Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,598)

Search Parameters:
Keywords = controlled environmental agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1755 KB  
Review
Centella asiatica as a Model Biomass for Sustainable Production of Biochemicals via Green Extraction and Purification Technologies: A Comprehensive Field-To-Market Review
by Waqas Razzaq, Jean Baptiste Mazzitelli, Anne Sylvie Fabiano Tixier and Maryline Abert Vian
Molecules 2026, 31(3), 526; https://doi.org/10.3390/molecules31030526 (registering DOI) - 2 Feb 2026
Abstract
Centella asiatica has emerged as a strategic biomass for the sustainable production of high-value biochemicals at the interface of traditional medicine and modern biotechnology. This review consolidates the current knowledge on its phytochemical diversity, emphasizing triterpenoid saponins—asiaticoside, madecassoside, asiatic acid, and madecassic acid—as [...] Read more.
Centella asiatica has emerged as a strategic biomass for the sustainable production of high-value biochemicals at the interface of traditional medicine and modern biotechnology. This review consolidates the current knowledge on its phytochemical diversity, emphasizing triterpenoid saponins—asiaticoside, madecassoside, asiatic acid, and madecassic acid—as core bioactive molecules relevant to pharmaceutical, dermatological, nutraceutical, and functional-ingredient applications. Advances in green extraction technologies, including ultrasound-assisted, microwave-assisted, ohmic-heating, and supercritical CO2 systems, have demonstrated superior efficiency in recovering high-purity biochemicals while significantly reducing solvent use, energy demand, and environmental impact compared with conventional methods. Complementary analytical and standardization platforms, such as HPLC, UPLC, and GC–MS, enable rigorous quality control across the entire value chain, supporting the development of reproducible and regulatory-compliant biochemical extracts. From a biomass valorization and biorefinery perspective, C. asiatica offers multiple metabolite streams that align with circular economy and field-to-market sustainability principles. Key challenges remain, including agronomic variability, scaling up green extraction, and supply chain resilience. However, emerging solutions, such as Good Agricultural and Collection Practices (GACP) guided cultivation, plant tissue culture, metabolic engineering, and integrated biorefinery frameworks, show strong potential for establishing a reliable and environmentally responsible production system. Collectively, C. asiatica represents a model species for sustainable biochemical production, combining scientific efficacy with industrial, economic, and ecological relevance. Full article
26 pages, 1577 KB  
Review
Genetic and Environmental Factors Underlying the Flavor and Color Profiles of Vegetables
by Ayşe Nur Şavkan, Yeşim Dal-Canbar, Hasan Can and Önder Türkmen
Horticulturae 2026, 12(2), 185; https://doi.org/10.3390/horticulturae12020185 - 2 Feb 2026
Abstract
The flavor and color profiles of vegetables are crucial in determining their nutritional value, health benefits, taste, and visual appeal. The genomic characteristics of plants control these traits. Components such as sugars, organic acids, amino acids, phenolic compounds, and essential oils, as well [...] Read more.
The flavor and color profiles of vegetables are crucial in determining their nutritional value, health benefits, taste, and visual appeal. The genomic characteristics of plants control these traits. Components such as sugars, organic acids, amino acids, phenolic compounds, and essential oils, as well as color pigments like anthocyanin, chlorophyll, carotenoid, and betalain, are synthesized in plants based on their genetic structure. Environmental factors like temperature, water, light, and soil can affect the production and intensity of these components. Long-term environmental changes, such as climate change, can significantly alter the dynamics of these components. This comprehensive review focuses on the genetic and environmental interactions underlying the flavor and color profiles of vegetables, with particular emphasis on the analysis of quantitative trait loci (QTL) associated with these traits. The article discusses the identification of genes that regulate taste and color in vegetables and how these genes have been localized in QTL mapping studies. It also discusses the influence of environmental factors on taste and color, as well as gene–environment interactions. Furthermore, it focuses on how this information can be used to improve plant breeding and sustainable agriculture and emphasizes that data from QTL analyses provide valuable insights into the integration of genetic and environmental approaches to improve vegetable quality and meet consumer preferences. In conclusion, the review aims to be a valuable resource for both researchers and professionals interested in the genetic and environmental aspects of taste and color in vegetables. Full article
(This article belongs to the Special Issue Metabolites Biosynthesis in Horticultural Crops)
Show Figures

