Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,723)

Search Parameters:
Keywords = constant lighting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 942 KiB  
Article
Simulation of Propagation Characteristics and Field Distribution in Cylindrical Photonic Crystals Composed of Near-Zero Materials and Metal
by Zhihao Xu, Dan Zhang, Rongkang Xuan, Shenxiang Yang and Na Wang
J. Low Power Electron. Appl. 2025, 15(3), 44; https://doi.org/10.3390/jlpea15030044 (registering DOI) - 31 Jul 2025
Abstract
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of [...] Read more.
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of the volume fraction of the metal cylinders and exhibits a stop-band profile within the measured frequency range. This unique behavior is attributed to the scattering of long-wavelength light when the wavelength approaches the effective wavelength range of the ENZ material. Taking advantage of this feature, the study selectively filters specific wavelength ranges from the mid-frequency band by varying the ratio of cylinder radius to lattice constant (R/a). Decreasing the R/a ratio enables the design of waveguide devices that operate over a broader guided wavelength range within the intermediate-frequency band. The findings emphasize the importance of the interaction between light and ENZ materials in shaping the transmission characteristics of photonic crystal structures. Full article
19 pages, 3294 KiB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

18 pages, 1999 KiB  
Article
Circadian Light Manipulation and Melatonin Supplementation Enhance Morphine Antinociception in a Neuropathic Pain Rat Model
by Nian-Cih Huang and Chih-Shung Wong
Int. J. Mol. Sci. 2025, 26(15), 7372; https://doi.org/10.3390/ijms26157372 - 30 Jul 2025
Viewed by 19
Abstract
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model [...] Read more.
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model of neuropathic pain induced by partial sciatic nerve transection (PSNT). Rats were exposed to constant darkness, constant light, or a 12 h/12 h light–dark cycle for one week before PSNT surgery. Behavioral assays and continuous intrathecal (i.t.) infusion of morphine, melatonin, or their combination were conducted over a 7-day period beginning immediately after PSNT. On Day 7, after discontinued drugs infusion, an acute intrathecal morphine challenge (15 µg, i.t.) was administered to assess tolerance expression. Constant light suppressed melatonin levels, exacerbated pain behaviors, and accelerated morphine tolerance. In contrast, circadian-aligned lighting preserved melatonin rhythms and mitigated these effects. Melatonin co-infusion attenuated morphine tolerance and enhanced morphine analgesia. Reduced pro-inflammatory cytokine expression and increase anti-inflammatory cytokine IL-10 level and suppressed astrocyte activation were also observed by melatonin co-infusion during morphine tolerance induction. These findings highlight the potential of melatonin and circadian regulation in improving opioid efficacy and reduced morphine tolerance in managing neuropathic pain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

21 pages, 2139 KiB  
Article
Blue Light Effect on Metabolic Changes in Induced Precocious Puberty in Rats
by Luciana-Mădălina Gherman, Elena-Mihaela Jianu, Ștefan Horia Roșian, Mădălin Mihai Onofrei, Lavinia Patricia Mocan, Veronica Sanda Chedea, Ioana Corina Bocsan, Dragoş Apostu, Andreea Roxana Todea, Eva Henrietta Dulf, Emilia Laura Mogoșan, Carmen Mihaela Mihu, Cătălina Angela Crişan, Ștefan Cristian Vesa, Anca Dana Buzoianu and Raluca Maria Pop
Biology 2025, 14(8), 951; https://doi.org/10.3390/biology14080951 (registering DOI) - 28 Jul 2025
Viewed by 236
Abstract
Modern life, characterized by constant exposure to artificial light from electronic devices, such as light-emitting diodes (LEDs), disrupts the natural circadian rhythm and induces important metabolic changes. The impact of blue light exposure on male and female rat’s onset of puberty, hormonal and [...] Read more.
Modern life, characterized by constant exposure to artificial light from electronic devices, such as light-emitting diodes (LEDs), disrupts the natural circadian rhythm and induces important metabolic changes. The impact of blue light exposure on male and female rat’s onset of puberty, hormonal and biochemical parameters was assessed by comparison between the four study groups: the control group (CTRL) maintained under normal light conditions, the group exposed to blue light from a mobile phone (MP), the group subjected to blue light from a computer screen (PC), and the group exposed to blue light from an LED lamp (LED). Both female and male rats exposed to PC and LED failed to thrive, with a significantly lower body weight intake than the CTRL group. All three distinct sources of blue light interfered with the cyclicity of the estrous cycle in female rats. A marked decrease in the number of complete estrous cycles and the highest incidence of incomplete cycles were noticed in the LED group. Elevated ALT, AST, glucose, and insulin levels were influenced in a gender-specific manner, and depending on the source of emitted light. Prolonged blue light exposure induces significant metabolic disruptions and possesses important future research potential in identifying explicit pathways regarding this environmental stressor. Full article
Show Figures

