Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,784)

Search Parameters:
Keywords = continuous surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2891 KB  
Article
Near Real-Time Reconstruction of 0–200 cm Soil Moisture Profiles in Croplands Using Shallow-Layer Monitoring and Multi-Day Meteorological Accumulations
by Zheyu Bai, Shujie Jia, Guofang Wang, Mingjing Huang and Wuping Zhang
Agronomy 2025, 15(12), 2864; https://doi.org/10.3390/agronomy15122864 (registering DOI) - 12 Dec 2025
Abstract
Soil profile moisture (0–200 cm) in agricultural fields is a critical variable determining root-zone water storage and irrigation scheduling accuracy, yet continuous deep-layer monitoring is constrained by equipment costs and installation difficulties. This study developed a near-real-time reconstruction model for soil moisture profiles [...] Read more.
Soil profile moisture (0–200 cm) in agricultural fields is a critical variable determining root-zone water storage and irrigation scheduling accuracy, yet continuous deep-layer monitoring is constrained by equipment costs and installation difficulties. This study developed a near-real-time reconstruction model for soil moisture profiles across the 0–200 cm depth based on shallow-layer (0–20 cm, 20–40 cm) real-time monitoring data and multi-day accumulated meteorological features. Using field measurements from 2023 to 2025, Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Regression (SVR) models were compared across different input scenarios and cumulative time windows. The results showed that using only surface moisture as input (Scenario A), prediction R2 ranged from 0.87 to 0.93 for shallow layers (≤80 cm) but decreased to 0.58 for deep layers (140–200 cm). Incorporating multi-day meteorological accumulation (Scenario B) improved R2 by 0.05–0.08. When dual-layer moisture and meteorological drivers were combined (Scenario D), shallow-layer R2 reached 0.96–0.98 with RMSE < 7 mm, mid-layer performance maintained at 0.85–0.90, and deep layers still achieved 0.76–0.84. Optimal time windows exhibited depth-dependent patterns: 5–10 days for shallow layers, 10–15 days for mid-layers, and ≥20 days for deep layers. Rolling validation demonstrated high consistency between model predictions and observations in the 0–80 cm range (R2 > 0.90, RMSE < 10 mm), enabling stable estimation of 0–200 cm profile dynamics. This approach eliminates the need for deep probes while achieving low-cost, interpretable, and deployable near-real-time deep moisture estimation, providing an effective technical pathway for precision irrigation and water management in semi-arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

14 pages, 829 KB  
Article
Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study
by Rimah Nassar, Tali Chackartchi, Haim Doron, Jonathan Mann, Mordechai Findler and Guy Tobias
Biomimetics 2025, 10(12), 833; https://doi.org/10.3390/biomimetics10120833 - 12 Dec 2025
Abstract
Background: This study examined the trends in restorative dental practice among 12-year-old children treated at a nationwide public health maintenance organization in Israel between 2016 and 2022, focusing on the use of amalgam versus composite resin restorations in permanent premolars and molars. Methods: [...] Read more.
Background: This study examined the trends in restorative dental practice among 12-year-old children treated at a nationwide public health maintenance organization in Israel between 2016 and 2022, focusing on the use of amalgam versus composite resin restorations in permanent premolars and molars. Methods: Data were extracted from electronic health records of the second-largest public health organization in Israel, identifying children who underwent restorative treatments during the study period. Restoration rates were compared overall and stratified by gender, socioeconomic status, and number of surfaces restored. Statistical analysis was conducted using SPSS version 27, employing Levene’s test for equality of variances and Welch’s one-way ANOVA. Results: The results showed a statistically significant decline in amalgam use (p < 0.05) alongside a marked increase in composite resin restorations (p < 0.05), consistent across genders and socioeconomic groups. Notably, composite resins were increasingly selected for complex, multi-surface restorations (p < 0.05). Conclusions: These findings highlight a substantial shift in paediatric restorative practice in Israel, reflecting growing preference for composite resins likely influenced by patient demands and national dental reforms that eliminated financial barriers. The observed trend underscores the importance of continued monitoring of material selection to guide evidence-based practice in pediatric dentistry. Full article
Show Figures

