O4 and SiO2 during oxidation roasting. The former then converts into Fe2O3 while the latter converts into cristobalite solid solution with increasing temperature. Meanwhile, the specific saturation magnetization of roasted products increases from 9.43 emu/g at 300 °C to 20.66 emu/g at 700 °C, and then decreases to 7.31 emu/g at 1100 °C. The migration of iron in fayalite is prior to that of silicon during oxidation roasting. Therefore, the thickness of the iron oxide layer on the particle surface steadily increases with roasting temperature, from about 1.0 μm at 800 °C to about 5.0 μm at 1100 °C. This study has guiding significance for the iron grain growth in copper slag during the oxidation-reduction roasting process. Full article
(This article belongs to the Special Issue Non-ferrous Metal Metallurgy and Its Cleaner Production)
Show Figures

Figure 1

20 pages, 8359 KB  
Article
Unveiling Synergistic Hydration in a Multi-Waste Binder: Co-Processing Electrolytic Manganese Residue and Red Mud with Steel Slag for Enhanced Performance
by Yingchun Sun, Xinglan Cui, Xiaobin Gu, Xinyue Shi, Hongxia Li and Lei Wang
Materials 2025, 18(20), 4711; https://doi.org/10.3390/ma18204711 - 14 Oct 2025
Viewed by 654
Abstract
In response to the pressing environmental challenges posed by electrolytic manganese residue (EMR) and red mud (RM), this study proposes an innovative cementitious material technology for the synergistic co-utilization of these industrial wastes. By employing steel slag (SS) as a calcium-rich skeleton, the [...] Read more.
In response to the pressing environmental challenges posed by electrolytic manganese residue (EMR) and red mud (RM), this study proposes an innovative cementitious material technology for the synergistic co-utilization of these industrial wastes. By employing steel slag (SS) as a calcium-rich skeleton, the system effectively immobilizes sulfates from EMR and alkalinity from RM, converting hazardous wastes into value-added construction materials. Through orthogonal experimentation, an optimal mix proportion was established—30% RM, 20% EMR, and 50% SS at a water-to-binder ratio of 0.28—which achieved a 28-day compressive strength of 20.40 MPa, meeting relevant industry standards for auxiliary cementitious materials. Microstructural analysis unveiled a multi-stage alkali-sulfate synergistic activation mechanism: (1) the high alkalinity derived from RM rapidly activates the dissolution of aluminosilicate phases in both SS and EMR; (2) sulfate ions released from EMR promote extensive formation of ettringite (AFt), enhancing early-age structural integrity; and (3) calcium ions from SS facilitate the development of a dense C-S-H gel matrix, which serves as the primary binding phase. More profoundly, this process exemplifies a self-stabilizing waste-to-resource conversion mechanism, whereby harmful constituents (sulfates and free alkalis) are constructively incorporated into stable hydration products. This work not only elucidates a coherent scientific framework for the safe and efficient reclamation of multi-source solid wastes, but also demonstrates a scalable and ecologically viable pathway for million-ton-scale valorization of EMR and RM. Furthermore, it presents feasibility insights for the application of high-dosage steel slag-based material systems, thereby unifying significant environmental and economic advantages. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 9120 KB  
Article
Processing of Steelmaking Slags into Artificial Granular Aggregate for Concrete by Forced Carbonation
by Tamara Bakhtina, Nikolay Lyubomirskiy, Alexey Gusev, Aleksandr Bakhtin, Ivan Tyunyukov, Valentina Volchenkova and Wolfgang Linert
J. Compos. Sci. 2025, 9(10), 562; https://doi.org/10.3390/jcs9100562 - 13 Oct 2025
Viewed by 853
Abstract
This article presents the results of experimental studies to determine the possibility of processing steelmaking slags into an artificial granulated filler for concrete by the method of forced carbonization and the stabilization of the obtained filler in the concrete matrix over time. The [...] Read more.
This article presents the results of experimental studies to determine the possibility of processing steelmaking slags into an artificial granulated filler for concrete by the method of forced carbonization and the stabilization of the obtained filler in the concrete matrix over time. The utilization of metallurgical waste and technogenic CO2 is a global problem. In this work, the method of the granulation of finely ground converter (BOF) and electric steelmaking (EAF) slags was used to obtain artificial granules and their subsequent forced carbonization in the developed laboratory carbonization chamber. Within the framework of this study, the quantitative binding of CO2 by granules based on BOF and EAF slags was established, which amounted to 5.2 and 7.8% by weight, respectively. It was determined that the mass loss during crushability testing, indirectly characterizing the actual compressive strength of the granule material, depending on the type of slag and grain size, ranges from 13.6 to 42.3%, which is quite sufficient for using this artificial filler in concrete production. Based on the developed batches of fillers, concretes were obtained that have a compressive strength of 30.7 to 37.8 MPa in 28 days of hardening, which generally corresponds to concrete class B25. The preliminary studies and the results obtained indicate the prospects of processing steel slags into artificial granulated fillers by forced carbonization and using this product in concrete production. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