Graphical abstract

25 pages, 392 KiB  
Review
Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture
by Xinying Liu, Qiying Sun, Zheng Wang, Jie He, Xin Liu, Yaliang Xu and Qingming Li
Agriculture 2025, 15(15), 1630; https://doi.org/10.3390/agriculture15151630 - 27 Jul 2025
Viewed by 166
Abstract
Light-emitting diodes (LEDs) in agricultural systems mainly contribute their capacity to create a precise and constant light spectral environment. However, the potential of LED in crop production was underestimated. LEDs serve not only as efficient artificial light sources for plant growth, but are [...] Read more.
Light-emitting diodes (LEDs) in agricultural systems mainly contribute their capacity to create a precise and constant light spectral environment. However, the potential of LED in crop production was underestimated. LEDs serve not only as efficient artificial light sources for plant growth, but are also a good tool for enhancing biomass production with limited energy consumption. This article reviewed innovative applications of LED in facility agriculture, e.g., plant factory, and greenhouse. Compared to conventional application of LED, innovative lighting strategies such as intermittent lighting, night break, continuous lighting, alternate lighting, dynamic lighting, and end-of-day (EOD) far-red provided by LED light can elevate the production efficiency effectively. However, the scientific explanation of the above lighting strategies remains to be clearly revealed, providing theoretical support for the further optimization of conducting parameters. This review summarizes the physiological effects of different lighting strategies on crop cultivation and illustrates their future application in facility agriculture, aiming to provide novel methods for elevating the energy utilization efficiency and lowering the cost in facility agriculture using artificial light. Full article
(This article belongs to the Special Issue The Effects of LED Lighting on Crop Growth, Quality, and Yield)
16 pages, 5533 KiB  
Article
P-2B Co-Doping Effects of the Electronic and Optical Properties of Diamond: A First-Principles Study Based on the HSE06 Generalized Function
by Weiyin Li and Meng Wang
Crystals 2025, 15(8), 678; https://doi.org/10.3390/cryst15080678 - 25 Jul 2025
Viewed by 195
Abstract
In the present study, the electronic structure and optical properties of P-2B co-doped diamond have been analyzed using first-principles calculations based on HSE06 generalized functions. Of the 15 complexes that we considered, the five most stable structures—BCPCB system, PCCBCB system, PCBCCB system, PCBBCB [...] Read more.
In the present study, the electronic structure and optical properties of P-2B co-doped diamond have been analyzed using first-principles calculations based on HSE06 generalized functions. Of the 15 complexes that we considered, the five most stable structures—BCPCB system, PCCBCB system, PCBCCB system, PCBBCB system, and PBCB system were identified and studied, and the bandgap was found to reduce from 5.496 eV of intrinsic diamond to 3.610, 3.210, 3.210, 3.210, and 3.250 eV, respectively. Notably, the BCPCB-doped system exhibited significant changes in optical properties: the static dielectric constant increased from 4.18 to over 45, the real part of the conductivity showed a new peak at 2.0 eV (11) with a red-shifted spectrum, the light absorption edge was red-shifted, the static refractive index rose from 2 to 25, and a pronounced peak at 2.5 eV (16) was observed. These theoretical studies aim to support experimental research on P-2B doping in diamond to achieve p-type conductivity and enhanced optical properties. Full article
Show Figures