Figure 1

20 pages, 666 KB  
Review
Organic Production of Fruits and Vegetables in the US: Importance, Trends, and Challenges
by Sixto A. Marquez, Damar D. Wilson and Ram L. Ray
Sustainability 2026, 18(3), 1491; https://doi.org/10.3390/su18031491 - 2 Feb 2026
Abstract
Organic fruit and vegetable production in the United States is increasingly popular, driven by consumer interest in foods associated with healthier lifestyles and environmentally friendly practices. This review synthesizes evidence on the production of this subsector from 1960 to 2021, using major literature [...] Read more.
Organic fruit and vegetable production in the United States is increasingly popular, driven by consumer interest in foods associated with healthier lifestyles and environmentally friendly practices. This review synthesizes evidence on the production of this subsector from 1960 to 2021, using major literature databases (Agricola, ScienceDirect, and Google Scholar), to summarize health and environmental implications, economic importance, research trends, and persistent challenges. The production of fruits and vegetables is frequently reported to exhibit favorable quality and safety attributes, including higher antioxidant capacity and lower levels of cadmium, pesticides, and other chemical residues, supporting its relevance to nutrition and human health. This type of practice is also described as contributing to environmental restoration and preservation through improved soil conditions, reduced reliance on synthetic inputs, enhanced nutrient cycling, and climate-smart benefits such as increased soil organic matter and lower energy intensity. Nevertheless, it faces constraints that increase costs and limit scalability, including high labor demand, limited effectiveness and availability of some organic pest control tools, perishability, post-harvest losses, certification burdens, and market access regulations. Despite these barriers, data indicate growth: from 2007 to 2021, acreage increased by more than 100%, farm-gate value rose from $685 million to $1913 million, and the number of participating farms increased by more than 100%. Moreover, it accounts for 0.9% of the total value of the agricultural production in the U.S. Overall, the outlook for U.S. organic fruit and vegetables is encouraging, supported by expanding consumer demand, government support, and improved conditions for international trade. Full article
(This article belongs to the Special Issue Land Management and Sustainable Agricultural Production)
35 pages, 51007 KB  
Article
Microclimates, Geometry, and Constructive Sustainability of the Inca Agricultural Terraces of Moray, Cusco, Peru
by Doris Esenarro, Celeste Hidalgo, Jesica Vilchez Cairo, Guisela Yabar, Tito Vilchez, Percy Zapata, Daniel Bermudez and Ana Camayo
Heritage 2026, 9(2), 56; https://doi.org/10.3390/heritage9020056 - 2 Feb 2026
Abstract
Moray (Cusco, Peru) represents one of the most sophisticated examples of Inca agricultural engineering, where architecture, environmental management, and constructive systems converge to generate controlled microclimates for agricultural experimentation. Recognized as an important archaeological heritage site, Moray provides valuable insight into ancestral Andean [...] Read more.
Moray (Cusco, Peru) represents one of the most sophisticated examples of Inca agricultural engineering, where architecture, environmental management, and constructive systems converge to generate controlled microclimates for agricultural experimentation. Recognized as an important archaeological heritage site, Moray provides valuable insight into ancestral Andean strategies for adapting agriculture to complex high-altitude environments. However, the site is increasingly exposed to environmental pressures associated with climatic variability, soil erosion, structural collapses, and tourism intensity. This study aims to analyze the relationship between microclimates, geometric design, and constructive sustainability of the Moray archaeological complex through integrated spatial, functional, and constructive analyses, supported by digital tools such as Google Earth Pro, AutoCAD 2023, SketchUp 2023, and environmental simulations developed by Andrew Marsh. The research examines the geometric configuration of the circular terraces, which present radii between 45 and 65 m, heights ranging from 3 to 5 m, and slope variations between 14% and 48%, generating temperature gradients of 12–15 °C between upper and lower levels. These conditions enabled the Incas to experiment with and adapt diverse ecological species across different thermal zones. The study also evaluates the irrigation and infiltration systems composed of gravel, sand, and stone layers that ensured soil stability and moisture regulation. Climate data from SENAMHI (2019–2024) indicate that Moray is located in a semi-arid meso-Andean environment, reinforcing its interpretation as an ancestral environmental laboratory. The results demonstrate Inca mastery in integrating environmental design, hydrological engineering, and agricultural experimentation while also identifying current conservation challenges related to erosion processes, structural deterioration, and tourism pressure. This research contributes to understanding Moray as a climate-sensitive heritage system, offering insights relevant to contemporary strategies for sustainable agriculture, climate adaptation, and heritage conservation in Andean regions. Full article
32 pages, 32199 KB  
Article
Autonomous Robotic Platform for Precision Viticulture: Integrated Mobility, Multimodal Sensing, and AI-Based Leaf Sampling
by Miriana Russo, Corrado Santoro, Federico Fausto Santoro and Alessio Tudisco
Actuators 2026, 15(2), 91; https://doi.org/10.3390/act15020091 (registering DOI) - 2 Feb 2026
Abstract
Viticulture is facing growing economic and environmental pressures that demand a transition toward intelligent and autonomous crop management systems. Phytopathologies remain one of the most critical threats, causing substantial yield losses and reducing grape quality, while regulatory restrictions on agrochemicals and sustainability goals [...] Read more.
Viticulture is facing growing economic and environmental pressures that demand a transition toward intelligent and autonomous crop management systems. Phytopathologies remain one of the most critical threats, causing substantial yield losses and reducing grape quality, while regulatory restrictions on agrochemicals and sustainability goals are driving the development of precision agriculture solutions. In this context, early disease detection is crucial; however, current visual inspection methods are hindered by subjectivity, cost, and delayed symptom recognition. This study presents a fully autonomous robotic platform developed within the Agrimet project, enabling continuous, high-frequency monitoring in vineyard environments. The system integrates a tracked mobility base, multimodal sensing using RGB-D and thermal cameras, an AI-based perception framework for leaf localisation, and a compliant six-axis manipulator for biological sampling. A custom control architecture bridges standard autopilot PWM signals with industrial CANopen motor drivers, achieving seamless coordination among all subsystems. Field validation in a Sicilian vineyard demonstrated the platform’s capability to navigate autonomously, acquire multimodal data, and perform precise georeferenced sampling under unstructured conditions. The results confirm the feasibility of holistic robotic systems as a key enabler for sustainable, data-driven viticulture and early disease management. The YOLOv10s detection model achieved good precision and F1-score for leaf detection, while the integrated Kalman filtering visual servoing system demonstrated low spatial tolerance under field conditions despite foliage sway and vibrations. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

