Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,449)

Search Parameters:
Keywords = contact dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4148 KiB  
Article
Contribution of the Gravity Component and Surface Type During the Initial Stages of Biofilm Formation at Solid–Liquid Interfaces
by Elisavet Malea, Maria Petala, Margaritis Kostoglou and Theodoros Karapantsios
Water 2025, 17(15), 2277; https://doi.org/10.3390/w17152277 (registering DOI) - 31 Jul 2025
Abstract
Water systems are highly vulnerable to biofilm formation, which can compromise water quality, operational efficiency, and public health. Factors such as surface material properties and gravitational orientation of the surface play critical roles in the early stages of microbial attachment and biofilm development. [...] Read more.
Water systems are highly vulnerable to biofilm formation, which can compromise water quality, operational efficiency, and public health. Factors such as surface material properties and gravitational orientation of the surface play critical roles in the early stages of microbial attachment and biofilm development. This study examines the impact of gravity and surface composition on the initial adhesion of Pseudomonas fluorescens AR11—a model organism for biofilm research. Focusing on stainless steel (SS) and polycarbonate (PC), two materials commonly used in water and wastewater infrastructure, bacterial adhesion was evaluated at surface inclinations of 0°, 45°, 90°, and 180° to assess gravitational impact. After three hours of contact, fluorescence microscopy and image analysis were used to quantify surface coverage and cluster size distribution. The results showed that both material type and orientation significantly affected early biofilm formation. PC surfaces consistently exhibited higher bacterial adhesion at all angles, with modest variations, suggesting that material properties are a dominant factor in initial colonization. In contrast, SS showed angle-dependent variation, indicating a combined effect of gravitational convection and surface characteristics. These insights contribute to a deeper understanding of biofilm dynamics under realistic environmental conditions, including those encountered in space systems, and support the development of targeted strategies for biofilm control in water systems and spaceflight-related infrastructure. Full article
Show Figures

Figure 1

22 pages, 4262 KiB  
Article
Tribo-Dynamics of Dual-Star Planetary Gear Systems: Modeling, Analysis, and Experiments
by Jiayu Zheng, Yonggang Xiang, Changzhao Liu, Yixin Wang and Zonghai Mou
Sensors 2025, 25(15), 4709; https://doi.org/10.3390/s25154709 - 30 Jul 2025
Abstract
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine [...] Read more.
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine the oil film thickness and sliding friction force along the tooth meshing line. Subsequently, the dynamic model of the dual-star planetary gear transmission system is developed through coordinate transformations of the dual-star gear train. Finally, by integrating lubrication effects into both time-varying mesh stiffness and time-varying backlash, a tribo-dynamic model for the dual-star planetary gear transmission system is established. The study reveals that the lubricant film thickness is positively correlated with relative sliding velocity but negatively correlated with unit line load. Under high-speed conditions, a thickened oil film induces premature meshing contact, leading to meshing impacts. In contrast, under high-torque conditions, tooth deformation dominates meshing force fluctuations while lubrication influence diminishes. By establishing a test bench for the planetary gear transmission system, the obtained simulation conclusions are verified. This research provides theoretical and experimental support for the design of high-reliability planetary gear systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