Figure 1

16 pages, 2509 KiB  
Article
A Novel Experimental Method and Setup to Quantify Evaporation-Induced Foaming Behavior of Polymer Solutions
by Xiaoyi Qiu, Zhaoqi Cui, Ming Zhao, Jie Jiang, Wenze Guo, Ling Zhao, Zhenhao Xi and Weikang Yuan
Polymers 2025, 17(15), 2025; https://doi.org/10.3390/polym17152025 - 24 Jul 2025
Viewed by 228
Abstract
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because [...] Read more.
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because the concentration of light components in solution continuously decreases during ebullition, causing undesired changes in foaming behavior. In this study, a precisely controlled condensation reflux module was introduced into the setup to maintain pressure, temperature, and concentration of the PSMS at constant levels during the entire ebullition process, allowing dynamic test methods to quantify the evaporation-induced foamability. With this newly proposed device, experimental data of typical PSMS, polyolefin elastomer (POE)/n-hexane solution system, were obtained and modeled to illustrate the foam growth profile, thereby characterizing the dynamic foaming process based on a logistic growth function. The corresponding dimensionless number Σevap was calculated to evaluate evaporation-induced foam stability by analyzing the foam growth profile under varying pressure, concentration, and energy input levels. Furthermore, given that the PSMS represents a highly non-ideal system, the bubble nucleation rate J was modified in this work by introducing a correction coefficient δ to account for the non-ideal effects of macromolecules present in solutions. Additionally, another correction coefficient λ was incorporated into the Gibbs free energy term to adjust for supersaturation of liquid during nucleation. The experiment’s data align well with the modified bubble nucleation rate mechanism proposed herein. Full article
Show Figures

Figure 1

30 pages, 3043 KiB  
Article
Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light
by Luisa F. Lozano-Castellanos, Giuseppina Pennisi, Luis Manuel Navas-Gracia, Francesco Orsini, Eva Sánchez-Hernández, Pablo Martín-Ramos and Adriana Correa-Guimaraes
Biology 2025, 14(8), 935; https://doi.org/10.3390/biology14080935 - 24 Jul 2025
Viewed by 225
Abstract
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile [...] Read more.
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including α-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions. Full article
Show Figures

Graphical abstract

15 pages, 7744 KiB  
Article
FEM Analysis of Superplastic-Forming Process to Manufacture a Hemispherical Shell
by Gillo Giuliano and Wilma Polini
Appl. Sci. 2025, 15(14), 8080; https://doi.org/10.3390/app15148080 - 21 Jul 2025
Viewed by 187
Abstract
Superplastic materials are characterised by extreme lightness and remarkable ductility. Instead of a punch, a gas is used to push the sheet into the die cavity, and it is precisely regulated to control the material’s strain rate. Forming a superplastic material while maintaining [...] Read more.
Superplastic materials are characterised by extreme lightness and remarkable ductility. Instead of a punch, a gas is used to push the sheet into the die cavity, and it is precisely regulated to control the material’s strain rate. Forming a superplastic material while maintaining a high strain rate sensitivity index requires the forming gas to follow a precise pressure–time loading curve. This can be excellently predicted with the aid of the finite element method (FEM). Therefore, for the superplastic material to exhibit its best formability throughout the entire process, it is necessary to control the strain rate step by step to keep the maximum strain rate within the material’s optimal superplastic range. In this work, the results of a superplastic-forming process used to create a hemispherical shell are presented. This was carried out using both a circular blank of uniform thickness and a blank with a conical cross-section. The analysis was performed using finite element modelling. Specifically, the results obtained using 3D analysis were compared with those obtained using axisymmetric analysis for conditions of axial symmetry. Using the conical cross-section blank helped achieve a more uniform thickness distribution in the produced hemispherical shell. The success of the numerical activity was validated through results from appropriate experimental work conducted on the magnesium alloy AZ31. The results show that, by employing a blank characterised by a conical section profile, the thickness distribution appears more uniform than that of a constant-thickness blank. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

13 pages, 2175 KiB  
Article
Light and Temperature Effects on the Accumulation of Carotenoids in Rhodotorula spp. Yeasts
by Regina Losinska-Sičiūnienė, Živilė Strazdaitė-Žielienė, Saulė Pranckevičiūtė and Elena Servienė
Fermentation 2025, 11(7), 412; https://doi.org/10.3390/fermentation11070412 - 17 Jul 2025
Viewed by 357
Abstract
Carotenoids are widely recognized for their antioxidant and health-beneficial properties, making them attractive for applications in the food, pharmaceutical, medical, and agricultural sectors. Rhodotorula yeasts are considered one of the most suitable alternatives for carotenoid synthesis due to their rapid biomass growth and [...] Read more.
Carotenoids are widely recognized for their antioxidant and health-beneficial properties, making them attractive for applications in the food, pharmaceutical, medical, and agricultural sectors. Rhodotorula yeasts are considered one of the most suitable alternatives for carotenoid synthesis due to their rapid biomass growth and high pigment yield. During this study, based on the sequences of the ITS region between 18S and 28S rRNA genes, the yeast strains were identified as belonging to Rhodotorula babjevae, R. dairenensis, R. diobovata, R. glutinis, R. graminis, R. ingeniosa, R. kratochvilovae, and R. mucilaginosa. The production of carotenoids by different Rhodotorula yeast strains was analyzed under the combined effects of lighting and temperature. Among all tested strains, the isolate identified as R. ingeniosa exhibited the lowest carotenoid content, ranging from 0.18 to 0.23 mg/g biomass. The highest levels of pigment were accumulated in dark conditions by R. babjevae (0.86 mg/g biomass) and R. graminis (0.76 mg/g biomass) cultivated for 14 days at a constant temperature of 26 °C, and by R. glutinis (0.89 mg/g biomass) after incubation at 4 °C. The majority of yeasts tested produced more carotenoids at a higher temperature. It was observed that in R. babjevae, R. glutinis, and R. graminis, lighting negatively affected the pigment content regardless of incubation temperature. In these strains, the pigment content decreased by 1.2- to 1.4-fold after one week of cultivation under light conditions at 26 °C, compared to cultures grown in the dark. The results suggest that the isolated Rhodotorula strains could be attractive candidates for the efficient synthesis of carotenoids. Full article
(This article belongs to the Special Issue Pigment Production in Submerged Fermentation: Second Edition)
Show Figures

