The Role of Copigmentation in Colour Attributes and Their Evolution in Model Wine: A Thermodynamic and Colorimetric Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Experimental Setup
- (1)
- Short-term spectrophotometric monitoring: Short-term spectrophotometric monitoring aimed at determining the magnitude of the copigmentation effect (bathochromic and hyperchromic) by increasing the molar ratio of copigments with constant Mv-3-O-glc concentration and changing pH over a range of oenological interest (2.8–3.8). All these solutions were prepared in triplicate and were stored in closed glass vials in the dark at 20 °C for 30 min to reach equilibrium. Experiment 1 allowed us to determine the spectral shift (hyperchromicity) used to calculate the equilibrium constant (Keq), the Gibbs free energy variation at the equilibrium (ΔG0), and the stoichiometry of the copigmentation for every copigment, molar ratio, and pH value considered (details in Section 2.2).
- (2)
- Long-term spectrophotometric and colorimetric monitoring: The spectrophotometric and colorimetric analysis of the working solution after 12 months of storage in the dark at room temperature aimed at revealing the colour evolution patterns for the copigmentation couples considered. The solutions were stored in screw-cap glass vials filled to their maximum volume to avoid hyperoxygenation.
2.2. Spectrophotometric Analysis
- A0 (λ = 523 nm): absorbance of Mv-3-O-glc 5 × 10−5 M;
- A (λ = 523 nm): absorbance of Mv-3-O-glc 5 × 10−5 M after copigment addition;
- Keq: thermodynamic equilibrium constant for the molecular association (copigmentation), M−1;
- n: pigment/copigments stoichiometry;
- [Cp]0: initial copigment concentration.
- R: gas constant 8.314 J mol−1 K−1;
- T: temperature (standardized at 298 K).
2.3. Colorimetry
2.4. Data Processing and Colorimetry Artwork
3. Results
3.1. Short-Term Spectrophotometric Monitoring
3.2. Long-Term Spectrophotometric Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Teixeira, N.; Cruz, L.; Brás, N.F.; Mateus, N.; Ramos, M.J.; De Freitas, V. Structural features of copigmentation of oenin with different polyphenol copigments. J. Agric. Food Chem. 2013, 61, 6942–6948. [Google Scholar] [CrossRef]
- Escribano-Bailón, M.T.; Rivas-Gonzalo, J.C.; García-Estévez, I. Wine color evolution and stability. In Red Wine Technology; Academic Press: New York, NY, USA, 2019; pp. 195–205. [Google Scholar]
- Wang, J.; Zhao, Y.; Sun, B.; Yang, Y.; Wang, S.; Feng, Z.; Li, J. The structure of anthocyanins and the copigmentation by common micromolecular copigments: A review. Food Res. Int. 2024, 176, 113837. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Bailon, M.; Santos-Buelga, C. Anthocyanin copigmentation-evaluation, mechanisms and implications for the colour of red wines. Curr. Org. Chem. 2012, 16, 715–723. [Google Scholar] [CrossRef]
