Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment
Abstract
1. Introduction
2. Mechanisms of Antimicrobial Properties
- Cell Membrane Disruption: REEs such as La3+, Ce3+, Gd3+, Y3+, and their oxides interact with negatively charged phospholipids, lipopolysaccharides, peptidoglycan of bacterial membranes, increasing permeability and causing leakage of cellular contents, ultimately leading to cell lysis [5]. Similarly, La3+, Ce3+, and Gd3+ bind to cell membranes, changing surface charge and causing permeability loss [6]. This is like the action of heavy metals like Ag+ and Cu2+. Considering electrostatic interaction, REE cations should have a strong affinity for the negatively charged phosphate backbone of DNA and RNA. This interaction can alter the structure and stability of nucleic acids (e.g., stabilizing certain DNA secondary structures or inducing DNA compaction) to disrupt the normal machinery of gene expression.
- Ion Substitution: Due to their chemical similarity to essential metal ions (Ca2+, Mg2+, and Fe3+), REEs can replace these ions in enzyme active sites or membrane stabilization sites, resulting in enzyme inactivation and structural destabilization [5]. This disrupts critical cellular processes such as ATPase activity, transport, and cell wall biosynthesis. By occupying metal cofactor binding sites, REEs can also induce protein denaturation and inhibit key metabolic pathways such as glycolysis, the TCA cycle, and oxidative phosphorylation.
- Generation of Reactive Oxygen Species (ROS): Ce3+/Ce4+ catalyze the formation of ROS (superoxide, hydroxyl radicals, and hydrogen peroxide), which induce oxidative damage to DNA, lipids, and proteins, leading to cell death [7,8,9]. CeO2 nanoparticles (Nanoceria) are considered a classical nanozyme with a high peroxidase activity-based nanozyme–H2O2 system that would be very efficient for bacterial disinfection. CeO2 NPs also possess high superoxide dismutase activity and antioxidant activity, which can act as a ROS scavenger [10].
- Biofilm Disruption: REEs, especially La3+ and Ce3+, can interfere with quorum sensing and extracellular polymeric substance (EPS) production, reducing biofilm formation or promoting biofilm detachment [11].
3. Synthesis of Rare-Earth Oxide Nanoparticles (REO-NPs)
- Precipitation/Co-precipitation: Hydroxides or carbonates of rare-earth elements are precipitated from aqueous solutions and subsequently calcined to form oxides. This scalable method allows particle size control through adjustments in pH, temperature, and concentration. For example, homogeneous precipitation of CeO2 nanoparticles using ammonium cerium nitrate and urea yields particles around 8 nm [12].
- Sol–Gel Method: Rare-earth alkoxides or nitrates undergo hydrolysis and condensation to form a gel, which is then calcined to produce oxides [13]. The use of complexing agents (e.g., citric acid, ethylene glycol) enables precise control over particle size and composition, resulting in highly pure and uniform nanoparticles.
- Hydrothermal or solvothermal method: A precursor solution is heated in a Teflon-lined autoclave at 150–200 °C for 6–24 h, promoting crystallization without the need for high-temperature calcination. This method yields crystalline nanoparticles with well-defined morphology and tunable size [14]. CeO2 NPs with an average size of 14 ± 3 nm were synthesized by a hydrothermal method using cerium (III) nitrate hexahydrate as the starting material [15].
- Green or biogenic synthesis (eco-friendly). This method uses plant extracts, bacteria, or polysaccharides as reducing/stabilizing agents [18]. Plants are the most efficient source for the green synthesis of nanoparticles because they are a rich source of reducing and stabilizing agents such as phenols, ketones, ascorbic acid, and carboxylic acids. As an example, RE nitrate is mixed with tea, aloe vera, or bacterial extract and heated to form nanoparticles. Biomolecules from the above reducing/stabilizing agents will cap and stabilize particles for controlling aggregation. Biocompatible nanoparticles are suitable for antimicrobial/medical applications. For the preparation of CeO2 NPs, cerium nitrate hexahydrate was added to the Moringa oleifera leaf extract [19]. The average size of the CeO2 NPs was 17 nm, comparable with that of CeO2 NPs synthesized using the leaf extracts of Origanum majorana (20 nm) [20]. CeO2 NPs have been synthesized from Ce(NO3)3 and seeds extract of Salvia macrosiphon Boiss [21]; flower extract of Calotropis procera (a particle size of 21 nm) [22]; Ziziphus jujube fruit (18–25 nm) [23]; the aqueous extract of Acorus calamus rhizome [24]; Aloe barbadensis miller gel [25], Hibiscus sabdariffa flower [26], Moringa oleifera peel [27], Hyphaene thebaica fruit [28], citrus limon peel [29], and Linum usitatissimum L. seeds [30].