14 pages, 4184 KB  
Article
Antimicrobial Activity of LysX and LysP Endolysins Against Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. juglandis
by Belén Díaz, Pamela Córdova, Alan Zamorano, Melisa Alegría-Arcos, Carlos J. Blondel, Camila Gamboa, Nicola Fiore, Nicolás Tobar, Carolina Ilabaca-Díaz, Assunta Bertaccini and Gastón Higuera
Plants 2026, 15(3), 431; https://doi.org/10.3390/plants15030431 - 30 Jan 2026
Viewed by 84
Abstract
Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. juglandis are the causal agents of bacterial canker in cherry and walnut blight, respectively, which cause significant production losses worldwide. These diseases have traditionally been controlled by copper-based agrochemicals and, more recently, antibiotics. However, the [...] Read more.
Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. juglandis are the causal agents of bacterial canker in cherry and walnut blight, respectively, which cause significant production losses worldwide. These diseases have traditionally been controlled by copper-based agrochemicals and, more recently, antibiotics. However, the prolonged use of these compounds has led to the emergence of resistant bacterial strains. The search for new, efficient, and environmentally friendly biocontrol alternatives has intensified. Phages are promising candidates due to their ability to specifically infect and lyse bacterial pathogens. Endolysin enzymes are responsible for bacterial cell wall degradation, and although they have been extensively studied in medical and veterinary contexts, their application in agriculture remains limited. In this study, 17 putative endolysins were identified from bacteriophages infecting X. arboricola pv. juglandis and P. syringae pv. syringae. Based on conserved domain analyses, 12 were classified as glycosidases, four as amidases, and one as an endopeptidase. From these, a recombinant amidase (LysP) and a recombinant glycosidase (LysX) were expressed in E. coli, purified, and evaluated as pure enzymes. Both endolysins exhibited significant antimicrobial activity, reducing P. syringae pv. syringae viability by 62–78.3% and X. arboricola pv. juglandis viability by 51.5–53.1%, respectively. These findings highlight these recombinant endolysins as promising candidates for the development of biocontrol strategies against bacterial plant pathogens. Full article
Show Figures