17 pages, 5896 KiB  
Article
Simulation Study of the Effect of Oil Injection Speed on the Air Curtain of High-Speed Bearings
by Yanfang Dong, Botao Ye, Zibo Yan, Hai Zhang, Wei Yu, Jianyong Sun and Wenbo Zhou
Lubricants 2025, 13(8), 334; https://doi.org/10.3390/lubricants13080334 (registering DOI) - 30 Jul 2025
Abstract
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and [...] Read more.
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and its lubrication mechanism in the high-speed rotary bearing. In the process of high-speed bearing operation, the lubricant is subject to the combined effect of centrifugal force and contact pressure, gradually spreads to both sides of the steel ball, and forms a stable oil film after injection from the nozzle. However, due to the influence of high pressure distribution in the contact area, the actual formation of the oil film coverage is relatively limited. In order to further optimize the lubrication effect, this study focuses on investigating the influence law of different injection speeds and rotational speeds on the bearing air curtain effect. The results of the study show that when the air curtain effect is enhanced, there will be significant shear interference on the trajectory of the lubricant, which is manifested in the phenomenon of “buckling” at the end of the lubricant, thus reducing the lubrication efficiency. To address this problem, this study innovatively proposes the air curtain obstruction coefficient K as a quantitative evaluation index, and through numerical simulation, it is found that the lubricant can effectively overcome the air curtain obstruction and achieve a better lubrication coverage when the value of K is reduced to below 0.4. Based on this finding, the study further confirmed that the lubrication efficiency of bearings can be significantly improved under different operating conditions by rationally regulating the injection rate. Full article
Show Figures

Figure 1

20 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

20 pages, 5568 KiB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

24 pages, 5828 KiB  
Article
Removal of Rifampicin and Rifaximin Antibiotics on PET Fibers: Optimization, Modeling, and Mechanism Insight
by Elena Fasniuc-Pereu, Elena Niculina Drăgoi, Dumitru Bulgariu, Maria-Cristina Popescu and Laura Bulgariu
Polymers 2025, 17(15), 2089; https://doi.org/10.3390/polym17152089 - 30 Jul 2025
Abstract
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and [...] Read more.
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and has a low preparation cost. In this study, PET (polyethylene terephthalate) fibers, obtained by mechanically processing PET waste, were used for the adsorption of rifampicin (RIF) and rifaximin (RIX) antibiotics from aqueous media. The experimental adsorption capacity of PET fibers for the two antibiotics (RIF and RIX) was determined at different pH values (2.0–6.5), adsorbent dose (0.4–20.0 g/L), contact time (5–1440 min), initial antibiotic concentration (4.0–67.0 mg/L), and temperature (10, 22, and 50 °C); the experimental values of these parameters were analyzed using a neuro-evolutive technique (ANE) combining sequential deep learning (DL) models with a differential evolution algorithm. The obtained optimal ANN-DL algorithm was then used to obtain the optimal models for the adsorption of RIF and RIX on PET fibers, which should adequately describe the adsorption dynamics for both antibiotics. The adsorption processes are spontaneous and endothermic (ΔG < 0, ΔH > 0) and are described by the Langmuir model (R2 > 0.97) and the pseudo-second order kinetic model (R2 > 0.99). The retention of RIF and RIX on the surface of PET fibers occurs through physicochemical interactions, and the FTIR spectra and microscopic images support this hypothesis. The presence of inorganic anions in the aqueous solution leads to an increase in the adsorption capacities of RIF (max. 7.6 mg/g) and RIX (max. 3.6 mg/g) on PET fibers, which is mainly due to the ordering of water molecules in the solution. The experimental results presented in this study allowed for the development of the adsorption mechanism of RIF and RIX on PET fibers, highlighting the potential practical applications of these adsorption processes. Full article
Show Figures

Graphical abstract

22 pages, 3894 KiB  
Article
3D-Printed Biocompatible Frames for Electrospun Nanofiber Membranes: An Enabling Biofabrication Technology for Three-Dimensional Tissue Models and Engineered Cell Culture Platforms
by Adam J. Jones, Lauren A. Carothers, Finley Paez, Yanhao Dong, Ronald A. Zeszut and Russell Kirk Pirlo
Micromachines 2025, 16(8), 887; https://doi.org/10.3390/mi16080887 - 30 Jul 2025
Viewed by 82
Abstract
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a [...] Read more.
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a novel and on-mat framing technique utilizing extrusion-based printing of a UV-curable biocompatible resin (Biotough D90 MF) to create rigid, integrated support structures directly on chitosan–polyethylene oxide (PEO) ESNFMs. We demonstrate fabrication of these circular frames via precise 3D printing and a simpler manual stamping method, achieving robust mechanical stabilization that enables routine laboratory manipulation without membrane damage. The resulting framed ESNFMs maintain structural integrity during subsequent processing and exhibit excellent biocompatibility in standardized extract assays (116.5 ± 12.2% normalized cellular response with optimized processing) and acceptable performance in direct contact evaluations (up to 78.2 ± 32.4% viability in the optimal configuration). Temporal assessment revealed characteristic cellular adaptation dynamics on nanofiber substrates, emphasizing the importance of extended evaluation periods for accurate biocompatibility determination of three-dimensional scaffolds. This innovative biofabrication approach overcomes critical limitations of previous handling methods, transforming delicate ESNFMs into robust, easy-to-use components for reliable integration into complex cell culture applications, barrier tissue models, and engineered systems. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Biofabrication)
Show Figures