4. Diameter and Crystallinity
5. Antimicrobial Properties of REE-NPS
5.1. CeO2 NPs
5.2. Er2O3 NPs
5.3. Eu2O3 NPs
5.4. La2O3 NPs
5.5. Nd2O3 NPs
5.6. Pr2O3 NPs
5.7. Sc2O3 NPs
5.8. Sm2O3 NPs
5.9. Tb4O7 NPs
5.10. Tm2O3 NPs
6. Cytotoxicity, In Vivo Safety, Pharmacokinetics, and Long-Term Biological Effects
6.1. In Vivo Biodistribution, Clearance, and Long-Term Safety
6.2. Stability and Aggregation in Biological Media
- PEG/PVP coatings improve colloidal stability but may mask active surface sites.
- Chitosan/polysaccharide coatings enhance bacterial adhesion and improve antimicrobial effects, though they may compromise long-term dispersion stability.
- Metal dopants (Ag, Zn, and Cu) increase antimicrobial potency but may raise cytotoxicity concerns.
6.3. Industrial Scalability, GMP Manufacturing, and Environmental Considerations
- -
- Continuous-flow reactors that ensure uniform nucleation and narrow size distribution.
- -
- Microwave-assisted synthesis, enabling rapid crystallization with reduced energy input.
- -
- Spray pyrolysis and flame spray pyrolysis, which offer kilogram-scale production for medical-grade powders
- -
- Sono-chemical roll-to-roll coating, which enables direct deposition on wound dressings and textiles.
7. Trends and Future Directions
8. Conclusions
Funding
Conflicts of Interest
References
- Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Zaitsev, A.N. Rare Earth Mineralization in Igneous Rocks: Sources and Processes. Elements 2012, 8, 347–353. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, S.; Chaudhary, S.; Umar, A.; Kumar, R. Bare and Nonionic Surfactant-Functionalized Praseodymium Oxide Nanoparticles: Toxicological Studies. Chemosphere 2018, 209, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Titova, S.A.; Kruglova, M.P.; Stupin, V.A.; Manturova, N.E.; Silina, E.V. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals 2025, 18, 154. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liang, J.; Meng, H.; Yin, Y.; Zhen, H.; Zheng, X.; Shi, H.; Wu, X.; Zu, Y.; Wang, B.; et al. Rare Earth Elements Lanthanum and Praseodymium Adversely Affect Neural and Cardiovascular Development in Zebrafish (Danio Rerio). Environ. Sci. Technol. 2020, 55, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Nanoceria Exhibit Redox State-Dependent Catalase Mimetic Activity. Chem. Commun. 2010, 46, 2736–2738. [CrossRef]
- Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale 2011, 3, 1411–1420. [Google Scholar] [CrossRef]
- Pulido-Reyes, G.; Rodea-Palomares, I.; Das, S.; Sakthivel, T.S.; Leganes, F.; Rosal, R.; Seal, S.; Fernández-Pinãs, F. Untangling the Biological Effects of Cerium Oxide Nanoparticles: The Role of Surface Valence States. Sci. Rep. 2015, 5, 15613. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, L.; Li, Q.; Jiao, L.; Yu, X.; Gao, X.; Qiu, H.; Zhang, Z.; Bing, W. Will the Bacteria Survive in the CeO2 Nanozyme-H2O2 System? Molecules 2021, 26, 3747. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, W.; Deng, H.; Hu, X.; Zhang, J.; Wang, Y. Robust Antibacterial Activity of Rare-Earth Ions on Planktonic and Biofilm Bacteria. Biomed. Mater. 2024, 19, 045014. [Google Scholar] [CrossRef]
- Tsai, M.S. Powder Synthesis of Nano Grade Cerium Oxide via Homogenous Precipitation and Its Polishing Performance. Mater. Sci. Eng. B 2004, 110, 132–134. [Google Scholar] [CrossRef]
- Kuang, Q.; Lin, Z.W.; Lian, W.; Jiang, Z.Y.; Xie, Z.X.; Huang, R.B.; Zheng, L.S. Syntheses of Rare-Earth Metal Oxide Nanotubes by the Sol–Gel Method Assisted with Porous Anodic Aluminum Oxide Templates. J. Solid State Chem. 2007, 180, 1236–1242. [Google Scholar] [CrossRef]