Figure 1

19 pages, 2111 KB  
Article
Management and Optimization of Bio-Resource Decentralized Energy Generation Under Political Instability
by Valerii Fedoreiko, Oleg Kravchenko, Dariusz Sala, Roman Zahorodnii, Michał Pyzalski and Roman Dychkovskyi
Energies 2026, 19(3), 737; https://doi.org/10.3390/en19030737 - 30 Jan 2026
Viewed by 83
Abstract
This study addresses the management and optimization of decentralized bioresource energy generation under conditions of political instability, using Ukraine as a representative case. The research aims to enhance energy security and operational resilience where centralized energy infrastructure is vulnerable to disruption. A high-efficiency [...] Read more.
This study addresses the management and optimization of decentralized bioresource energy generation under conditions of political instability, using Ukraine as a representative case. The research aims to enhance energy security and operational resilience where centralized energy infrastructure is vulnerable to disruption. A high-efficiency technology for decentralized heat generation is proposed, based on the direct combustion of non-standard agricultural biomass with a one-year renewal cycle. The methodology combines experimental and statistical analysis of biomass feeding processes with advanced three-dimensional modeling of mixture formation and combustion, as well as the development of an artificial intelligence-driven automated control system. The system enables the use of sunflower, rapeseed, wheat, corn, and other agricultural residues with variable particle size and moisture content of up to 40%, without the need for pre-drying or pelletization. An original jet–vortex bioheat generator and optimized dosing systems were designed to ensure continuous and stable combustion. An operational algorithm allowing stable performance within 25–100% of nominal capacity was formulated based on statistical evaluation of screw feeder behavior and optimization of adjustable electric drive parameters, ensuring thermal carrier temperature stability within ±1–2 °C. The main novelty lies in the integrated optimization framework combining unconventional biomass utilization, adaptive electric drive control, and AI-based automation to achieve high energy efficiency and environmental performance. The results indicate that such decentralized systems can substantially strengthen national energy security and support sustainable energy supply in unstable political environments. Full article
(This article belongs to the Special Issue Biomass Power Generation and Gasification Technology)
Show Figures