Graphical abstract

17 pages, 3294 KB  
Article
Research on Dynamic Loads Acting on a Vehicle Caused by the Road Profile with Different Surfaces
by Marcin Mieteń, Jarosław Seńko, Jacek Caban, Krzysztof Szcześniak and Marcin Walkiewicz
Appl. Sci. 2025, 15(24), 13106; https://doi.org/10.3390/app152413106 - 12 Dec 2025
Abstract
Dynamic loads on a vehicle’s running gear generated when driving over uneven roads or surfaces have a destructive effect on its components and, consequently, on the vehicle’s reliability. Special vehicles, especially off-road vehicles, are operated differently from traditional vehicles. Deformable surfaces can induce [...] Read more.
Dynamic loads on a vehicle’s running gear generated when driving over uneven roads or surfaces have a destructive effect on its components and, consequently, on the vehicle’s reliability. Special vehicles, especially off-road vehicles, are operated differently from traditional vehicles. Deformable surfaces can induce significant dynamic loads on vehicle running gear components even at low speeds, significantly limiting safe driving speeds. This article presents experimental vehicle tests conducted on four test track sections at three predefined vehicle speeds (10, 20, and 30 km/h). The experimental results demonstrate a clear dependence of dynamic loads on the off-road vehicle’s speed on dirt surfaces. Differences were observed between the measurement sections, suggesting that standard road profile metrics (e.g., RMS (Root Mean Square) profile height change) do not fully predict actual loads, requiring continuous monitoring of vehicle operating conditions. Compared to paved roads, where loads are more predictable, ground surfaces generate unique vibration patterns even at low driving speeds. RMS values for the measurement sections ranged from 0.02 to 0.06 m. Therefore, it is necessary to adapt test methods to specific ground conditions, with driving speed as a key research parameter. Full article
17 pages, 1542 KB  
Article
Evidence of the Influence of Land Use and Land Cover on Extreme Rainfall in Natal, Northeast of Brazil
by Thiago de Paula Nunes Mesquita, Cláudio Moisés Santos e Silva, Itauan Dayvison Gomes de Medeiros, Keila Rego Mendes, Thales Nunes Martins de Sá, Glenda Yasmin Pereira de Carvalho, Cláudia Luana Brandão, Valéria Lopes, João Ikaro Alves de Moura Sá, Pablo Eli Soares de Oliveira, Carlos da Hora, Fernando Antônio Carneiro de Medeiros, Daniele Tôrres Rodrigues, Gabriel Víctor Silva do Nascimento, Maxsuel Bezerra do Nascimento and Gabriel Brito Costa
Atmosphere 2025, 16(12), 1398; https://doi.org/10.3390/atmos16121398 - 12 Dec 2025
Abstract
This study investigates the influence of land use and land cover (LULC) on the distribution of extreme rainfall in the tropical coastal city of Natal, Brazil. Hourly precipitation data from eight automatic rain gauges (2014–2023) were quality-controlled, with only days containing 24 h [...] Read more.
This study investigates the influence of land use and land cover (LULC) on the distribution of extreme rainfall in the tropical coastal city of Natal, Brazil. Hourly precipitation data from eight automatic rain gauges (2014–2023) were quality-controlled, with only days containing 24 h continuous records retained. Rainfall events were classified into light (<5 mm), normal (5–10 mm), intense (40–50 mm), and extreme (>50 mm) categories, and for each category daily accumulation, duration, intensity, and maximum hourly peaks were calculated. Seasonal and spatial differences across administrative zones were assessed using multivariate analysis of variance (MANOVA). The LULC changes were evaluated from the MapBiomas Collection 9 dataset. Results show that between 1985 and 2020, the proportion of urbanized (non-vegetated) surfaces increased from 27.7% (42.3 km2) to 64.3% (99.7 km2), mainly in the North and West zones, replacing agricultural and vegetated areas. The East and North zones, the most urbanized areas, recorded higher daily averages of extreme rainfall in the dry season (85–88 mm) than in the wet season (78–82 mm), with maximum peaks up to 26 mm/h and durations exceeding 17 h. These findings demonstrate that rapid urban expansion intensifies rainfall extremes, underscoring the importance of incorporating LULC monitoring (e.g., MapBiomas) and spatial planning into climate adaptation strategies for medium-sized cities. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

