Metabolites Biosynthesis in Horticultural Crops

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Developmental Physiology, Biochemistry, and Molecular Biology".

Deadline for manuscript submissions: 15 November 2025 | Viewed by 796

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
Interests: food analysis; Raman spectroscopy; FTIR; bioactive compounds; carotenoids; phenolic; essential oil

E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Food Technologies, Ion Ionescu de la Brad Iasi University of Life Sciences, Iași, Romania
Interests: food quality assessment; conventional and organic products; development of innovative food products; physico-chemical and sensory analyzes of foods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fruits, vegetables, herbs and spices are among the most important sources of bioactive compounds that have been shown to have a positive effect on human health and diet. Plants produce hundreds of thousands of structurally diverse secondary metabolites that are responsible for quality attributes and contribute to the marketability and attractiveness of horticultural crops. Investigating the metabolic pathways and signal transduction mechanisms governing the synthesis and regulation of many specialized metabolites in plant cells would enhance our understanding of the regulatory patterns of secondary metabolites in a wide variety of crops. Secondary metabolites are highly reactive, and their accumulation is influenced by both biotic and abiotic stress conditions, which can have negative effects on physiological and morphological characteristics of plants.

Horticulture invites scientists to share their knowledge of recent discoveries in biosynthesis, pathway regulation, pathway evolution, and other broad aspects of specialized metabolites in horticultural crops. Authors are invited to submit original research articles and review papers in the field of specialized metabolism of horticultural plants that are of interest not only to the horticultural community but also to plant biology in general.

Dr. Ilinka Pecinar
Prof. Dr. Gianluca Caruso
Dr. Otilia Cristina Murariu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metabolic pathways
  • bioactive compounds
  • growing conditions
  • abiotic stresses
  • development
  • ripening
  • plant hormones

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2768 KB  
Article
Insights into Carotenoid Biosynthesis Mechanisms in Three Fresh-Consumption Sweetpotato (Ipomoea batatas (L.) Lam.) Cultivars with Distinct Flesh Colors via Integrated Targeted Metabolomic and Transcriptomic Analyses
by Lingxiao Zhao, Qinglian Li, Lukuan Zhao, Xibin Dai, Jie Wang, Bingqian Gao, Shizhuo Xiao, An Zhang, Donglan Zhao, Zhilin Zhou and Qinghe Cao
Horticulturae 2025, 11(9), 1133; https://doi.org/10.3390/horticulturae11091133 - 18 Sep 2025
Viewed by 573
Abstract
The sweetpotato (Ipomoea batatas [L.] Lam) is a globally significant crop, valued for its nutritional and economic importance. The tuberous roots of the sweetpotato are rich in carotenoids, which contribute to their vibrant colors and health benefits. This study focuses on three [...] Read more.
The sweetpotato (Ipomoea batatas [L.] Lam) is a globally significant crop, valued for its nutritional and economic importance. The tuberous roots of the sweetpotato are rich in carotenoids, which contribute to their vibrant colors and health benefits. This study focuses on three elite fresh-consumption sweetpotato cultivars: “Kokei No. 14,” “Xinxiang,” and “Zheshu81” with distinct flesh colors. To elucidate the metabolic pathways and genetic mechanisms underlying carotenoid biosynthesis in the sweetpotato, 20 types of carotenoids were quantified using targeted metabolomic analyses, and the key genes involved in carotenoid synthesis were identified with transcriptomic analyses. The results revealed significant differences in carotenoid content and composition among the cultivars, with “Zheshu81” exhibiting the highest carotenoid levels. Weighted gene co-expression network analysis further highlighted key regulatory genes and transcription factors influencing carotenoid accumulation. This study identifies key transcriptional regulators associated with carotenoid accumulation, sheds light on sweetpotato carotenoid biosynthesis mechanisms, and lays a foundation for breeding to improve its nutritional quality and flesh color. Full article
(This article belongs to the Special Issue Metabolites Biosynthesis in Horticultural Crops)
Show Figures

Figure 1

Back to TopTop