Figure 1

20 pages, 9400 KB  
Article
Effect of Deep Placement Fertilization on Soybean (Glycine max L.) Development in Albic Black Soil
by Jiahe Zou, Qiuju Wang, Haibin Zhang, Qingying Meng, Jingyang Li, Aihui Chen, Xin Liu, Yifei Luo and Zhenhua Guo
Plants 2026, 15(3), 424; https://doi.org/10.3390/plants15030424 - 30 Jan 2026
Viewed by 191
Abstract
Maximizing the agricultural output on inherently infertile land and minimizing the environmental cost remain central research imperatives. Albic black soil typifies such infertility. Conventional practice relies on fertilization and straw incorporation, but the albic layer’s impermeability funnels applied nutrients into adjacent aquatic systems. [...] Read more.
Maximizing the agricultural output on inherently infertile land and minimizing the environmental cost remain central research imperatives. Albic black soil typifies such infertility. Conventional practice relies on fertilization and straw incorporation, but the albic layer’s impermeability funnels applied nutrients into adjacent aquatic systems. Therefore, this study developed deep placement fertilization by lodging fertilizer directly within the albic layer to block hydrologic loss. The feasibility of mechanization was first validated in pot experiments. Soybeans were allocated to six treatments simulating fertilizer placement at different soil depths: control (C), control and fertilizer (CF), surface soil mixing (SM), surface soil mixing and fertilizer (SMF), plow pan soil mixing (PM), and plow pan soil mixing and fertilizer (PMF). The treatments used 20 cm tillage, and the data were collected after 15, 25, and 35 days and at harvest. Integrative transcriptomic, proteomic, metabolomic, and soil microbiome profiling revealed that fertilizer positioned at 25 cm in the albic layer increased yield, restructured the rhizobiont community and promoted arbuscular mycorrhizal fungal colonization. Among the fertilizer treatments, CF had the best growth, and SMF was inhibited by a nutrient shortage. SMF and PMF lost water faster than CF. Abscisic acid (ABA) conveyed the subterranean fertilization signal to the leaf. The enrichment of Vicinamibacterales, Xanthobacteraceae, and Glomeromycota in soil lowered the ABA content in the roots, which upregulated thymidine kinase and peroxidase upon arrival in the leaf, increasing yield. These findings provide a transferable benchmark for any parent material exhibiting poor hydraulic conductivity. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

20 pages, 2683 KB  
Article
Effect of Sewage Sludge Biochar (SSB) on the Root Bacterial Community of Strawberry (Fragaria × ananassa): A 16S rRNA Gene Sequencing Approach
by Erasmus Kabu Aduteye, Caleb Nindo, Ravendra P. Chauhan and Naveen Kumar Dixit
Microorganisms 2026, 14(2), 319; https://doi.org/10.3390/microorganisms14020319 - 29 Jan 2026
Viewed by 186
Abstract
Strawberry (Fragaria × ananassa) is one of the most consumed berries worldwide. Despite improvements in management practices and breeding, maintaining soil health and minimizing environmental impact remain a challenge for agricultural systems. Biochar has been proposed as an effective strategy to [...] Read more.
Strawberry (Fragaria × ananassa) is one of the most consumed berries worldwide. Despite improvements in management practices and breeding, maintaining soil health and minimizing environmental impact remain a challenge for agricultural systems. Biochar has been proposed as an effective strategy to mitigate climate change, enhance soil health, and promote plant growth. This study investigated the effects of sewage sludge biochar (SSB; 0% control, 5%, and 10% w/w) on the root-associated bacterial community of strawberry plants grown in pots under greenhouse conditions. Results obtained using 16S rRNA gene sequencing revealed a stable core bacterial community comprising 1207 amplicon sequence variants (ASVs), representing 13.2% of all detected ASVs and shared across all treatments. In contrast, biochar-amended soils harbored distinct sets of unique ASVs, with 1795 ASVs (19.7%) in the 5% SSB treatment and 2097 ASVs (23.0%) in the 10% SSB treatment, indicating treatment-specific community differentiation. Phylum-level analysis showed that Cyanobacteriota and Proteobacteria dominated the root-associated bacterial communities across all treatments, with no significant differences between biochar-amended soils and control groups. Alpha diversity did not differ significantly among treatments (p > 0.05), but beta diversity indicated subtle shifts in bacterial community composition under SSB amendment. SSB application increased community homogeneity, while overall bacterial diversity remained unchanged, indicating bacterial community restructuring rather than functional enhancement. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 3382 KB  
Article
Sources of Heavy Metals and Their Effects on Distribution at the Sediment–Water Interface of the Yellow Sea Shelf off Northern Jiangsu
by Wenyu Liu, Yu Li, Xinjun Wang and Yuhan Cao
Toxics 2026, 14(2), 133; https://doi.org/10.3390/toxics14020133 - 29 Jan 2026
Viewed by 122
Abstract
To investigate the distribution, sources, and partitioning of heavy metals at the sediment–water interface in the northern Jiangsu coastal waters, seawater and sediment samples were collected from 24 stations east of Yanwei Port in April 2021. The concentrations of seven heavy metals (Cu, [...] Read more.
To investigate the distribution, sources, and partitioning of heavy metals at the sediment–water interface in the northern Jiangsu coastal waters, seawater and sediment samples were collected from 24 stations east of Yanwei Port in April 2021. The concentrations of seven heavy metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) and environmental parameters were determined. Methods including principal component analysis (PCA), random forest (RF), positive matrix factorization (PMF), the partition coefficient (Kp), and the source-specific partition coefficient (S-Kp) were applied. The results showed the following: (1) The overall concentration order was Zn > Cu > As > Pb > Cd > Hg in seawater and Zn > Cr > Cu > Pb > As > Hg > Cd in sediments, with Cd and Pb characterized by high spatial variability. (2) PCA and RF indicated that dissolved heavy metals were mainly influenced by dissolved oxygen, petroleum, phosphate, and dissolved inorganic nitrogen, with DIN playing a common dominant role. PMF revealed three main sources for sediment metals: agricultural (contributing notably to Cu and Zn), traffic and industrial exhaust (dominating Pb, Cr, and Hg inputs), and industrial (primarily affecting Cd, Cr, and Pb). (3) Kp analysis suggested that Pb, As, and Cu were readily adsorbed by sediments, while Cd, Hg, and Zn tended to remain dissolved. Critically, S-Kp demonstrated source dependent partitioning: Pb derived from industrial sources was almost entirely associated with sediments, while Cu and Zn originating from traffic and industrial exhaust emissions were predominantly present in the aqueous phase, and Cu and Pb derived from agricultural sources were largely deposited in sediments. These findings provide a scientific basis for heavy metal pollution control in the region. Full article
Show Figures