14 pages, 4315 KB  
Article
Formation of the Structure, Properties, and Corrosion Resistance of Zirconium Alloy Under Three-Roll Skew Rolling Conditions
by Anna Kawałek, Alexandr Arbuz, Kirill Ozhmegov, Irina Volokitina, Andrey Volokitin, Nikita Lutchenko and Fedor Popov
Materials 2025, 18(24), 5578; https://doi.org/10.3390/ma18245578 - 11 Dec 2025
Abstract
Zirconium and its alloys are widely used in nuclear power engineering due to their favorable physical and mechanical properties and their low thermal-neutron absorption cross-section. Their high corrosion resistance in aqueous and steam environments at elevated temperatures is essential for the reliable operation [...] Read more.
Zirconium and its alloys are widely used in nuclear power engineering due to their favorable physical and mechanical properties and their low thermal-neutron absorption cross-section. Their high corrosion resistance in aqueous and steam environments at elevated temperatures is essential for the reliable operation of fuel assemblies and is associated with the formation of a stable, compact ZrO2 oxide layer. However, under reactor conditions, the presence of hydrogen, iodine and other fission products can reduce corrosion resistance, making detailed corrosion assessment necessary. Manufacturing technology, alongside alloy composition, also plays a decisive role in determining corrosion behavior. This study presents corrosion test results for a Zr-1%Nb alloy processed under thermomechanical conditions corresponding to rolling in a special type of three-roll skew rolling–Radial-Shear Rolling (RSR). The applied rolling technology ensured the formation of a pronounced ultrafine-grained (UFG) structure in the near-surface layers, with an average grain size below 0.6 µm. EBSD and TEM observations revealed a largely equiaxed microstructure with refined grains and increased grain boundary density. The corrosion testing was performed in high-temperature steam vessels at 400 °C and 10.3 MPa for 72, 336, 720 and 1440 h. The results demonstrate that RSR processing is an efficient alternative to conventional multi-pass normal bar rolling with vacuum heat treatments, allowing a significant reduction in processing steps and eliminating the need for expensive tooling and intermediate thermal or chemical treatments. Bars manufactured using this method meet the ASTM B351 requirements. The specific weight gain did not exceed 22 mg/dm2 after 72 h and 34.5 mg/dm2 after 336 h. After 1440 h, the samples exhibited a continuous, uniform dark-grey oxide layer with an average thickness below 5.3 µm. Full article
Show Figures

Figure 1

18 pages, 511 KB  
Review
Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment
by Albert Donald Luong, Moorthy Maruthapandi, Aharon Gedanken and John H. T. Luong
Nanomaterials 2025, 15(24), 1862; https://doi.org/10.3390/nano15241862 - 11 Dec 2025
Abstract
Rare-earth oxide (REO) nanoparticles (NPs)—such as cerium (CeO2), samarium (Sm2O3), neodymium (Nd2O3), terbium (Tb4O7), and praseodymium (Pr2O3)—have demonstrated strong antimicrobial activity against multidrug-resistant bacteria. Their [...] Read more.
Rare-earth oxide (REO) nanoparticles (NPs)—such as cerium (CeO2), samarium (Sm2O3), neodymium (Nd2O3), terbium (Tb4O7), and praseodymium (Pr2O3)—have demonstrated strong antimicrobial activity against multidrug-resistant bacteria. Their effectiveness is attributed to unique physicochemical properties, including oxygen vacancies and redox cycling, which facilitate the generation of reactive oxygen species (ROS) that damage microbial membranes and biomolecules. Additionally, electrostatic interactions with microbial surfaces and sustained ion release contribute to membrane disruption and long-term antimicrobial effects. REOs also inhibit bacterial enzymes, DNA, and protein synthesis, providing broad-spectrum activity against Gram-positive, Gram-negative, and fungal pathogens. However, dose-dependent cytotoxicity to mammalian cells—primarily due to excessive ROS generation—and nanoparticle aggregation in biological media remain challenges. Surface functionalization with polymers, peptides, or metal dopants (e.g., Ag, Zn, and Cu) can mitigate cytotoxicity and enhance selectivity. Scalable and sustainable synthesis remains a challenge due to high synthesis costs and scalability issues in industrial production. Green and biogenic routes using plant or microbial extracts can produce REOs at lower cost and with improved safety. Advanced continuous flow and microwave-assisted synthesis offer improved particle uniformity and production yields. Biomedical applications include antimicrobial coatings, wound dressings, and hybrid nanozyme systems for oxidative disinfection. However, comprehensive and intensive toxicological evaluations, along with regulatory frameworks, are required before clinical deployment. Full article
Show Figures