- Li, C.; Liu, H.; Yang, J. A Facile Hydrothermal Approach to the Synthesis of Nanoscale Rare Earth Hydroxides. Nanoscale Res. Lett. 2015, 10, 144. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Rahaman, M.N. Hydrothermal Synthesis and Sintering of Ultrafine CeO2 Powders. J. Mater Res. 1993, 8, 1680–1686. [Google Scholar] [CrossRef]
- Emil-Kaya, E.; Stopic, S.; Gürmen, S.; Friedrich, B. Production of Rare Earth Element Oxide Powders by Solution Combustion: A New Approach for Recycling of NdFeB Magnets. RSC Adv. 2022, 12, 31478–31488. [Google Scholar] [CrossRef]
- Zarezadeh Mehrizi, M.; Ahmadi, S.; Beygi, R.; Asadi, M. Fabrication of Cerium Oxide Nanoparticles by Solution Combustion Synthesis and Their Cytotoxicity Evaluation. Russ. J. Non-Ferr. Met. 2018, 59, 111–116. [Google Scholar] [CrossRef]
- Anis, N.; Gamal, A.A.; Emam, N.; Fadl, M.G.; Abd El Fatah, A.I.L. Biogenic Synthesis and Antimicrobial Properties of Rare-Earth Element Nanoparticles Using Moringa Oleifera. RSC Adv. 2025, 15, 36490–36503. [Google Scholar] [CrossRef]
- Eka Putri, G.; Rilda, Y.; Syukri, S.; Labanni, A.; Arief, S. Highly Antimicrobial Activity of Cerium Oxide Nanoparticles Synthesized Using Moringa Oleifera Leaf Extract by a Rapid Green Precipitation Method. J. Mater. Res. Technol. 2021, 15, 2355–2364. [Google Scholar] [CrossRef]
- Aseyd Nezhad, S.; Es-haghi, A.; Tabrizi, M.H. Green Synthesis of Cerium Oxide Nanoparticle Using Origanum majorana L. Leaf Extract, Its Characterization and Biological Activities. Appl. Organomet. Chem. 2020, 34, e5314. [Google Scholar] [CrossRef]
- Elahi, B.; Mirzaee, M.; Darroudi, M.; Kazemi Oskuee, R.; Sadri, K.; Amiri, M.S. Preparation of Cerium Oxide Nanoparticles in Salvia Macrosiphon Boiss Seeds Extract and Investigation of Their Photo-Catalytic Activities. Ceram. Int. 2019, 45, 4790–4797. [Google Scholar] [CrossRef]
- Muthuvel, A.; Jothibas, M.; Mohana, V.; Manoharan, C. Green Synthesis of Cerium Oxide Nanoparticles Using Calotropis Procera Flower Extract and Their Photocatalytic Degradation and Antibacterial Activity. Inorg. Chem. Commun. 2020, 119, 108086. [Google Scholar] [CrossRef]
- Miri, A.; Akbarpour Birjandi, S.; Sarani, M. Survey of Cytotoxic and UV Protection Effects of Biosynthesized Cerium Oxide Nanoparticles. J. Biochem. Mol. Toxicol. 2020, 34, e22475. [Google Scholar] [CrossRef]
- Altaf, M.; Manoharadas, S.; Zeyad, M.T. Green Synthesis of Cerium Oxide Nanoparticles Using Acorus Calamus Extract and Their Antibiofilm Activity against Bacterial Pathogens. Microsc. Res. Tech. 2021, 84, 1638–1648. [Google Scholar] [CrossRef]
- Kanneganti, A.; Rao, K.V.; Priya, G.S.; Kumar, K.A.; Rao, K.V.; Bykkam, S. Bio Synthesis of Cerium Oxide Nanoparticles Using Aloe Barbadensis Miller Gel. Int. J. Sci. Res. Publ. 2014, 4, 199–224. [Google Scholar]
- Thovhogi, N.; Diallo, A.; Gurib-Fakim, A.; Maaza, M. Nanoparticles Green Synthesis by Hibiscus Sabdariffa Flower Extract: Main Physical Properties. J. Alloys Compd. 2015, 647, 392–396. [Google Scholar] [CrossRef]
- Surendra, T.V.; Roopan, S.M. Photocatalytic and Antibacterial Properties of Phytosynthesized CeO2 NPs Using Moringa Oleifera Peel Extract. J. Photochem. Photobiol. B 2016, 161, 122–128. [Google Scholar] [CrossRef]
- Mohamed, H.E.A.; Afridi, S.; Khalil, A.T.; Ali, M.; Zohra, T.; Akhtar, R.; Ikram, A.; Shinwari, Z.K.; Maaza, M. Promising Antiviral, Antimicrobial and Therapeutic Properties of Green Nanoceria. Nanomedicine 2020, 15, 467–488. [Google Scholar] [CrossRef]
- Kashyap, K.; Khan, F.; Verma, D.K.; Agrawal, S. Effective Removal of Uranium from Aqueous Solution by Using Cerium Oxide Nanoparticles Derived from Citrus Limon Peel Extract. J. Radioanal. Nucl. Chem. 2022, 332, 2435–2445. [Google Scholar] [CrossRef]