- Torres-Rochera, B.; Manjón, E.; Brás, N.F.; Escribano-Bailón, M.T.; García-Estévez, I. Supramolecular study of the interactions between malvidin-3-O-glucoside and wine phenolic compounds: Influence on color. J. Agric. Food Chem. 2023, 72, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Tian, L.; Vidyarthi, S.K.; Xu, J.; Pan, Z.; et al. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem. 2022, 366, 130611. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Díaz-Romero, C.; Darias-Martín, J. What gives a wine its strong red color? Main correlations affecting copigmentation. J. Agric. Food Chem. 2016, 64, 6567–6574. [Google Scholar] [CrossRef]
- Ferreira da Silva, P.; Lima, J.C.; Freitas, A.A.; Shimizu, K.; Maçanita, A.L.; Quina, F.H. Charge-transfer complexation as a general phenomenon in the copigmentation of anthocyanins. J. Phys. Chem. A 2005, 109, 7329–7338. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, R.; Dangles, O. Anthocyanin molecular interactions: The first step in the formation of new pigments during wine aging? Food Chem. 1994, 51, 365–371. [Google Scholar] [CrossRef]
- Dippenaar, C.; Joubert, E.; De Beer, D. Co-pigmentation of Pinotage anthocyanins with Cyclopia (honeybush) polyphenols in model wine solutions. Food Chem. Adv. 2023, 3, 100566. [Google Scholar] [CrossRef]
- Timberlake, C.F.; Bridle, P. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 1976, 27, 97–105. [Google Scholar] [CrossRef]
- Es-Safi, N.E. Colour of a xanthylium pigment in aqueous solutions at different pH values. Food Chem. 2004, 88, 367–372. [Google Scholar] [CrossRef]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic reactions during winemaking and aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar] [CrossRef]
- Lambert, S.G.; Asenstorfer, R.E.; Williamson, N.M.; Iland, P.G.; Jones, G.P. Copigmentation between malvidin-3-glucoside and some wine constituents and its importance to colour expression in red wine. Food Chem. 2011, 125, 106–115. [Google Scholar] [CrossRef]
- Gombau, J.; Vignault, A.; Pascual, O.; Gómez-Alonso, S.; Gracía-Romero, E.; Hermosín, I.; Canals, J.M.; Teissedre, P.L.; Zamora, F. Influence of oenological tannins on malvidin-3-O-monoglucoside copigmentation in a model wine solution. Oeno One 2019, 53, 531–547. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, B.W.; Qin, J.W.; He, F.; Duan, C.Q. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chem. 2020, 326, 126960. [Google Scholar] [CrossRef]
- Zhao, X.; He, F.; Zhang, X.K.; Shi, Y.; Duan, C.Q. Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Food Chem. 2022, 375, 131670. [Google Scholar] [CrossRef]
- Zhao, X.; Duan, C.Q.; Li, S.Y.; Zhang, X.K.; Zhai, H.Y.; He, F.; Zhao, Y.P. Non-enzymatic browning of wine induced by monomeric flavan-3-ols: A review. Food Chem. 2023, 425, 136420. [Google Scholar] [CrossRef]
- Tindal, R.A.; Jeffery, D.W.; Muhlack, R.A. Nonlinearity and anthocyanin colour expression: A mathematical analysis of anthocyanin association kinetics and equilibria. Food Res. Int. 2024, 183, 114195. [Google Scholar] [CrossRef]
- Brouillard, R.; Mazza, G.; Saad, Z.; Albrecht-Gary, A.M.; Cheminat, A. The co-pigmentation reaction of anthocyanins: A microprobe for the structural study of aqueous solutions. J. Am. Chem. Soc. 1989, 111, 2604–2610. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Fan, S.; Prejanò, M.; Marino, T.; Russo, N.; Tao, Y.; Li, Y. Intermolecular interactions between malvidin-3-O-glucoside and caffeic acid: Structural and thermodynamic characterization and its effect on real wine color quality. Food Chem. 2024, 453, 139617. [Google Scholar] [CrossRef] [PubMed]