Graphical abstract

61 pages, 28025 KB  
Article
A Study on the Perception Evaluation of Public Spaces in Urban Historic Waterfront Areas Based on AHP–Cloud Modelling: The Case of the Xiaoqinhuai Riverside Area in Yangzhou
by Jizhou Chen, Xinyu Duan, Wanli Zhang, Xiaobin Li, Hao Feng, Ren Zhou and Rong Zhu
Land 2025, 14(12), 2402; https://doi.org/10.3390/land14122402 - 11 Dec 2025
Abstract
With the acceleration of global urbanisation, the pace of evolution in urban waterfront areas has intensified, consequently hastening the renewal rate of their constituent public spaces. Compared to the macro-level planning and regulation of traditional port and coastal waterfronts, balancing the historical preservation [...] Read more.
With the acceleration of global urbanisation, the pace of evolution in urban waterfront areas has intensified, consequently hastening the renewal rate of their constituent public spaces. Compared to the macro-level planning and regulation of traditional port and coastal waterfronts, balancing the historical preservation of urban heritage waterfront public spaces with contemporary demands has emerged as a critical issue in urban regeneration. This study examines the historical waterfront area of the Xiaoqinhuai River in Yangzhou, establishing a public space perception evaluation framework encompassing five dimensions: spatial structure, landscape elements, environmental perception, socio-cultural context, and facility systems. This framework comprises 33 secondary indicators. The perception assessment system was developed through a literature review, field research, and expert interviews, refined using the Delphi method, and weighted via the Analytic Hierarchy Process (AHP). Finally, cloud modelling was employed to evaluate perceptions among residents and visitors. Findings indicate that spatial structure and socio-cultural dimensions received high perception ratings, highlighting historical layout and cultural identity as strengths of the Xiaoqinhuai Riverfront public space, while significant shortcomings were noted in terms of landscape elements, environmental perception, and facilities. These deficiencies manifest primarily in limited vegetation diversity, inadequate hard paving and surface materials, insufficient landscape node design, poor thermal comfort, suboptimal air quality and olfactory perception, uncomfortable resting facilities, limited activity diversity, and inadequate slip-resistant surfaces. Further analysis reveals perceptual differences between residents and visitors: the former prioritise daily living needs, while the latter emphasise cultural experiences and recreational facilities. Based on these findings, this paper proposes targeted optimisation strategies emphasising the continuity of historical context and enhancement of spatial inclusivity. It recommends improving public space quality through multi-dimensional measures including environmental perception enhancement, landscape system restructuring, and the tiered provision of facilities. This research offers an actionable theoretical framework and practical pathway for the protective renewal, public space reconstruction, and optimisation of contemporary urban historic waterfront areas, demonstrating broad transferability and applicability. Full article
(This article belongs to the Topic Contemporary Waterfronts, What, Why and How?)
Show Figures