Figure 1

18 pages, 7553 KiB  
Article
Investigating Experimental and Computational Fluid Dynamics of 3D-Printed TPMS and Lattice Porous Structures
by Guru Varun Penubarthi, Kishore Bhaskar Suresh Babu, Senthilkumar Sundararaj and Shung Wen Kang
Micromachines 2025, 16(8), 883; https://doi.org/10.3390/mi16080883 - 29 Jul 2025
Viewed by 99
Abstract
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with [...] Read more.
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with 16 μL water droplets dropping from 30 mm at 0.77 m/s. Results showed variable contact angles, with Isotruss and Octet having higher angles, while Diamond faced measurement challenges due to surface roughness. Numerical simulations of TPMS-Gyroid of 2 mm3 unit cells validated the experimental results, and Diamond, Octet, and Isotruss structures were simulated. Capillary performance was assessed through deionized (DI) water weight–time (w-t) measurements, identifying that the TPMS-Gyroid structure performed adequately. Structures with 4 mm3 unit cells had low capillary performance, excluding them from permeability testing, whereas smaller 2 mm3 structures demonstrated capillary effects but had printability and cleaning issues. Permeability results indicated that Octet performed best, followed by Isotruss, Diamond, and TPMS-Gyroid. Findings emphasize unit cell size, beam thickness, and droplet positioning as key factors in optimizing fluid dynamics for cooling, filtration, and fluid management. Full article
(This article belongs to the Special Issue Micro Thermal Devices and Their Applications, 2nd Edition)
Show Figures

Figure 1

40 pages, 4663 KiB  
Article
Hetero-Disubstituted Sugarcane Bagasse as an Efficient Bioadsorbent for Cationic Dyes
by Megg Madonyk Cota Elias Carvalho, Liliane Catone Soares, Oscar Fernando Herrera Adarme, Gabriel Max Dias Ferreira, Ranylson Marcello Leal Savedra, Melissa Fabíola Siqueira, Eduardo Ribeiro de Azevedo and Leandro Vinícius Alves Gurgel
Molecules 2025, 30(15), 3163; https://doi.org/10.3390/molecules30153163 - 29 Jul 2025
Viewed by 207
Abstract
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption [...] Read more.
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption of the dyes in mono- and bicomponent systems was investigated as a function of HDSB dosage, pH, contact time, and initial dye concentration. Maximum adsorption capacities for AO and ST on HDSB, at pH 7.0, were 1.37 mmol g−1 (367.7 mg g−1) and 0.93 mmol g−1 (293.3 mg g−1), respectively. In the bicomponent system, ST was preferentially adsorbed on HDSB, revealing an antagonistic effect of ST on AO adsorption. Changes in the enthalpy of the adsorption as a function of HDSB surface coverage were determined by isothermal titration calorimetry, with ΔadsH° values for AO and ST equal to −22.1 ± 0.3 kJ mol−1 and −23.44 ± 0.01 kJ mol−1, respectively. Under standard conditions, the adsorption of the dyes on HDSB was exergonic and enthalpically driven. Desorption removed ~50% of the adsorbed dyes, and subsequent re-adsorption showed that HDSB could be reused, with non-desorbed dye molecules acting as new binding sites. The interaction between AO and ST with HDSB was elucidated by molecular dynamics simulations with atomistic modeling. Full article
Show Figures