Graphical abstract

37 pages, 3370 KB  
Review
Thermal Energy Storage for Sustainable Smart Agricultural Facilities: Design, Integration, Control, Environmental Impacts, and Future Perspectives
by Ahsan Mehtab, Hong-Seok Mun, Eddiemar B. Lagua, Hae-Rang Park, Jin-Gu Kang, Md Sharifuzzaman, Md Kamrul Hasan, Young-Hwa Kim, Sang-Bum Ryu and Chul-Ju Yang
Sustainability 2026, 18(3), 1311; https://doi.org/10.3390/su18031311 - 28 Jan 2026
Viewed by 138
Abstract
Smart agricultural systems need stable thermal environments for greenhouses, livestock housing, and on-farm processing. However, renewable heat sources such as solar collectors and heat pumps often cause fluctuations that challenge reliable operation. Thermal energy storage (TES)—particularly water-based sensible tanks, stratified reservoirs, and phase-change [...] Read more.
Smart agricultural systems need stable thermal environments for greenhouses, livestock housing, and on-farm processing. However, renewable heat sources such as solar collectors and heat pumps often cause fluctuations that challenge reliable operation. Thermal energy storage (TES)—particularly water-based sensible tanks, stratified reservoirs, and phase-change material (PCM) systems—provides an effective solution by decoupling heat supply and demand. In this review, tank-based TES technologies for agricultural applications, focusing on design, integration with renewable energy systems, and control strategies, are critically examined. Key performance aspects, including thermal stratification, state-of-charge estimation, and advanced predictive control, are analyzed to identify best practices and limitations. The review finds that sensible TES remains dominant in farm applications due to its low cost and durability, while latent (PCM/ice) and thermochemical storage provide a higher energy density and long-duration potential but are presently limited by material stability, system complexity, and cost. From an environmental perspective, TES contributes to reducing fossil fuel dependence, improving resource efficiency, lowering greenhouse gas emissions, and boosting the resilience of rural farming systems. Overall, TES is recognized as a key enabling technology for climate-smart, energy-efficient, and sustainable agricultural operations. However, remaining research gaps include long-term field validation, standardized performance metrics, and life-cycle environmental assessment. Full article
Show Figures