- OIV. International Organisation of Vine and Wine: OIV-MA-AS2-11 Determination of Chromatic Characteristics According to CIELab (Resolution Oeno 1/2006); OIV: Paris, France, 2006.
- Mirabel, M.; Saucier, C.; Guerra, C.; Glories, Y. Copigmentation in model wine solutions: Occurrence and relation to wine aging. Am. J. Enol. Vitic. 1999, 50, 211–218. [Google Scholar] [CrossRef]
- Mazza, G.; Brouillard, R. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 1990, 29, 1097–1102. [Google Scholar] [CrossRef]
- Malaj, N.; De Simone, B.C.; Quartarolo, A.D.; Russo, N. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids. Food Chem. 2013, 141, 3614–3620. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, B.; Rodríguez-Pulido, F.J.; Escudero-Gilete, M.L.; González-Miret, M.L.; Heredia, F.J. Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. J. Agric. Food Chem. 2012, 60, 2896–2905. [Google Scholar] [CrossRef]
- Grazia, D.; Mazzocchi, C.; Ruggeri, G.; Corsi, S. Grapes, wines, and changing times: A bibliometric analysis of climate change influence. Aust. J. Grape Wine Res. 2023, 2023, 9937930. [Google Scholar] [CrossRef]
- Singleton, V.L.; Salgues, M.; Zaya, J.; Trousdale, E. Caftaric acid disappearance and conversion to products of enzymic oxidation in grape must and wine. Am. J. Enol. Vitic. 1985, 36, 50–56. [Google Scholar] [CrossRef]
- Price, S.F.; Breen, P.J.; Valladao, M.; Watson, B.T. Cluster sun exposure and quercetin in Pinot noir grapes and wine. Am. J. Enol. Vitic. 1995, 46, 187–194. [Google Scholar] [CrossRef]
- Aleixandre-Tudó, J.L.; Alvarez, I.; Lizama, V.; García, M.J.; Aleixandre, J.L.; Du Toit, W.J. Impact of caffeic acid addition on phenolic composition of tempranillo wines from different winemaking techniques. J. Agric. Food Chem. 2013, 61, 11900–11912. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.S.; Li, N.N.; Zhu, X.; Sheng, W.J.; He, F.; Duan, C.Q.; Han, S.Y. Colorimetric study of malvidin-3-O-glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions. Food Res. Int. 2017, 102, 468–477. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, F.; Chen, Y.; Ning, N.; Hao, G.; Bi, X. The effect of high-pressure processing on the copigmentation and storage stability of polyphenols with anthocyanin monomers. Foods 2024, 13, 3756. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.D.; Zhang, Q.A.; Wang, T.T. Co-pigmentation of caffeic acid and catechin on wine color and the effect of ultrasound in model wine solutions. J. AOAC Int. 2021, 104, 1703–1709. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, T.; Zhang, Q.A. Effects of ultrasound irradiation on the co-pigmentation of the added caffeic acid and the coloration of the Cabernet sauvignon wine during storage. Foods 2022, 11, 1206. [Google Scholar] [CrossRef] [PubMed]
- Marković, J.M.D.; Ignjatović, L.M.; Marković, D.A.; Baranac, J.M. Antioxidative capabilities of some organic acids and their co-pigments with malvin: Part I. J. Electroanal. Chem. 2003, 553, 169–175. [Google Scholar] [CrossRef]