- Elahi, B.; Mirzaee, M.; Darroudi, M.; Sadri, K.; Kazemi Oskuee, R. Bio-Based Synthesis of Nano-Ceria and Evaluation of Its Bio-Distribution and Biological Properties. Colloids Surf. B Biointerfaces 2019, 181, 830–836. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Priya, M.L. Biosynthesis of nanoceria from bacillus subtilis: Characterization and antioxidant potential. Life Sci. Inform. Publ. 2019, 5, 644. [Google Scholar] [CrossRef]
- Venkatesh, K.S.; Gopinath, K.; Palani, N.S.; Arumugam, A.; Jose, S.P.; Bahadur, S.A.; Ilangovan, R. Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: Antibacterial and antibiofilm activity. RSC Adv. 2016, 6, 42720–42729. [Google Scholar] [CrossRef]
- Gopinath, K.; Karthika, V.; Sundaravadivelan, C.; Gowri, S.; Arumugam, A. Mycogenesis of Cerium Oxide Nanoparticles Using Aspergillus Niger Culture Filtrate and Their Applications for Antibacterial and Larvicidal Activities. J. Nanostructure Chem. 2015, 5, 295–303. [Google Scholar] [CrossRef]
- Perelshtein, I.; Perkas, N.; Gedanken, A. The Sonochemical Functionalization of Textiles. In The Impact and Prospects of Green Chemistry for Textile Technology; Woodhead Publishing: Cambridge, UK, 2019; pp. 161–198. [Google Scholar] [CrossRef]
- Perelshtein, I.; Lipovsky, A.; Perkas, N.; Tzanov, T.; Arguirova, M.; Leseva, M.; Gedanken, A. Making the Hospital a Safer Place by Sonochemical Coating of All Its Textiles with Antibacterial Nanoparticles. Ultrason. Sonochem. 2015, 25, 82–88. [Google Scholar] [CrossRef]
- Perelshtein, I.; Singh, G.; Vinatoru, M.; Ruderman, Y.; Perkas, N.; Beddow, J.; Joyce, E.; Mason, T.J.; Blanes, M.; Mollá, K.; et al. The Sonochemical Coating of Cotton Withstands 65 Washing Cycles at Hospital Washing Standards and Retains Its Antibacterial Properties. Cellulose 2013, 20, 1215–1221. [Google Scholar] [CrossRef]
- Abid, S.A.; Taha, A.A.; Ismail, R.A.; Mohsin, M.H. Antibacterial and Cytotoxic Activities of Cerium Oxide Nanoparticles Prepared by Laser Ablation in Liquid. Environ. Sci. Pollut. Res. 2020, 27, 30479–30489. [Google Scholar] [CrossRef]
- Senthilkumar, R.P.; Bhuvaneshwari, V.; Ranjithkumar, R.; Sathiyavimal, S.; Malayaman, V.; Chandarshekar, B. Synthesis, Characterization and Antibacterial Activity of Hybrid Chitosan-Cerium Oxide Nanoparticles: As a Bionanomaterials. Int. J. Biol. Macromol. 2017, 104, 1746–1752. [Google Scholar] [CrossRef]
- Kumar, S. Synthesis and Biological Applications of Lanthanum-Based Nanoparticles: A Review. Biochem. Cell. Arch. 2024, 24, 575–586. [Google Scholar] [CrossRef]
- Dědková, K.; Kuzníková, K.; Pavelek, L.; Matějová, K.; Kupková, J.; Čech Barabaszová, K.; Váňa, R.; Burda, J.; Vlček, J.; Cvejn, D.; et al. Daylight Induced Antibacterial Activity of Gadolinium Oxide, Samarium Oxide and Erbium Oxide Nanoparticles and Their Aquatic Toxicity. Mater. Chem. Phys. 2017, 197, 226–235. [Google Scholar] [CrossRef]
- Sun, X.; Kou, B. Biocompatibility and Potential Anticancer Activity of Gadolinium Oxide (Gd2O3) Nanoparticles against Nasal Squamous Cell Carcinoma. BMC Biotechnol. 2024, 24, 53. [Google Scholar] [CrossRef]
- Mansour, A.M.; Abou Hammad, A.B.; El Nahrawy, A.M. Synthesis and Optical Properties of Erbium-Doped Sodium Silicate in Sol-Gel Matrix. Silicon 2024, 16, 3719–3727. [Google Scholar] [CrossRef]
- Nexha, A.; Díaz, F.; Aguiló, M.; Pujol, M.C.; Carvajal, J.J. Engineering Yttrium Oxide Antioxidant Nanoagents. J. Alloys Compd. 2024, 980, 173565. [Google Scholar] [CrossRef]
- Borchert, Y.; Sonström, P.; Wilhelm, M.; Borchert, H.; Bäumer, M. Nanostructured Praseodymium Oxide: Preparation, Structure, and Catalytic Properties. J. Phys. Chem. C 2008, 112, 3054–3063. [Google Scholar] [CrossRef]
- Dar, M.A.; Gul, R.; Karuppiah, P.; Al-Dhabi, N.A.; Alfadda, A.A. Antibacterial Activity of Cerium Oxide Nanoparticles against ESKAPE Pathogens. Crystals 2022, 12, 179. [Google Scholar] [CrossRef]