Figure 1

22 pages, 2519 KB  
Review
Impact of High Temperatures, Considerations and Possible Solutions for Sustainable Lettuce Production
by Kelvin D. Aloryi, Hannah Mather, Germán V. Sandoya and Kevin Begcy
Agronomy 2026, 16(3), 327; https://doi.org/10.3390/agronomy16030327 - 28 Jan 2026
Viewed by 151
Abstract
High temperature is a major environmental stress factor that affects lettuce (Lactuca sativa L.) growth, development, and productivity. As global temperatures continue to rise, understanding the impact of heat stress on lettuce production is crucial for maintaining crop yields and quality. In [...] Read more.
High temperature is a major environmental stress factor that affects lettuce (Lactuca sativa L.) growth, development, and productivity. As global temperatures continue to rise, understanding the impact of heat stress on lettuce production is crucial for maintaining crop yields and quality. In fields and in controlled environment agriculture, these elevated temperatures lead to poor seed germination due to thermoinhibition, earlier bolting due to faster crop development, and reduced marketable yields and an increased likelihood of heat-related disorders such as tipburn. Achieving heat tolerance in controlled environment agriculture is paramount as this industry struggles with higher production costs from the excessive use of cooling systems to acclimate greenhouses to temperatures ideal for lettuce production whereas field-grown lettuce must withstand highly variable and extreme thermal conditions, making heat stress a major constraint in both systems. This review comprehensively summarizes the current literature on the impact of heat stress on lettuce and highlights the influence of heat stress at the physiological, biochemical, and molecular level. In addition, we highlight management practices on lettuce production and sustainability as well as the breeding potential for heat tolerance. We synthesized these findings into a proposed conceptual framework for selecting and identifying genomic targets to advance the improvement of heat resilience in lettuce. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

14 pages, 1237 KB  
Proceeding Paper
Fuzzy-Logic-Based Intelligent Control of a Cabinet Solar Dryer for Plantago major Leaves Under Real Climatic Conditions in Tashkent
by Komil Usmanov, Noilakhon Yakubova, Shakhnoza Sultanova and Zafar Turakulov
Eng. Proc. 2025, 117(1), 35; https://doi.org/10.3390/engproc2025117035 - 28 Jan 2026
Viewed by 167
Abstract
Solar drying is an energy-efficient and environmentally friendly method for dehydrating agricultural and medicinal products; however, its performance is strongly affected by fluctuating climatic conditions and nonlinear heat and mass transfer processes. In cabinet-type solar dryers, maintaining the drying air temperature and relative [...] Read more.
Solar drying is an energy-efficient and environmentally friendly method for dehydrating agricultural and medicinal products; however, its performance is strongly affected by fluctuating climatic conditions and nonlinear heat and mass transfer processes. In cabinet-type solar dryers, maintaining the drying air temperature and relative humidity within optimal ranges is particularly critical for medicinal plants such as Plantago major leaves, which are sensitive to overheating and non-uniform drying. In this study, a Mamdani-type fuzzy logic-based intelligent control system is developed and experimentally validated for a cabinet solar dryer operating under real summer climatic conditions in Tashkent, Uzbekistan. The proposed controller regulates fan speed using drying air temperature and relative humidity as inputs. To evaluate its effectiveness, the fuzzy logic controller is benchmarked against a conventionally tuned Proportional–Integral–Derivative (PID) controller under identical operating and climatic conditions. A coupled thermodynamic–hygrometric dynamic model of the drying process is implemented in MATLAB/Simulink (R2024a) to support controller design and analysis. Experimental results demonstrate that the fuzzy logic controller maintains the drying air temperature within the optimal range of 45–50 °C despite significant fluctuations in solar irradiance (650–900 W/m2), whereas the PID-controlled system exhibits noticeable overshoot and oscillations. Compared with PID control, the fuzzy-controlled dryer achieves a smoother reduction in relative humidity, a reduction of approximately 22% in total drying time for the same final moisture content (8–10% wet basis), and an 18% decrease in auxiliary electrical energy consumption. In addition, tray-wise moisture measurements indicate improved drying uniformity under fuzzy control, with moisture variation remaining within ±4%. Overall, the results confirm that fuzzy-logic-based intelligent control provides a robust and energy-efficient solution for cabinet solar dryers operating under hot continental climatic conditions, offering clear advantages over conventional PID control in terms of stability, drying performance, and uniformity. Full article
Show Figures