Figure 1

35 pages, 8934 KB  
Article
Complex Predictions for Stress and Displacement of Deep Buried Tunnels with Concrete Lining in Parallel Inclined Multi-Layered Surrounding Rocks
by Xuefei Hong, Peng Lin, Haiyan Liu, Zongliang Zhang, Yong Xia and Zhiyun Deng
Appl. Sci. 2025, 15(24), 13052; https://doi.org/10.3390/app152413052 - 11 Dec 2025
Abstract
A plane strain analytical model was developed for the interaction between inclined multilayered rock strata and concrete tunnel lining in deep buried tunnels, with both structures treated as homogeneous isotropic elastic bodies and two contact modes, no-slip and full-slip, considered. A non-iterative complex [...] Read more.
A plane strain analytical model was developed for the interaction between inclined multilayered rock strata and concrete tunnel lining in deep buried tunnels, with both structures treated as homogeneous isotropic elastic bodies and two contact modes, no-slip and full-slip, considered. A non-iterative complex variable function method was employed, by which analytical challenges in multiply connected domains were overcome and explicit stress and displacement solutions were obtained. Validation was performed through boundary-condition checks and comparative numerical simulations. The results show that under different tangential contact modes, layer inclinations, and lateral pressure coefficients, the stress error on the inner surface of the lining remains in the order of 10−2 Pa. The stress and displacement components on both sides of each interface satisfy the associated continuity conditions with excellent agreement. The proposed analytical method nearly perfectly satisfies all boundary and continuity conditions. Under non-hydrostatic loading conditions, the numerical and analytical results for different tangential contact modes also show excellent agreement. The von Mises stress errors are generally controlled within 0.03 MPa, and the maximum relative error—located near the inner surface of the lining—remains below 4%, while displacement errors stay below 0.2 mm. Interface stress jumps are accurately captured and oscillations in zones with high stiffness contrast are effectively avoided. The method is presented as a fast and reliable analytical tool for tunnel design under complex multilayered rock conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 2494 KB  
Article
Heavy Metal Contamination in Homestead Agricultural Soils of Bangladesh: Industrial Influence, Human Exposure and Ecological Risk Assessment
by Afia Sultana, Qingyue Wang, Miho Suzuki, Christian Ebere Enyoh, Md. Sohel Rana, Yugo Isobe and Weiqian Wang
Soil Syst. 2025, 9(4), 136; https://doi.org/10.3390/soilsystems9040136 - 11 Dec 2025
Abstract
Heavy metal contamination in agricultural soils poses serious threats to food safety, ecosystem integrity, and public health. This study investigates the concentrations, ecological risks, and human health impacts of nine heavy metals Cr, Mn, Co, Ni, Cu, Zn, Pb, As, and V in [...] Read more.
Heavy metal contamination in agricultural soils poses serious threats to food safety, ecosystem integrity, and public health. This study investigates the concentrations, ecological risks, and human health impacts of nine heavy metals Cr, Mn, Co, Ni, Cu, Zn, Pb, As, and V in homestead agricultural soils collected from two depths, surface (0–20 cm) and subsurface (21–50 cm), across industrial and non-industrial regions of Bangladesh, using inductively coupled plasma mass spectrometry (ICP-MS). Results revealed that surface soils from industrial areas exhibited the highest metal concentrations in order of Mn > Zn > Cr > Pb > V > Ni > Cu > As > Co. However, maximum As levels were detected in non-industrial areas, suggesting combined influences of local geology, intensive pesticide application, and prolonged irrigation with As-contaminated groundwater. Elevated concentrations in surface soils indicate recent contamination with limited downward migration. Multivariate statistical analyses indicated that industrial and urban activities are the major sources of contamination, whereas Mn remains primarily geogenic, controlled by natural soil forming processes. Contamination factor (CF) and pollution load index (PLI) analyses identified Pb and As as the principal pollutants, with hotspots in Nairadi, Majhipara (Savar), Gazipur sadar, and Chorkhai (Mymensingh). Ecological risk (ER) assessment highlighted As and Pb as the dominant environmental stressors, though overall risk remained low. Human health risk analysis showed that ingestion is the primary exposure pathway, with children being more susceptible than adults. Although the hazard index (HI) values were within the acceptable safety limits, the estimated carcinogenic risks for As and Cr exceeded the USEPA thresholds, indicating potential long term health concerns. Therefore, the cumulative carcinogenic risk (CCR) results demonstrate that As is the primary driver of lifetime carcinogenic risk in homestead soils, followed by Cr, while contributions from other metals are minimal. These findings emphasize the urgent need for continuous monitoring, improved industrial waste management, and targeted mitigation strategies to ensure safe food production, a cleaner environment, and better public health. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Soil Ecotoxicology)
Show Figures