- Pop, O.L.; Mesaros, A.; Vodnar, D.C.; Suharoschi, R.; Tăbăran, F.; Magerușan, L.; Tódor, I.S.; Diaconeasa, Z.; Balint, A.; Ciontea, L.; et al. Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials 2020, 10, 1614. [Google Scholar] [CrossRef]
- Humaira; Bukhari, S.A.R.; Shakir, H.A.; Khan, M.; Saeed, S.; Ahmad, I.; Irfan, M. Biosynthesized Cerium Oxide Nanoparticles CeO2NPs: Recent Progress and Medical Applications. Curr. Pharm. Biotechnol. 2022, 24, 766–779. [Google Scholar] [CrossRef]
- Zamani, K.; Allah-Bakhshi, N.; Akhavan, F.; Yousefi, M.; Golmoradi, R.; Ramezani, M.; Bach, H.; Razavi, S.; Irajian, G.R.; Gerami, M.; et al. Antibacterial Effect of Cerium Oxide Nanoparticle against Pseudomonas Aeruginosa. BMC Biotechnol. 2021, 21, 68. [Google Scholar] [CrossRef]
- Silina, E.V.; Stupin, V.A.; Manturova, N.E.; Chuvilina, E.L.; Gasanov, A.A.; Ostrovskaya, A.A.; Andreeva, O.I.; Tabachkova, N.Y.; Abakumov, M.A.; Nikitin, A.A.; et al. Development of Technology for the Synthesis of Nanocrystalline Cerium Oxide Under Production Conditions with the Best Regenerative Activity and Biocompatibility for Further Creation of Wound-Healing Agents. Pharmaceutics 2024, 16, 1365. [Google Scholar] [CrossRef]
- Chatzimentor, I.; Tsamesidis, I.; Ioannou, M.E.; Pouroutzidou, G.K.; Beketova, A.; Giourieva, V.; Papi, R.; Kontonasaki, E. Study of Biological Behavior and Antimicrobial Properties of Cerium Oxide Nanoparticles. Pharmaceutics 2023, 15, 2509. [Google Scholar] [CrossRef]
- Silina, E.V.; Manturova, N.E.; Ivanova, O.S.; Baranchikov, A.E.; Artyushkova, E.B.; Medvedeva, O.A.; Kryukov, A.A.; Dodonova, S.A.; Gladchenko, M.P.; Vorsina, E.S.; et al. Cerium Dioxide–Dextran Nanocomposites in the Development of a Medical Product for Wound Healing: Physical, Chemical and Biomedical Characteristics. Molecules 2024, 29, 2853. [Google Scholar] [CrossRef]
- Azhagar, S.; Chinnalagu, D.K.; Mayakrishnan, A.; Sundrarajan, M. Study on the Therapeutic Activity of [BMIM]-PF6-IL Assisted Er2O3 NPs Synthesized by Polyol Method against Pathogenic Bacterium as Well as MCF-7 Breast Tumor Cells. Inorg. Chem. Commun. 2023, 155, 110988. [Google Scholar] [CrossRef]
- Abd Elkader, M.F.; Almogbel, M.S.; Elabbasy, M.T. Survival and Reduction in Foodborne Bacteria Using Methyl Cellulose Film Doped with Europium Oxide Nanoparticles. Food Sci. Nutr. 2020, 8, 291–298. [Google Scholar] [CrossRef]
- Muthulakshmi, V.; Dhilip Kumar, C.; Sundrarajan, M. Biological Applications of Green Synthesized Lanthanum Oxide Nanoparticles via Couroupita Guianensis Abul Leaves Extract. Anal. Biochem. 2022, 638, 114482. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, L.; Li, Q.X.; Liang, H.; Qin, H.; Masutani, S.; Yoza, B. Toxicity of Lanthanum Oxide Nanoparticles to the Fungus Moniliella Wahieum Y12T Isolated from Biodiesel. Chemosphere 2018, 199, 495–501. [Google Scholar] [CrossRef]
- Muthulakshmi, V.; Kumar, C.D.; Sundrarajan, M. Green Synthesis of Ionic Liquid Mediated Neodymium Oxide Nanoparticles via Couroupita Guianensis Abul Leaves Extract with Its Biological Applications. J. Biomater. Sci. Polym. Ed. 2022, 33, 1063–1082. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Liu, Y.; Huang, Y.; Wang, F.; Qian, Y.; Wang, Y. Preparation and Properties of (Sc2O3-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia Coli Infections. Int. J. Mol. Sci. 2023, 24, 7649. [Google Scholar] [CrossRef]
- Zahmatkesh, H.; Mirpour, M.; Zamani, H.; Rasti, B.; Rahmani, F.A.; Padasht, N. Effect of Samarium Oxide Nanoparticles on Virulence Factors and Motility of Multi-Drug-Resistant Pseudomonas Aeruginosa. World J. Microbiol. Biotechnol. 2022, 38, 209. [Google Scholar] [CrossRef]