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical composition and polyphenolic compounds of red wines: Their antioxidant activities and effects on human health—A review. Beverages 2021, 8, 1. [Google Scholar] [CrossRef]
- Kunsági-Máté, S.; Szabó, K.; Nikfardjam, M.P.; Kollár, L. Determination of the thermodynamic parameters of the complex formation between malvidin-3-O-glucoside and polyphenols. Copigmentation effect in red wines. J. Biochem. Biophys. Methods 2006, 69, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Darias-Martín, J.; Carrillo, M.; Díaz, E.; Boulton, R.B. Enhancement of red wine colour by pre-fermentation addition of copigments. Food Chem. 2001, 73, 217–220. [Google Scholar] [CrossRef]
- Sun, J.; Cao, X.; Liao, X.; Hu, X. Comparative analyses of copigmentation of cyanidin 3-glucoside and cyanidin 3-sophoroside from red raspberry fruits. Food Chem. 2010, 120, 1131–1137. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, R.; He, F.; Zhou, P.P.; Duan, C.Q. Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: Experimental and theoretical investigations. Food Chem. 2015, 170, 226–233. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Changes in the detailed pigment composition of red wine during maturity and ageing: A comprehensive study. Anal. Chim. Acta 2006, 563, 238–254. [Google Scholar] [CrossRef]
- Schwarz, M.; Wabnitz, T.C.; Winterhalter, P. Pathway leading to the formation of anthocyanin–vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem. 2003, 51, 3682–3687. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Bailón, T.; Dangles, O.; Brouillard, R. Coupling reactions between flavylium ions and catechin. Phytochemistry 1996, 41, 1583–1592. [Google Scholar] [CrossRef]
- Monagas, M.; Bartolomé, B.; Gómez-Cordovés, C. Evolution of polyphenols in red wines from Vitis vinifera L. during aging in the bottle: II. Non-anthocyanin phenolic compounds. Eur. Food Res. Technol. 2005, 220, 331–340. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, H.; Zhao, Q.; Zhang, F.; Ge, Q.; Li, C.; Gamboa, G.G.; Fang, Y.; Sun, X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res. Int. 2022, 153, 110953. [Google Scholar] [CrossRef]
Pigment/Copigment Couple | pH | Hyperchromic Shift (A − A0)/A0 (λ523nm) | r2 | Stoichiometry | ΔG0 | |||
---|---|---|---|---|---|---|---|---|
1:1 | 1:5 | 1:10 | 1:20 | (n) | (kJ mol−1) | |||
Mv-3-O-glc/CAF | 2.8 | 0.0097 | 0.0326 | 0.0568 | 0.0906 | 0.999 | 0.76 | −7.05 |
3.2 | 0.0174 | 0.0640 | 0.0814 | 0.1628 | 0.985 | 0.74 | −7.92 | |
3.6 | 0.0217 | 0.0696 | 0.1304 | 0.2435 | 0.996 | 0.85 | −10.40 | |
3.8 | 0.0189 | 0.0472 | 0.0755 | 0.1226 | 0.982 | 0.63 | −5.31 | |
Mv-3-O-glc/CA | 2.8 | 0.0152 | 0.0455 | 0.0732 | 0.0972 | 0.996 | 0.64 | −5.26 |
3.2 | 0.0197 | 0.0590 | 0.0927 | 0.1573 | 0.996 | 0.69 | −7.12 | |
3.6 | 0.0435 | 0.1304 | 0.2043 | 0.2826 | 0.991 | 0.64 | −7.89 | |
3.8 | 0.0189 | 0.0566 | 0.0755 | 0.1509 | 0.987 | 0.67 | −6.56 | |
Mv-3-O-glc/SI | 2.8 | 0.0214 | 0.0671 | 0.1031 | 0.1425 | 0.991 | 0.65 | −6.38 |
3.2 | 0.0184 | 0.0642 | 0.1055 | 0.1683 | 0.998 | 0.75 | −8.38 | |
3.6 | 0.0294 | 0.1131 | 0.1819 | 0.2593 | 0.988 | 0.76 | −9.56 | |