Figure 1

18 pages, 2314 KiB  
Article
Deletion of Clock Gene Period 2 (Per2) in Astrocytes Shortens Clock Period but Does Not Affect Light-Mediated Phase Shifts in Mice
by Soha A. Hassan, Katrin S. Wendrich and Urs Albrecht
Clocks & Sleep 2025, 7(3), 37; https://doi.org/10.3390/clockssleep7030037 - 17 Jul 2025
Viewed by 270
Abstract
The circadian clock is a self-sustaining oscillator with a period of approximately 24 h, enabling organisms to anticipate daily recurring events, such as sunrise and sunset. Since the circadian period is not exactly 24 h and the environmental day length varies throughout the [...] Read more.
The circadian clock is a self-sustaining oscillator with a period of approximately 24 h, enabling organisms to anticipate daily recurring events, such as sunrise and sunset. Since the circadian period is not exactly 24 h and the environmental day length varies throughout the year, the clock must be periodically reset to align an organism’s physiology with the natural light/dark cycle. This synchronization, known as entrainment, is primarily regulated by nocturnal light, which can be replicated in laboratory settings using a 15 min light pulse (LP) and by assessing locomotor activity. An LP during the early part of the dark phase delays the onset of locomotor activity, resulting in a phase delay, whereas an LP in the late dark phase advances activity onset, causing a phase advance. The clock gene Period 2 (Per2) plays a key role in this process. To investigate its contributions, we examined the effects of Per2 deletion in neurons versus astrocytes using glia-specific GPer2 (Per2/GfapCre) knockout (KO) and neuronal-specific NPer2KO (Per2/NesCre) mice. All groups were subjected to Aschoff type II protocol, where an LP was applied at ZT14 or ZT22 and the animals were released into constant darkness. As control, no LP was applied. Phase shift, period, amplitude, total activity count, and rhythm instability were assessed. Our findings revealed that mice lacking Per2 in neurons (NPer2) exhibited smaller phase delays and larger phase advances compared to control animals. In contrast, mice with Per2 deletion specifically in glial cells including astrocytes (GPer2) displayed normal clock resetting. Interestingly, the absence of Per2 in either of the cell types resulted in a shorter circadian period compared to control animals. These results suggest that astrocytic Per2 is important for maintaining the circadian period but is not required for phase adaptation to light stimuli. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

19 pages, 5795 KiB  
Article
Analysis and Design of a Multiple-Driver Power Supply Based on a High-Frequency AC Bus
by Qingqing He, Zhaoyang Tang, Wenzhe Zhao and Keliang Zhou
Energies 2025, 18(14), 3748; https://doi.org/10.3390/en18143748 - 15 Jul 2025
Viewed by 191
Abstract
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high [...] Read more.
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high costs and system complexity is a significant challenge. Leveraging the constant-current characteristics of the LCL-T network, this paper presents a multi-channel DC/DC LED driver comprising a full-bridge inverter, a transformer, and a passive resonant rectifier. The driver generates a high-frequency AC bus with series-connected diode rectifiers, a structure that guarantees excellent current sharing among all output channels using only a single control loop. Fully considering the impact of higher harmonics, this paper derives an exact solution for the output current. A step-by-step parameter design methodology ensures soft switching and enhanced switch utilization. Finally, experimental verification was conducted using a prototype with five channels and 200 W, confirming the correctness and accuracy of the theoretical analysis. The experimental results showed that within a wide input voltage range of 380 V to 420 V, the driver was able to provide a stable current of 700 mA to each channel, and the system could achieve a peak efficiency of up to 94.4%. Full article
(This article belongs to the Special Issue Reliability of Power Electronics Devices and Converter Systems)
Show Figures