Figure 1

29 pages, 1738 KB  
Article
Investment Efficiency–Risk Mismatch and Its Impact on Supply-Chain Upgrading: Evidence from China’s Grain Industry
by Zihang Liu, Fanlin Meng, Bingjun Li and Yishuai Li
Sustainability 2026, 18(3), 1293; https://doi.org/10.3390/su18031293 - 27 Jan 2026
Viewed by 335
Abstract
This study examines how investment efficiency and risk jointly shape sustainable grain supply-chain upgrading. Using firm-level panel data for 25 listed grain supply-chain firms in China from 2015 to 2023, this study examines efficiency–risk structures and their heterogeneity across upstream, midstream, and downstream [...] Read more.
This study examines how investment efficiency and risk jointly shape sustainable grain supply-chain upgrading. Using firm-level panel data for 25 listed grain supply-chain firms in China from 2015 to 2023, this study examines efficiency–risk structures and their heterogeneity across upstream, midstream, and downstream segments. A three-stage data envelopment analysis (DEA) is applied to measure investment efficiency while controlling for environmental heterogeneity and statistical noise, and a multidimensional investment risk index is constructed using principal component analysis (PCA), with an emphasis on sustainability metrics. The results reveal a clear supply-chain gradient: downstream firms exhibit the highest mean third-stage investment efficiency (crete = 0.633) and scale efficiency (scale = 0.634), midstream firms are intermediate (crete = 0.308; scale = 0.326), and upstream firms remain lowest (crete = 0.129; scale = 0.138). This ordering is also visible year by year, while risk profiles indicate higher exposure upstream and pronounced volatility midstream. Efficiency decomposition shows that upstream inefficiency is mainly driven by scale inefficiency rather than insufficient pure technical efficiency. Overall, efficiency–risk mismatch—manifested as persistent low scale efficiency and elevated risk exposure in upstream, volatility in midstream, and stability in downstream—constitutes a key micro-level barrier to long-term and resilient upgrading. The study thus offers policy-relevant insights for segment-specific interventions that align with sustainable agricultural development: facilitating land consolidation and integrated risk management for upstream scale inefficiency, promoting supply-chain finance and digital integration for midstream risk volatility, and leveraging downstream stability to drive coordinated upgrading and sustainable value creation through market-based incentives. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

23 pages, 3151 KB  
Article
Nanoformulations of the Piper auritum Kunth (Piperales: Piperaceae) Essential Oil for the Control of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
by Josefina Barrera-Cortés, Jocelyn Sosa-Trejo, Isabel M. Sánchez-Barrera, Laura P. Lina-García, Fabiola D. León Navarrete and María E. Mancera-López
Agriculture 2026, 16(3), 308; https://doi.org/10.3390/agriculture16030308 - 26 Jan 2026
Viewed by 184
Abstract
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three [...] Read more.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three nanoformulations (NFs) based on the essential oil (70% safrole) of Piper auritum Kunth (Piperales: Piperaceae), nanoemulsion (NE), microemulsion (ME), and silver nanoparticles (AgNPs), against second-instar larvae of S. frugiperda. The NFs were prepared using a combination of low- and high-energy methods, using Tween 80 and Span 80 as stabilizing agents. The droplet sizes of the NFs ranged from 19 to 48 nm. Stability analysis of the formulations maintained for 60 days in open systems at room temperature allowed the identification of remaining oxidized sesquiterpenes and phenylpropanoids. In in vitro bioassays, the NE demonstrated the highest larvicidal activity, with an LD50 of 0.97 µg cm−2, outperforming the other formulations by a factor of ten. Observations of morphological damage to larval and pupal tissues, along with deformation of adult specimens, confirming the toxicity of the NFs. These findings highlight the potential of essential oil-based NFs derived from P. auritum as sustainable biopesticides for integrated pest management. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

Back to TopTop