3.8 | 0.0189 | 0.0736 | 0.1129 | 0.1501 | 0.978 | 0.71 | −7.77 |
a: Mv-3-O-glc/CAF | |||||||||
pH | Treatment | Time | Molar Ratio | C* | H* | L* | a* | b* | Visible colour |
2.8 | Mv-3-O-glc | T0 | 29.29 | −1.12 | 84.44 | 29.29 | −0.57 | ||
3.2 | Mv-3-O-glc | T0 | 12.84 | 0.09 | 91.31 | 12.84 | 0.02 | ||
3.6 | Mv-3-O-glc | T0 | 7.56 | 15.10 | 93.75 | 7.30 | 1.97 | ||
3.8 | Mv-3-O-glc | T0 | 3.41 | 18.13 | 96.98 | 3.24 | 1.06 | ||
2.8 | Mv-3-O-glc3/CAF | T12 | 1:1 | 29.79 | 31.51 | 86.40 | 25.44 | 15.50 | |
2.8 | Mv-3-O-glc3/CAF | T12 | 1:5 | 24.84 | 31.51 | 89.10 | 21.20 | 12.95 | |
2.8 | Mv-3-O-glc3/CAF | T12 | 1:10 | 18.20 | 31.51 | 91.50 | 15.48 | 9.58 | |
2.8 | Mv-3-O-glc3/CAF | T12 | 1:20 | 8.15 | 39.53 | 95.50 | 6.28 | 5.20 | |
3.2 | Mv-3-O-glc3/CAF | T12 | 1:1 | 24.19 | 28.07 | 88.50 | 21.33 | 11.42 | |
3.2 | Mv-3-O-glc3/CAF | T12 | 1:5 | 20.89 | 29.79 | 90.30 | 18.14 | 10.36 | |
3.2 | Mv-3-O-glc3/CAF | T12 | 1:10 | 16.27 | 30.94 | 92.20 | 13.94 | 8.38 | |
3.2 | Mv-3-O-glc3/CAF | T12 | 1:20 | 7.57 | 42.40 | 95.40 | 5.60 | 5.09 | |
3.6 | Mv-3-O-glc3/CAF | T12 | 1:1 | 22.51 | 28.07 | 89.20 | 19.91 | 10.51 | |
3.6 | Mv-3-O-glc3/CAF | T12 | 1:5 | 19.64 | 29.22 | 90.70 | 17.10 | 9.66 | |
3.6 | Mv-3-O-glc3/CAF | T12 | 1:10 | 14.38 | 31.51 | 89.30 | 12.26 | 7.51 | |
3.6 | Mv-3-O-glc3/CAF | T12 | 1:20 | 7.69 | 42.40 | 95.90 | 5.65 | 5.21 | |
3.8 | Mv-3-O-glc3/CAF | T12 | 1:1 | 10.69 | 37.24 | 95.80 | 8.49 | 6.50 | |
3.8 | Mv-3-O-glc3/CAF | T12 | 1:5 | 9.44 | 35.52 | 96.30 | 7.68 | 5.49 | |
3.8 | Mv-3-O-glc3/CAF | T12 | 1:10 | 9.21 | 35.52 | 96.70 | 7.47 | 5.38 | |
3.8 | Mv-3-O-glc3/CAF | T12 | 1:20 | 4.78 | 48.13 | 98.50 | 3.20 | 3.55 | |
b: Mv-3-O-glc/CA | |||||||||
pH | Treatment | Time | Molar Ratio | C* | H* | L* | a* | b* | Visible colour |
2.8 | Mv-3-O-glc | T0 | 29.29 | −1.12 | 84.44 | 29.29 | −0.57 | ||
3.2 | Mv-3-O-glc | T0 | 12.84 | 0.09 | 91.31 | 12.84 | 0.02 | ||
3.6 | Mv-3-O-glc | T0 | 7.56 | 15.10 | 93.75 | 7.30 | 1.97 | ||
3.8 | Mv-3-O-glc | T0 | 3.41 | 18.13 | 96.98 | 3.24 | 1.06 | ||
2.8 | Mv-3-O-glc3/CA | T12 | 1:1 | 24.54 | 78.50 | 93.50 | 4.79 | 24.07 | |
2.8 | Mv-3-O-glc3/CA | T12 | 1:5 | 18.46 | 76.20 | 93.80 | 4.47 | 17.91 | |
2.8 | Mv-3-O-glc3/CA | T12 | 1:10 | 15.35 | 75.06 | 94.30 | 3.95 | 14.83 | |
2.8 | Mv-3-O-glc3/CA | T12 | 1:20 | 12.83 | 73.34 | 95.30 | 3.73 | 12.28 | |
3.2 | Mv-3-O-glc3/CA | T12 | 1:1 | 22.71 | 83.65 | 94.20 | 2.47 | 22.58 | |
3.2 | Mv-3-O-glc3/CA | T12 | 1:5 | 20.15 | 84.80 | 94.70 | 1.86 | 20.07 | |
3.2 | Mv-3-O-glc3/CA | T12 | 1:10 | 13.09 | 77.92 | 95.50 | 2.76 | 12.79 | |
3.2 | Mv-3-O-glc3/CA | T12 | 1:20 | 5.79 | 55.58 | 96.20 | 3.28 | 4.77 | |
3.6 | Mv-3-O-glc3/CA | T12 | 1:1 | 26.86 | 84.22 | 93.50 | 2.69 | 26.72 | |
3.6 | Mv-3-O-glc3/CA | T12 | 1:5 | 23.02 | 85.37 | 94.10 | 1.83 | 22.95 | |
3.6 | Mv-3-O-glc3/CA | T12 | 1:10 | 20.27 | 85.94 | 95.30 | 1.48 | 20.22 | |
3.6 | Mv-3-O-glc3/CA | T12 | 1:20 | 13.74 | 79.07 | 95.60 | 2.61 | 13.49 | |
3.8 | Mv-3-O-glc3/CA | T12 | 1:1 | 22.87 | 89.38 | 96.20 | 0.31 | 22.87 | |
3.8 | Mv-3-O-glc3/CA | T12 | 1:5 | 16.42 | 92.25 | 97.70 | −0.63 | 16.41 | |
3.8 | Mv-3-O-glc3/CA | T12 | 1:10 | 11.97 | 92.25 | 98.40 | −0.45 | 11.96 | |