Figure 1

15 pages, 2803 KB  
Article
Analysis of the Regulatory Effect of Semi-Solid Isothermal Treatment Time on Crystallization and Plasticity of Amorphous Composites
by Xinhua Huang, Guang Wang, Bin Chen, Chenghao Wei, Jintao Zhao, Longguang Wu, Qi Li and Yuejun Ouyang
Metals 2025, 15(12), 1363; https://doi.org/10.3390/met15121363 - 11 Dec 2025
Viewed by 21
Abstract
Ti48Zr27Cu6Nb5Be14 amorphous composites were prepared by copper mold suction casting to obtain as-cast specimens. Subsequently, the as-cast specimens were held at 900 °C for different durations (5, 10, 20, 30, and 40 min) and [...] Read more.
Ti48Zr27Cu6Nb5Be14 amorphous composites were prepared by copper mold suction casting to obtain as-cast specimens. Subsequently, the as-cast specimens were held at 900 °C for different durations (5, 10, 20, 30, and 40 min) and then water quenched to cool, yielding treated specimens. Room-temperature compression tests were conducted to characterize the mechanical properties of the materials before and after the treatment. X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy (SEM) were used to detect and observe the microstructure of the specimens (before and after treatment) as well as the morphology of the side surface of compressed fractured specimens. Results show that the as-cast specimens are amorphous matrix composites, with dendrites (identified as β-Ti) predominantly distributed in the amorphous matrix. When the treatment duration increased from 5 to 40 min, two key phenomena were observed. The dendrites gradually disappeared and evolved into curved crystals first; subsequently, the curved crystals transformed into elongated crystals. Finally, the elongated crystals evolved into short and thick rod-like crystals, which further transformed into near-spherical crystals or spherical crystals. Furthermore, as the treatment duration prolonged, the average equivalent size of the crystals increased continuously, reaching 23.1 μm. Additionally, the plasticity of the specimens first increased, reached a maximum value of 16.2% when held for 30 min, and then decreased. Full article
(This article belongs to the Special Issue Research Progress of Crystal in Metallic Materials)
Show Figures

Figure 1

11 pages, 3561 KB  
Article
Effect of Graphene on Interfacial Microstructure and Thermal Conductivity in Copper/Aluminum Composite Plate
by Yifan Liu, Zhaoyang Yang, Yusha Shen, Rui Wang and Lianbo Wang
Coatings 2025, 15(12), 1468; https://doi.org/10.3390/coatings15121468 - 11 Dec 2025
Viewed by 43
Abstract
This study prepared Copper(Cu)/Aluminum(Al) composite materials using hot-rolling technology. The influence of annealing treatment on the interfacial microstructure was systematically investigated, thereby elucidating the correlation between microstructural characteristics and thermal conductivity. The results demonstrated that annealing treatment induced the formation of a continuous [...] Read more.
This study prepared Copper(Cu)/Aluminum(Al) composite materials using hot-rolling technology. The influence of annealing treatment on the interfacial microstructure was systematically investigated, thereby elucidating the correlation between microstructural characteristics and thermal conductivity. The results demonstrated that annealing treatment induced the formation of a continuous intermetallic compound layer at the Cu/Al interface, with its thickness increasing proportionally to elevated temperature and prolonged duration. After spraying graphene onto the aluminum surface via ultrasonic spraying technology, followed by rolling and an annealing treatment, the intermetallic compounds at the Cu/Al interface exhibited a discontinuous distribution pattern. When annealed at 300 °C, the thermal conductivity of the Cu/Al composite plate increased progressively with prolonged duration. For instance, in the absence of graphene, the value increased from 39.288 to 61.827; when graphene was applied via ultrasonic spraying with a spraying distance of 1 mm, the value increased from 49.884 to 73.203, whereas at 400 °C annealing, it exhibited a notable decline as annealing time extended. Graphene at the interface inhibits the diffusion of Cu/Al atoms, reduces the formation of intermetallic compounds, establishes efficient thermal conduction paths, and ultimately enhances the thermal conductivity of the composite material. Full article
Show Figures