Graphical abstract

15 pages, 790 KiB  
Review
A Review of Avian Influenza Virus Exposure Patterns and Risks Among Occupational Populations
by Huimin Li, Ruiqi Ren, Wenqing Bai, Zhaohe Li, Jiayi Zhang, Yao Liu, Rui Sun, Fei Wang, Dan Li, Chao Li, Guoqing Shi and Lei Zhou
Vet. Sci. 2025, 12(8), 704; https://doi.org/10.3390/vetsci12080704 - 28 Jul 2025
Viewed by 281
Abstract
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through [...] Read more.
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through a comprehensive analysis of viral characteristics, host dynamics, environmental influences, and human behaviors. The main routes of transmission include direct animal contact, respiratory contact during slaughter/milking, and environmental contamination (aerosols, raw milk, shared equipment). Risks increase as the virus adapts between species, survives longer in cold/wet conditions, and spreads through wild bird migration (long-distance transmission) and live bird trade (local transmission). Recommended control measures include integrated animal–human–environment surveillance, stringent biosecurity measures, vaccination, and education. These findings underscore the urgent need for global ‘One Health’ collaboration to assess risk and implement preventive measures against potentially pandemic strains of influenza A viruses, especially in light of undetected mild/asymptomatic cases and incomplete knowledge of viral evolution. Full article
Show Figures

Figure 1

16 pages, 4737 KiB  
Article
An Influence Analysis of the Bearing Waviness on the Vibrations of a Flexible Gear
by Shenlong Li, Yajun Xu, Ruikun Pang and Jing Liu
Machines 2025, 13(8), 661; https://doi.org/10.3390/machines13080661 - 28 Jul 2025
Viewed by 113
Abstract
Roller bearing manufacturing errors have been proven to be critical factors affecting the vibrations of gear systems. Waviness is one main form of manufacturing error affecting the operational performance and life of bearings. However, most previous studies did not completely incorporate the effects [...] Read more.
Roller bearing manufacturing errors have been proven to be critical factors affecting the vibrations of gear systems. Waviness is one main form of manufacturing error affecting the operational performance and life of bearings. However, most previous studies did not completely incorporate the effects of the uneven bearing waviness on the flexible gear system vibrations. To characterize the contribution of the uneven bearing waviness on the vibrations of the gear system, a gear transmission system dynamics model considering shaft flexibility was established. The evenness sinusoidal waviness model (SWM) and uneven sinusoidal waviness model considering the time-varying contact (SWMS) were compared. The influences of the time-varying gear meshing stiffness excitations and flexibilities of shafts on the vibrations of the gear system were considered. A dynamic model was established, and the vibrations of the flexible gear system with the SWM and SWMS were compared. The vibrations induced by different amplitudes and orders of bearing waviness were analyzed. Note that the waviness of the bearing has a great influence on the system vibrations. The vibrations of the flexible gear system intensified with the increase in the bearing waviness order and amplitude. The vibrations from the gear system with the SWMS were bigger than those of the SWM. This paper introduces an alternative dynamic modeling model enabling the vibration analysis of the flexible gear system with evenness and uneven bearing waviness. Full article
Show Figures