- Muthulakshmi, V.; Balaji, M.; Sundrarajan, M. Biomedical Applications of Ionic Liquid Mediated Samarium Oxide Nanoparticles by Andrographis Paniculata Leaves Extract. Mater. Chem. Phys. 2020, 242, 122483. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Alqarni, L.S.; Alghamdi, M.D.; Alotaibi, N.F.; Moustafa, S.M.N.; Nassar, A.M. Phytosynthesis via Wasted Onion Peel Extract of Samarium Oxide/Silver Core/Shell Nanoparticles for Excellent Inhibition of Microbes. Heliyon 2024, 10, e24815. [Google Scholar] [CrossRef]
- Li, C.; Sun, Y.; Li, X.; Fan, S.; Liu, Y.; Jiang, X.; Boudreau, M.D.; Pan, Y.; Tian, X.; Yin, J.J. Bactericidal Effects and Accelerated Wound Healing Using Tb4O7 Nanoparticles with Intrinsic Oxidase-like Activity. J. Nanobiotechnology 2019, 17, 54. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, S.; Zhou, J.; Liu, J.; Huang, Y. PH-Triggered CS@ZnO2 Nanocomposites: Self-Activated ROS Generation for Efficient Bacterial Eradication. Front. Bioeng. Biotechnol. 2025, 13, 1608188. [Google Scholar] [CrossRef]
- Zhou, K.; Qiu, X.; Xu, L.; Li, G.; Rao, B.; Guo, B.; Pei, D.; Li, A.; He, G.; He, G. Poly(Selenoviologen)-Assembled Upconversion Nanoparticles for Low-Power Single-NIR Light-Triggered Synergistic Photodynamic and Photothermal Antibacterial Therapy. ACS Appl. Mater Interfaces 2020, 12, 26432–26443. [Google Scholar] [CrossRef]
- Li, H.; Chen, M.; Zhao, Y.; Zhang, T.; Li, X.; Chen, T.; Zhou, S.; Shi, D.; Yang, Z.; Yang, D.; et al. Rapid Visible Light-Driven Water Disinfection with CTAB-Modified UiO-66-NH2. Environ. Sci. Technol. 2025, 59, 20143–20155. [Google Scholar] [CrossRef]
- Linghu, X.; Shu, Y.; Liu, L.; Zhang, J.; Chen, Z.; Zhao, Y.; Wu, Y.; Ning, P.; Shan, D.; Wang, B. Enhanced Photocatalytic Degradation of Organic Pollutants and Pathogens in Wastewater Using a Full-Spectrum Response NaYF4:Yb,Tm@TiO2/Ag3PO4 Nanoheterojunction. Environ. Technol. Innov. 2022, 28, 102927. [Google Scholar] [CrossRef]
- Lv, H.; Liu, J.; Wang, Y.; Xia, X.; Li, Y.; Hou, W.; Li, F.; Guo, L.; Li, X. Upconversion Nanoparticles and Its Based Photodynamic Therapy for Antibacterial Applications: A State-of-the-Art Review. Front. Chem. 2022, 10, 996264. [Google Scholar] [CrossRef]
- Singh, K.R.; Nayak, V.; Sarkar, T.; Singh, R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Adv. 2020, 10, 27194–27214. [Google Scholar] [CrossRef]
- Li, M.; Gao, J.; Yao, L.; Zhang, L.; Li, D.; Li, Z.; Wu, Q.; Wang, S.; Ding, J.; Liu, Y.; et al. Determining Toxicity of Europium Oxide Nanoparticles in Immune Cell Components and Hematopoiesis in Dominant Organs in Mice: Role of Lysosomal Fluid Interaction. Sci. Total Environ. 2024, 937, 173482. [Google Scholar] [CrossRef]
- Kumar, R.A.; Gayathri, T.; Sundaram, N.M.; Kumar, R.A. Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging and Cancer Theranostics. Artic. J. Bionanoscience 2015, 9, 409–423. [Google Scholar] [CrossRef]
- Malvandi, A.M.; Shahba, S.; Mohammadipour, A.; Rastegar-Moghaddam, S.H.; Abudayyak, M. Cell and Molecular Toxicity of Lanthanum Nanoparticles: Are There Possible Risks to Humans? Nanotoxicology 2021, 15, 951–972. [Google Scholar] [CrossRef]
- Vijayan, V.; Sreekumar, S.; Singh, F.; Srivatsan, K.V.; Lakra, R.; Sai, K.P.; Kiran, M.S. Nanotized Praseodymium Oxide Collagen 3-D pro-Vasculogenic Biomatrix for Soft Tissue Engineering. Nanomedicine 2021, 33, 102364. [Google Scholar] [CrossRef]
- Mohanto, S.; Biswas, A.; Gholap, A.D.; Wahab, S.; Bhunia, A.; Nag, S.; Ahmed, M.G. Potential Biomedical Applications of Terbium-Based Nanoparticles (TbNPs): A Review on Recent Advancement. ACS Biomater. Sci. Eng. 2024, 10, 2703–2724. [Google Scholar] [CrossRef]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 2021, 9954443. [Google Scholar] [CrossRef]
- Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. ACS Nano 2012, 6, 6399–6409. [Google Scholar] [CrossRef] [PubMed]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-Functionalized Nanoparticles Lose Their Targeting Capabilities When a Biomolecule Corona Adsorbs on the Surface. Nat. Nanotechnol. 2013, 8, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Wei, W.; Yue, Z.; Wang, B.; Luo, N.; Gao, Y.; Ma, D.; Ma, G.; Su, Z. The Role of the Lateral Size of Graphene Oxide in the Regulation of Cellular Responses. Biomaterials 2012, 33, 4013–4021. [Google Scholar] [CrossRef]
- Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; et al. Rapid Formation of Plasma Protein Corona Critically Affects Nanoparticle Pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
| Atomic Number, Element, Symbol | Oxidation State | Key Applications |
|---|---|---|
| 21 Scandium (Sc) | +3 | Aerospace alloys, sports equipment |
| 39 Yttrium (Y) | +3 | LEDs, superconductors, phosphors |
| 57 Lanthanum (La) | +3 | Camera lenses, hybrid car batteries |
| 58 Cerium (Ce) | +3/+4 | Catalytic converters, glass polishing |
| 59 Praseodymium (Pr) | +3 | Magnets, aircraft engines, glass coloring |
| 60 Neodymium (Nd) | +3 | Strong magnets (NdFeB), lasers |
| 61 Promethium (Pm) | +3 | Radioisotope batteries, research (rare, radioactive) |
| 62 Samarium (Sm) | +3 | Samarium–cobalt magnets, nuclear control rods |
| 63 Europium (Eu) | +2/+3 | Red and blue phosphors in TV and LED screens |
| 64 Gadolinium (Gd) | +3 | MRI contrast agents, neutron shields |
| 65 Terbium (Tb) | +3 | Green phosphors, solid-state devices |
| 66 Dysprosium (Dy) | +3 | Magnets, laser materials, nuclear reactors |
| 67 Holmium (Ho) | +3 | Lasers, magnets |
| 68 Erbium (Er) | +3 | Optical fibers, lasers, glass tinting |
| 69 Thulium (Tm) | +3 | X-ray machines, portable lasers |
| 70 Ytterbium (Yb) | +3 | Fiber optics, stress gauges, semiconductors |
| 71 Lutetium (Lu) | +3 | PET scan detectors, catalysts |
| RRE | Antitumor | Antioxidant | Antidiabetic | Contrasting Agent | Regenerative |
|---|---|---|---|---|---|
| Cerium (Ce) | X | X | X (X = positive) | ||
| Dysprosium (Dy) | X | X | |||
| Erbium (Er) | X | X | X | ||
| Europium (Eu) | X | X | X | ||
| Gadolinium (Gd) | X | X | X | ||
| Holmium (Ho) | X | X | X | ||
| Lanthanum (La) | X | X | |||
| Lutetium (Lu) | X | ||||
| Neodymium (Nd) | X | X | X | ||
| Praseodymium (Pr) | X | X | |||
| Promethium (Pm) | N/A | N/A | N/A | N/A (not available) | N/A |
| Samarium (Sm) | X | X | X | ||
| Scandium (Sc) | X | ||||
| Terbium (Tb) | X | X | X | ||
| Thulium (Tm) | X | ||||
| Ytterbium (Yb) | X | X | X | ||
| Yttrium (Y) | X | X | X |
| Mechanism | Primary Effect Involved | Key Elements |
|---|---|---|
| Membrane disruption | Leakage, lysis | La3+, Ce3+, Gd3+ |
| Ion substitution | Enzyme/membrane dysfunction | La3+, Y3+, Nd3+ |
| ROS generation | Oxidative stress | Ce3+/Ce4+ |
| DNA/protein binding | Replication/enzyme inhibition | La3+, Eu3+ |
| Enzyme inhibition | Metabolic arrest | Gd3+, Y3+ |
| Biofilm interference | Anti-quorum sensing | La3+, Ce3+ |
| Nanoparticle redox effects | Dynamic antimicrobial activity | CeO2, La2O3 |
| Method | Typical Scale Potential | Advantages | Challenges |
|---|---|---|---|
| Precipitation/Co-precipitation | High (industrial) | Simple, low cost, aqueous | Poor control of morphology, agglomeration |
| Sol–gel/Pechini | Moderate | Homogeneous mixing, high purity | Organic residue removal, energy-intensive calcination |
| Spray pyrolysis/Flame spray | Industrial | Continuous, tunable | High energy use, limited for “green” applications |
| Hydrothermal/Solvothermal | Lab to pilot | Good crystal control | Pressure reactors, batch process |
| Microemulsion/Reverse micelle | Lab | Fine size control | Costly surfactants, low yield |
| Green/Biogenic synthesis (plant or microbial mediated) | Low to moderate | Low toxicity, mild conditions | Batch variability, slower, scale-up difficult |