Figure 1

29 pages, 40548 KB  
Article
InSAR-Based Multi-Source Monitoring and Modeling of Multi-Seam Mining-Induced Deformation and Hazard Chain Evolution in the Loess Gully Region
by Qunjia Zhang, Zhenhua Guo, Meng Wang, Jiacheng Mei, Lei Liu, Tariq Ashraf and Xue Wang
Remote Sens. 2025, 17(24), 3993; https://doi.org/10.3390/rs17243993 - 10 Dec 2025
Viewed by 117
Abstract
In recent years, coal mining has shifted from surface to underground multi-seam and multi-panel operations, leading to enhanced ground deformation and elevated risks of secondary geo-hazards. However, the deformation mechanisms and spatiotemporal evolution of mining-induced ground movement in high-intensity repeated mining areas require [...] Read more.
In recent years, coal mining has shifted from surface to underground multi-seam and multi-panel operations, leading to enhanced ground deformation and elevated risks of secondary geo-hazards. However, the deformation mechanisms and spatiotemporal evolution of mining-induced ground movement in high-intensity repeated mining areas require further investigation. To gain further insight, this study focuses on elucidating the deformation mechanisms and hazard-chain evolution induced by downward multi-seam and multi-panel mining in the Hongyan coal mine, located in the loess gully region. An integrated InSAR-based multi-source monitoring and modeling framework was adopted, systematically combining InSAR, historical satellite imagery, UAV-based surveys, and ground observations with numerical simulations to characterize the spatiotemporal evolution of mining-induced deformation and examine the coupling processes within the hazard chain. The monitoring results show a strong spatiotemporal correlation between mining activities and ground deformation: subsidence basins and temporal variations correspond closely to the mining sequence, and the spatial distribution of fissures aligns with the advancing working faces. The analysis indicates mining-induced stress redistribution and stratum instability are the root causes of subsidence. Subsidence characteristics are affected by topography, mining sequence, and the cumulative impacts of multi-seam mining, leading to stepwise subsidence and subsidence basins. The overlying loess’s topography and characteristics affect the subsidence distribution. The “stress arch” formed in the goaf evolves with the multi-panel mining process, gradually collapsing during continuous mining and leading to stratum instability. Initially spreading stress and preventing rock movement, the upper residual pillars aggravate stratum damage following critical stratum failure. Mining exerts spatiotemporal control over hazard development, with the hazard chain evolving upward from the mining horizon, driven by fissure propagation and subsidence as the core processes, and reinforced by a bottom-up chain reaction and feedback among successive hazards. This study provides scientific insights for the planning and hazard prevention of multi-seam mining in loess gully regions. Full article
Show Figures

Figure 1

20 pages, 1899 KB  
Article
Experimental Study on Alternating Vacuum–Electroosmosis Treatment for Dredged Sludges
by Jiangfeng Wang, Yifeng Wu, Chunxue Du, Yang Yang, Xinhua Dong, Shen Yang, Jifeng Wang and Pei Zhang
Water 2025, 17(24), 3499; https://doi.org/10.3390/w17243499 - 10 Dec 2025
Viewed by 83
Abstract
The utilization of treated dredged sludge as a partial replacement for natural sand and gravel in construction projects offers a promising approach to reducing the exploitation of natural resources. The conventional vacuum preloading (VP) method, while widely used for soft soil improvement, is [...] Read more.
The utilization of treated dredged sludge as a partial replacement for natural sand and gravel in construction projects offers a promising approach to reducing the exploitation of natural resources. The conventional vacuum preloading (VP) method, while widely used for soft soil improvement, is often associated with prolonged consolidation periods and high energy consumption in its later stages. Conversely, the electroosmosis (EO) technique is effective in enhancing drainage in low-permeability soft clays but is constrained by issues including anode corrosion, high operational costs, and uneven soil reinforcement. This study presents an experimental investigation into an alternating vacuum preloading and electroosmosis method for sludge treatment based on the underlying reinforcement theory. A series of laboratory model tests was conducted using a self-made vacuum–electroosmosis alternating test device. The reinforcement efficiency was assessed through the continuous monitoring of key performance indicators during the tests, including water discharge, surface settlement, electric current, electrode corrosion, and energy consumption. Post-test evaluations of the final soil shear strength and moisture content were also performed. The test results demonstrate that the alternating vacuum–electroosmosis yielded more significant improvement than their synchronous application. Specifically, the alternating vacuum–electroosmosis increased total water discharge by 46.1%, reduced final moisture content by 20.8%, and enhanced shear strength by 35.6% relative to the synchronous mode. Furthermore, an alternating VP-EO mode was found to be particularly advantageous during the electroosmosis phases, facilitating a more stable and sustained dewatering process. In contrast, the application of vacuum preloading alone resulted in inefficient performance during the later stages, coupled with relatively high energy consumption. Full article
(This article belongs to the Special Issue Risk Assessment and Mitigation for Water Conservancy Projects)
Show Figures