Figure 1

29 pages, 5407 KiB  
Article
Noncontact Breathing Pattern Monitoring Using a 120 GHz Dual Radar System with Motion Interference Suppression
by Zihan Yang, Yinzhe Liu, Hao Yang, Jing Shi, Anyong Hu, Jun Xu, Xiaodong Zhuge and Jungang Miao
Biosensors 2025, 15(8), 486; https://doi.org/10.3390/bios15080486 - 28 Jul 2025
Viewed by 257
Abstract
Continuous monitoring of respiratory patterns is essential for disease diagnosis and daily health care. Contact medical devices enable reliable respiratory monitoring, but can cause discomfort and are limited in some settings. Radar offers a noncontact respiration measurement method for continuous, real-time, high-precision monitoring. [...] Read more.
Continuous monitoring of respiratory patterns is essential for disease diagnosis and daily health care. Contact medical devices enable reliable respiratory monitoring, but can cause discomfort and are limited in some settings. Radar offers a noncontact respiration measurement method for continuous, real-time, high-precision monitoring. However, it is difficult for a single radar to characterize the coordination of chest and abdominal movements during measured breathing. Moreover, motion interference during prolonged measurements can seriously affect accuracy. This study proposes a dual radar system with customized narrow-beam antennas and signals to measure the chest and abdomen separately, and an adaptive dynamic time warping (DTW) algorithm is used to effectively suppress motion interference. The system is capable of reconstructing respiratory waveforms of the chest and abdomen, and robustly extracting various respiratory parameters via motion interference. Experiments on 35 healthy subjects, 2 patients with chronic obstructive pulmonary disease (COPD), and 1 patient with heart failure showed a high correlation between radar and respiratory belt signals, with correlation coefficients of 0.92 for both the chest and abdomen, a root mean square error of 0.80 bpm for the respiratory rate, and a mean absolute error of 3.4° for the thoracoabdominal phase angle. This system provides a noncontact method for prolonged respiratory monitoring, measurement of chest and abdominal asynchrony and apnea detection, showing promise for applications in respiratory disorder detection and home monitoring. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

18 pages, 5492 KiB  
Article
A Novel Variable Stiffness Torque Sensor with Adjustable Resolution
by Zhongyuan Mao, Yuanchang Zhong, Xuehui Zhao, Tengfei He and Sike Duan
Micromachines 2025, 16(8), 868; https://doi.org/10.3390/mi16080868 - 27 Jul 2025
Viewed by 178
Abstract
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement [...] Read more.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range. Specifically, the stiffness of the elastic element is adjusted by altering the shear stress of the MRF via an applied magnetic field while simultaneously harnessing the high sensitivity of the torsion spring. The stiffness model is established and validated for accuracy through finite element analysis. A screw modulation-based angle measurement method is proposed for the first time, offering high non-contact angle measurement accuracy and resolving eccentricity issues. The performance of the sensor prototype is evaluated using a self-developed power-closed torque test bench. The experimental results demonstrate that the sensor exhibits excellent linearity, hysteresis, and repeatability while effectively achieving dynamic continuous adjustment of resolution and range. Full article
Show Figures

Figure 1

15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 136
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

22 pages, 7542 KiB  
Article
Flow-Induced Vibration Stability in Pilot-Operated Control Valves with Nonlinear Fluid–Structure Interaction Analysis
by Lingxia Yang, Shuxun Li and Jianjun Hou
Actuators 2025, 14(8), 372; https://doi.org/10.3390/act14080372 - 25 Jul 2025
Viewed by 113
Abstract
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the [...] Read more.
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the valve, supported by experiment validation of the fluid model. To account for nonlinear structural effects such as contact and damping, a coupled fluid–structure interaction approach incorporating nonlinear perturbation analysis was applied to evaluate the dynamic response of the valve core assembly under fluid excitation. The results indicate that flow separation, re-circulation, and vortex shedding within the throttling region are primary contributors to structural vibrations. A comparative analysis of stability coefficients, modal damping ratios, and logarithmic decrements under different valve openings revealed that the valve core assembly remains relatively stable overall. However, critical stability risks were identified in the lower-order modal frequency range at 50% and 70% openings. Notably, at a 70% opening, the first-order modal frequency of the valve core assembly closely aligns with the frequency of fluid excitation, indicating a potential for critical resonance. This research provides important insights for evaluating and enhancing the vibration stability and operational safety of control valves under complex flow conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

Back to TopTop