11 pages, 2526 KB  
Article
Specific Features of Using High-Silica Flux Ore in Copper Smelting Units
by Bagdaulet Kenzhaliyev, Sergey Kvyatkovskiy, Sultanbek Kozhakhmetov, Bulat Sukurov, Maral Dyussebekova and Anastassiya Semenova
Metals 2025, 15(10), 1070; https://doi.org/10.3390/met15101070 - 24 Sep 2025
Viewed by 898
Abstract
This study explores the application of high-silica flux ore in copper smelting and converting processes at the Zhezkazgan Copper Smelting plant. Pilot-scale experiments and SEM analyses were performed to assess its influence on slag composition, temperature regime, and metal recovery. The results demonstrated [...] Read more.
This study explores the application of high-silica flux ore in copper smelting and converting processes at the Zhezkazgan Copper Smelting plant. Pilot-scale experiments and SEM analyses were performed to assess its influence on slag composition, temperature regime, and metal recovery. The results demonstrated that replacing conventional flux with high-silica ore reduced flux consumption by 19%, increased converter slag temperature from 1124 to 1174 °C, and decreased copper content in converter slag from 10% to 4.5%. SEM micro-analysis revealed the formation of lead-containing silicate rims around matte inclusions, which hinder their settling at low temperatures. However, when the slag temperature exceeded 1400 °C, these rims were destroyed, facilitating separation and reducing residual copper. These findings highlight the potential of high-silica fluxes (>90% SiO2) to improve both energy efficiency and metal recovery in process of copper matte converting, offering practical recommendations for industrial operations. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 1894 KB  
Article
Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue
by Cancio Jiménez-Lugos, Manuel Flores-Favela, Antonio Romero-Serrano, Aurelio Hernández-Ramírez, Alejandro Cruz-Ramírez, Enrique Sanchez-Vite, José Ortiz-Landeros and Eduardo Colin-García
Recycling 2025, 10(5), 167; https://doi.org/10.3390/recycling10050167 - 25 Aug 2025
Cited by 1 | Viewed by 1689
Abstract
During the roasting, leaching, and electrodeposition of zinc ores, lead–silver residues are produced. These residues contain valuable metals (Pb, Zn, and Ag) and toxic metals (Cd and As). In this study, a pyrometallurgical process is proposed for treating Pb-Ag residues, consisting of drying, [...] Read more.
During the roasting, leaching, and electrodeposition of zinc ores, lead–silver residues are produced. These residues contain valuable metals (Pb, Zn, and Ag) and toxic metals (Cd and As). In this study, a pyrometallurgical process is proposed for treating Pb-Ag residues, consisting of drying, roasting, and reduction steps to recover valuable metals, such as silver in a metallic Pb phase, while converting the waste into an environmentally friendly slag. First, the Pb-Ag residue is dried at 100 °C, then roasted at 700 °C, and finally reduced at a high temperature, with Na2CO3 as a flux and CaSi as a reducing agent, rather than carbon-based reducing agents (carbon or carbon monoxide), to minimize greenhouse gas production. The effects of the reduction temperature and the mass of the reducing agent were investigated on a laboratory scale. The metallic phase and slag obtained in the reduction step were characterized by their chemical composition and mineralogy via chemical analysis, X-ray diffraction, and SEM-EDS. The results showed that silver and lead formed a metallic phase, and that silver content decreased from 1700 ppm in the Pb-Ag residue to 32 ppm in the final slag at 1300 °C. The Pb-Ag residue and final slag were leached with an aqueous acetic acid solution to evaluate their chemical stability. Full article
Show Figures