3.8 | Mv-3-O-glc3/CA | T12 | 1:20 | 7.62 | 85.94 | 98.30 | 0.55 | 7.60 | |
c: Mv-3-O-glc/SI | |||||||||
pH | Treatment | Time | Molar Ratio | C* | H* | L* | a* | b* | Visible colour |
2.8 | Mv-3-O-glc | T0 | 29.29 | −1.12 | 84.44 | 29.29 | −0.57 | ||
3.2 | Mv-3-O-glc | T0 | 12.84 | 0.09 | 91.31 | 12.84 | 0.02 | ||
3.6 | Mv-3-O-glc | T0 | 7.56 | 15.10 | 93.75 | 7.30 | 1.97 | ||
3.8 | Mv-3-O-glc | T0 | 3.41 | 18.13 | 96.98 | 3.24 | 1.06 | ||
2.8 | Mv-3-O-glc3/SI | T12 | 1:1 | 7.11 | 43.54 | 95.60 | 5.14 | 4.91 | |
2.8 | Mv-3-O-glc3/SI | T12 | 1:5 | 6.81 | 45.26 | 96.00 | 4.80 | 4.83 | |
2.8 | Mv-3-O-glc3/SI | T12 | 1:10 | 7.30 | 46.98 | 96.00 | 4.98 | 5.33 | |
2.8 | Mv-3-O-glc3/SI | T12 | 1:20 | 6.98 | 46.41 | 95.90 | 4.80 | 5.08 | |
3.2 | Mv-3-O-glc3/SI | T12 | 1:1 | 6.15 | 57.87 | 96.50 | 3.29 | 5.19 | |
3.2 | Mv-3-O-glc3/SI | T12 | 1:5 | 5.97 | 57.30 | 96.40 | 3.25 | 5.01 | |
3.2 | Mv-3-O-glc3/SI | T12 | 1:10 | 6.23 | 55.00 | 96.00 | 3.58 | 5.10 | |
3.2 | Mv-3-O-glc3/SI | T12 | 1:20 | 6.12 | 56.72 | 96.30 | 3.37 | 5.10 | |
3.6 | Mv-3-O-glc3/SI | T12 | 1:1 | 6.11 | 54.43 | 96.20 | 3.53 | 4.98 | |
3.6 | Mv-3-O-glc3/SI | T12 | 1:5 | 5.84 | 55.58 | 96.20 | 3.32 | 4.81 | |
3.6 | Mv-3-O-glc3/SI | T12 | 1:10 | 6.20 | 52.14 | 95.80 | 3.79 | 4.91 | |
3.6 | Mv-3-O-glc3/SI | T12 | 1:20 | 6.70 | 53.86 | 96.20 | 3.93 | 5.42 | |
3.8 | Mv-3-O-glc3/SI | T12 | 1:1 | 3.64 | 67.04 | 99.00 | 1.43 | 3.35 | |
3.8 | Mv-3-O-glc3/SI | T12 | 1:5 | 3.45 | 67.61 | 99.60 | 1.30 | 3.19 | |
3.8 | Mv-3-O-glc3/SI | T12 | 1:10 | 3.70 | 65.89 | 99.00 | 1.53 | 3.37 | |
3.8 | Mv-3-O-glc3/SI | T12 | 1:20 | 3.43 | 63.03 | 98.80 | 1.54 | 3.06 |
440/510 nm | ||||
---|---|---|---|---|
molar 1:1 | molar 1:5 | molar 1:10 | molar 1:20 | |
pH 2.8 | 2.29 ± 0.01 b | 2.40 ± 0.01 c | 2.39 ± 0.01 c | 1.89 ± 0 a |
pH 3.2 | 2.28 ± 0.01 b | 2.40 ± 0.02 c | 2.40 ± 0 c | 1.91 ± 0.05 a |
pH 3.6 | 2.28 ± 0.01 b | 2.39 ± 0 c | 2.39 ± 0.01 c | 1.89 ± 0.01 a |
pH 3.8 | 2.29 ± 0 b | 2.4 ± 0 c | 2.40 ± 0.03 c | 1.90 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, A.; Galaz-Torres, C.; Parpinello, G.P.; Demola, M.; Spiga, M.; Versari, A. The Role of Copigmentation in Colour Attributes and Their Evolution in Model Wine: A Thermodynamic and Colorimetric Study. Foods 2025, 14, 2467. https://doi.org/10.3390/foods14142467
Ricci A, Galaz-Torres C, Parpinello GP, Demola M, Spiga M, Versari A. The Role of Copigmentation in Colour Attributes and Their Evolution in Model Wine: A Thermodynamic and Colorimetric Study. Foods. 2025; 14(14):2467. https://doi.org/10.3390/foods14142467
Chicago/Turabian StyleRicci, Arianna, Cristian Galaz-Torres, Giuseppina Paola Parpinello, Miriana Demola, Marco Spiga, and Andrea Versari. 2025. "The Role of Copigmentation in Colour Attributes and Their Evolution in Model Wine: A Thermodynamic and Colorimetric Study" Foods 14, no. 14: 2467. https://doi.org/10.3390/foods14142467
APA StyleRicci, A., Galaz-Torres, C., Parpinello, G. P., Demola, M., Spiga, M., & Versari, A. (2025). The Role of Copigmentation in Colour Attributes and Their Evolution in Model Wine: A Thermodynamic and Colorimetric Study. Foods, 14(14), 2467. https://doi.org/10.3390/foods14142467