| REOs | Crystal System/Phase | Typical Crystallite Size (nm) | Dominant XRD Peaks | Bioimpact/Cytotoxicity | Refs. |
|---|---|---|---|---|---|
| CeO2 | Cubic (Fm3̅m) | 5–50 | (111), (200), (220), (311) | High ROS via Ce3+/Ce4+ redox; strong antibacterial but may induce cytotoxicity at high defect levels. | [37,38] |
| La2O3 | Hexagonal (P63/mmc) → Monoclinic (C2/m) | 10–80 | (100), (002), (101) | Low ROS; mild antimicrobial and low cytotoxicity. | [39] |
| Nd2O3 | Cubic (Ia3̅)/Hexagonal (P63/mmc) | 15–60 | (222), (400), (440) | Moderate crystallinity; stable, moderate antimicrobial effect. | [40] |
| Gd2O3 | Cubic (Ia3̅) | 5–40 | (222), (400), (440) | Highly crystalline; good for MRI and photodynamic therapy; biocompatible at <25 nm. | [41] |
| Sm2O3 | Cubic (Ia3̅) → Monoclinic (C2/m) | 10–50 | (222), (400), (440) | Intermediate ROS generation; moderate antimicrobial activity. | [42] |
| Er2O3 | Cubic (Ia3̅) | 8–35 | (222), (400), (440) | Stable cubic phase; low cytotoxicity, moderate antimicrobial effect. | [42] |
| Y2O3 | Cubic (Ia3̅) | 10–30 | (222), (400), (440) | High stability, inert, low toxicity, used in coatings and tracers. | [43] |
| Pr6O11 | Mixed cubic + hexagonal | 5–25 | (200), (220), (311) | Strong ROS producer; potent antibacterial but higher cytotoxicity risk. | [44] |
| Bacterial Strain | Chitosan | CeO2 NPs | Chitosan–CeO2 NPs |
|---|---|---|---|
| S. aureus (Gram +) | 10 ± 0.5 | 12 ± 0.4 | 18 ± 0.6 |
| E. coli (Gram –) | 9 ± 0.3 | 11 ± 0.5 | 17 ± 0.5 |
| P. aeruginosa (Gram –) | 8 ± 0.4 | 10 ± 0.5 | 15 ± 0.4 |
| Oxide | IC50/Toxicity µg/mL | Cell Line(s) | Main Observations | Ref. |
|---|---|---|---|---|
| CeO2 | ~110 (moderate) | HeLa, L929, A549 | Generally low cytotoxicity due to Ce3+/Ce4+ redox cycling and ROS scavenging; sometimes protective at low dose. | [67] |
| Er2O3 | 3.2 (high) | L929 fibroblasts | Pronounced toxicity at low concentration; ROS generation implicated. | [40] |
| Eu2O3 | ≈50–80 (moderate) | HepG2, HeLa | Moderate oxidative stress, mitochondrial damage at higher doses. | [68] |
| Gd2O3 | 304 (low) | A549, HepG2 | Low toxicity; internalized slowly; used safely as MRI contrast precursor. | [69] |
| La2O3 | 300 (low) | L929, A549 | Minimal cytotoxicity below 200 µg/mL; surface hydroxylation reduces reactivity. | [70] |
| Nd2O3 | ~200 (low) | MCF-7, A549 | Moderate toxicity: ionic dissolution contributes to stress. | [71] |
| Pr6O11 | >250 (low) | L929 | Very low cytotoxicity; surface inertness limits interaction. | [3] |
| Sm2O3 | >200 (low) | L929 | Comparable to La2O3; minimal oxidative effect. | [40,58] |
| Sc2O3 | ~180 (low–moderate) | NIH-3T3 | Generally biocompatible but may produce ROS under UV illumination. | [57] |
| Tb4O7 | ~90 (moderate) | HepG2 | Mild cytotoxicity; oxidative stress at high concentrations. | [72] |
| Tm2O3 | ~150 (low–moderate) | HeLa | Mild toxicity; photoluminescent but stable. | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, A.D.; Maruthapandi, M.; Gedanken, A.; Luong, J.H.T. Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment. Nanomaterials 2025, 15, 1862. https://doi.org/10.3390/nano15241862
Luong AD, Maruthapandi M, Gedanken A, Luong JHT. Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment. Nanomaterials. 2025; 15(24):1862. https://doi.org/10.3390/nano15241862
Chicago/Turabian StyleLuong, Albert Donald, Moorthy Maruthapandi, Aharon Gedanken, and John H. T. Luong. 2025. "Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment" Nanomaterials 15, no. 24: 1862. https://doi.org/10.3390/nano15241862
APA StyleLuong, A. D., Maruthapandi, M., Gedanken, A., & Luong, J. H. T. (2025). Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment. Nanomaterials, 15(24), 1862. https://doi.org/10.3390/nano15241862