Graphical abstract

24 pages, 8513 KB  
Article
Dynamic Compressive Behavior and Fracture Mechanisms of Binary Mineral Admixture-Modified Concrete
by Jianqing Bu, Qin Liu, Longwei Zhang, Shujie Li and Liping Zhang
Materials 2025, 18(12), 2883; https://doi.org/10.3390/ma18122883 - 18 Jun 2025
Cited by 1 | Viewed by 629
Abstract
Fly ash and slag powder, as two of the most widely utilized industrial solid waste-based mineral admixtures, have demonstrated through extensive validation that their combined incorporation technology effectively enhances the mechanical properties and microstructural characteristics of concrete. Systematic investigations remain imperative regarding material [...] Read more.
Fly ash and slag powder, as two of the most widely utilized industrial solid waste-based mineral admixtures, have demonstrated through extensive validation that their combined incorporation technology effectively enhances the mechanical properties and microstructural characteristics of concrete. Systematic investigations remain imperative regarding material response mechanisms under dynamic loading conditions. This study conducted microstructural analysis, static compression tests, and dynamic Split Hopkinson Pressure Bar (SHPB) impact compression tests on concrete specimens, complemented by dynamic impact simulations employing an established three-dimensional mesoscale concrete aggregate model. Through integrated analysis of macroscopic mechanical test results, mesoscale numerical simulations, and microstructural characterization data, the research systematically elucidated the influence mechanisms of different mineral admixture combinations on concrete’s dynamic mechanical behavior, energy dissipation characteristics, and fracture mechanisms. The results showed that all specimens exhibited strain rate enhancement characteristics as the strain rate increased. As the admixture approach transitioned from non-admixture to single admixture and subsequently to binary admixture, the dynamic strength, elastic modulus, and DIF of concrete increased progressively. Both the energy dissipation capacity and its proportion relative to total energy absorption showed continuous enhancement. The simulated stress–strain curves, failure modes, and fracture processes show good agreement with experimental results, this effectively verifies both the scientific validity of the mesoscale concrete model’s multiscale modeling approach and the reliability of the numerical simulations. Compared to FHC1, FMHC1’s mesoscale structure can more effectively convert externally applied energy into stored internal energy, thereby achieving superior dynamic compressive energy dissipation capacity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 3992 KB  
Article
Atomistic-Level Insights into MgO and Na2O Modifications of Molten Aluminosilicate Slag: A Molecular Dynamics Research on Structural Evolution and Properties
by Chunhe Jiang, Bo Liu, Jianliang Zhang and Kejiang Li
Metals 2025, 15(6), 656; https://doi.org/10.3390/met15060656 - 12 Jun 2025
Viewed by 998
Abstract
Molecular dynamics simulations were employed to systematically investigate the synergistic effects of Na2O and MgO on the atomistic-scale structural evolution and properties of CaO–SiO2–Al2O3-based slags. By constructing slag models with varying Na2O/MgO ratios, [...] Read more.
Molecular dynamics simulations were employed to systematically investigate the synergistic effects of Na2O and MgO on the atomistic-scale structural evolution and properties of CaO–SiO2–Al2O3-based slags. By constructing slag models with varying Na2O/MgO ratios, the variations in pair distribution functions, oxygen structural units, coordination environments, diffusion coefficients, and viscosity were analyzed in detail. Compared with Na2O, MgO exhibits a stronger ability to disrupt oxygen structural units. The relative content of Na2O and MgO does not significantly affect the bond lengths within the basic network structure. As the MgO content increases, a greater proportion of bridging oxygens and tricluster oxygens are converted into non-bridging oxygens and free oxygens, markedly reducing the degree of polymerization in the slag network. Although MgO also promotes the formation of tetrahedrally coordinated Al (Al4) more effectively than Na2O, its dominant role in enhancing slag fluidity is primarily attributed to its impact on the oxygen structural units. Despite the much higher self-diffusion coefficient of Na+ compared to Mg2+, MgO more significantly reduces the overall viscosity and enhances the fluidity of the melt than Na2O. Therefore, although the number of Na atoms is greater under equal mass conditions, Mg demonstrates a considerably stronger capacity to depolymerize the slag structure. Full article
Show Figures