Figure 1

17 pages, 3915 KB  
Article
AWJ Cutting Process Quality Modeling and Optimization Based on Footprint Angle
by Andrzej Perec, Elzbieta Kawecka and Wojciech Zajac
Materials 2025, 18(24), 5548; https://doi.org/10.3390/ma18245548 - 10 Dec 2025
Viewed by 75
Abstract
Various materials may be machined using the abrasive water jet (AWJ) cutting method. Many control factors, such as abrasive flow, operating pressure, and traverse speed, influence the efficiency and surface quality of AWJ-cut components. The common distinguishing factor of process efficiency and quality [...] Read more.
Various materials may be machined using the abrasive water jet (AWJ) cutting method. Many control factors, such as abrasive flow, operating pressure, and traverse speed, influence the efficiency and surface quality of AWJ-cut components. The common distinguishing factor of process efficiency and quality is the angle of machining footprints (striation angle). This paper presents research results on the control parameters as a method of influencing the striation angle through the angle level of machining footprints to achieve high efficiency and quality, for example, the high-impact and abrasive-resistant steel. This will enable quality control of the AWJ cutting process by continuously measuring the jet deflection angle in an online mode and adjusting these parameters in real-time to maintain high efficiency and the required surface quality. The particular interest in utilizing this basis is the possibility of setting cutting parameters for new materials not included in the implemented model of the AWJ cutting machine. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

21 pages, 2515 KB  
Article
Impact of Surface Sealing on Color Stability and Surface Roughness of Conventional Dental Resin Composites
by Georgiana Osiceanu, Sebastian Ciurescu and Liliana Porojan
Materials 2025, 18(24), 5543; https://doi.org/10.3390/ma18245543 - 10 Dec 2025
Viewed by 82
Abstract
The objective of this study was to evaluate whether any coating material would have a beneficial influence on maintaining color stability and surface roughness and to what extent an uncoated resin composite can keep its original color. The study evaluated three direct composite [...] Read more.
The objective of this study was to evaluate whether any coating material would have a beneficial influence on maintaining color stability and surface roughness and to what extent an uncoated resin composite can keep its original color. The study evaluated three direct composite resins (Gradia Direct Anterior A2, Tetric EvoCeram A2, Filtek Z550 A2) using 30 samples per material (1 mm thick, 14 × 10 × 1 mm). Samples were prepared in 3D-printed molds, light-cured for 40 s, and initially smoothed with abrasive paper (grit 400–2000). The surface treatments applied were as follows: group 1—polished with a brush and Compo + polishing paste, group 2—conditioned with 37% phosphoric acid, ScotchBond adhesive applied, light-cured. All samples were cleaned ultrasonically for 5 min. Initial surface roughness and color were measured with a profilometer and spectrophotometer. Samples were then immersed in distilled water (control at 37 °C), Coca-Cola and red wine (at 10 °C) with surface roughness and color changes measurements taken on days 1, 7, 14 and 90. Immersion media were refreshed weekly. The most notable color changes after immersion in coloring solutions were observed in the groups treated with Coca-Cola and red wine compared with the control group in distilled water. Tetric EvoCeram sealed and Gradia sealed maintained the greatest resistance to perceptible coloration over 90 days, while Filtek Z550 performed the poorest. Tetric EvoCeram sealed maintained the greatest color stability (ΔE < 3.5 at 90 days), whereas Filtek Z550 sealed showed early degradation. Roughness is often decreased by surface sealing. As immersion time rises, unsealed surfaces often become noticeably rougher than sealed ones. This study simulates the oral environment and the exposure of restorative materials to staining agents. As the loss of esthetic properties over time is a continuous problem, the clinical significance of this research lies in demonstrating how a restorative material could resist pigmentation, when in contact with well-known high staining beverages, in order to maintain its esthetic properties and remain suitable for long-term use in the oral cavity. Moreover, the hypothesis that a coating material would protect the resin composite surface and reduce discoloration and surface roughness was tested. Full article
Show Figures

Figure 1

Back to TopTop