Figure 1

14 pages, 5269 KiB  
Article
The Role of Copigmentation in Colour Attributes and Their Evolution in Model Wine: A Thermodynamic and Colorimetric Study
by Arianna Ricci, Cristian Galaz-Torres, Giuseppina Paola Parpinello, Miriana Demola, Marco Spiga and Andrea Versari
Foods 2025, 14(14), 2467; https://doi.org/10.3390/foods14142467 - 14 Jul 2025
Viewed by 290
Abstract
The colour evolution of malvidin-3-O-glucoside (Mv-3-O-glc) elicited by caffeic acid (CAF), (+)-catechin (CA), or syringic acid (SI) was spectrophotometrically monitored in model wine solution, modulating the malvidin-to-polyphenol molar ratio (1:1 to 1:20) and the pH (2.8–3.8). The spectral features [...] Read more.
The colour evolution of malvidin-3-O-glucoside (Mv-3-O-glc) elicited by caffeic acid (CAF), (+)-catechin (CA), or syringic acid (SI) was spectrophotometrically monitored in model wine solution, modulating the malvidin-to-polyphenol molar ratio (1:1 to 1:20) and the pH (2.8–3.8). The spectral features provided the thermodynamic parameters Gibbs free energy (ΔG0) and equilibrium constant (Keq), showing that the copigmentation extent is maximized at pH 3.6 and a higher molar ratio (1:20), and that copigments have different efficiency. In a long-term evolution (12 months), transient complexes evolved into different colour characteristics. Spectrophotometry and colorimetry (chroma C*, hue H*, and lightness L*) revealed the formation of stable pigments with peculiar orange-reddish colour when CAF was present; however, in the case of CA, an accentuated yellow tone was observed. SI showed minimum impact in the long-term evolution of Mv-3-O-glc. This study expands knowledge on oenological copigmentation, further exploring its potential implication in the colour of aged red wines. Full article
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 271
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

17 pages, 1598 KiB  
Article
Comparative Analysis of Diel and Circadian Eclosion Rhythms and Clock Gene Expression Between Sexes in the Migratory Moth Spodoptera frugiperda
by Changning Lv, Yibo Ren, Viacheslav V. Krylov, Yumeng Wang, Yuanyuan Li, Weidong Pan, Gao Hu, Fajun Chen and Guijun Wan
Insects 2025, 16(7), 705; https://doi.org/10.3390/insects16070705 - 9 Jul 2025
Viewed by 496
Abstract
The circadian clock orchestrates behavioral and molecular processes such as eclosion. Understanding eclosion timing may offer insights into circadian mechanisms underlying migratory timing. Here, we characterize the diel and circadian patterns of eclosion and core clock gene expression in the fall armyworm (FAW), [...] Read more.
The circadian clock orchestrates behavioral and molecular processes such as eclosion. Understanding eclosion timing may offer insights into circadian mechanisms underlying migratory timing. Here, we characterize the diel and circadian patterns of eclosion and core clock gene expression in the fall armyworm (FAW), Spodoptera frugiperda, a globally distributed migratory moth. Using a custom-designed eclosion monitoring system under 14 h light: 10 h dark (L14: D10) and constant darkness (DD) conditions, we observed robust diel eclosion rhythms peaking shortly after lights-off under L14: D10, which became delayed and damped over three consecutive days in DD. Males showed a tendency toward more dispersed emergence patterns and exhibited statistically distinguishable eclosion distributions from females under both conditions. Expression of five canonical clock genes (cyc, clk, tim, per, cry2) displayed significant 24 h rhythmicity, with generally higher mesors in males. However, sex-specific differences in amplitude and phase were detected only for clk and cyc under L14: D10, not in DD. These findings suggest that sex-specific differences in circadian regulation are limited. Nonetheless, subtle variations in clock gene output and emergence timing in the FAW population established in China may contribute to sex-specific ecological strategies in the novel migratory arena. Full article
(This article belongs to the Special Issue Travelers on the Wind: Migratory Insects as Emerging Research Models)
Show Figures

Figure 1

Back to TopTop