Figure 1

37 pages, 2520 KB  
Review
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
by Jinghua Zhang, Haoyu Guo, Gaiyan Yang, Yan Wang and Wei Chen
Sustainability 2025, 17(12), 5329; https://doi.org/10.3390/su17125329 - 9 Jun 2025
Cited by 2 | Viewed by 5660
Abstract
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization [...] Read more.
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source, process, and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route, carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage, carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage, CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast, the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage, energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage, precision smelting is realized through intelligent control systems; and at the end-of-pipe stage, a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes, hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential, providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies, economic viability, and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives, technological innovation, and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies, contributing to the industry’s decarbonization efforts. Full article
Show Figures

Figure 1

20 pages, 1834 KB  
Article
Conversion of Sewage Sludge with Combined Pyrolysis and Gasification via the Enhanced Carbon-To-X-Output Technology
by Wolfgang Gebhard, Sebastian Zant, Johannes Neidel, Andreas Apfelbacher and Robert Daschner
Biomass 2025, 5(2), 28; https://doi.org/10.3390/biomass5020028 - 17 May 2025
Cited by 2 | Viewed by 2416
Abstract
Sustainably produced hydrogen has the potential to substitute fossil fuels and significantly reduce CO2 emissions. Fraunhofer UMSICHT develops a new thermochemical conversion technology to gasify ash-rich biogenic residues and waste materials that are difficult to treat with conventional gasifiers, enabling their conversion [...] Read more.
Sustainably produced hydrogen has the potential to substitute fossil fuels and significantly reduce CO2 emissions. Fraunhofer UMSICHT develops a new thermochemical conversion technology to gasify ash-rich biogenic residues and waste materials that are difficult to treat with conventional gasifiers, enabling their conversion into higher-quality energy carriers such as hydrogen and syngas. Ash-rich feedstocks are difficult to convert in conventional gasification methods, as they tend to agglomerate and form slag, leading to blockages in the reactor and process disturbances. In this experimental study, hydrogen-rich syngas is produced from biogenic residual and waste materials (sewage sludge) using the Enhanced Carbon-To-X-Output (EXO) process. The EXO process is a three-stage thermochemical conversion process that consists of a combination of multi-stage gasification and a subsequent reforming step. The influence of temperature in the reforming step on the gas composition and hydrogen yield is systematically investigated. The reformer temperature of the process is gradually increased from 500 °C to 900 °C. The feedstock throughput of the pilot plant is approximately 10 kg/h. The results demonstrate that the temperature of the reforming step has a significant impact on the composition and yield of syngas as well as the hydrogen yield. By increasing the reformer temperature, the syngas yield could be enhanced. The hydrogen yield increased from 15.7 gH2/kgFeed to 35.7 gH2/kgFeed. The hydrogen content in the syngas significantly increased from 23.6 vol.% to 39 vol.%. The produced syngas can be effectively utilized for sustainable hydrogen production, as a feedstock for subsequent syntheses, or for power and heat generation. Full article
Show Figures

Figure 1

Back to TopTop