Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = conjunctive water use

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 (registering DOI) - 1 Aug 2025
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 213
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

29 pages, 2413 KiB  
Article
Effect of PPO/PEO Ratio on the Phase Behavior of Reverse Pluronics
by Alejandro Aguilar-Ramírez, César Alexsander Machado-Cervantes, Raúl Ortega-Córdova, Víctor Vladimir Amílcar Fernández-Escamilla, Yahya Rharbi, Gabriel Landázuri-Gómez, Emma Rebeca Macías-Balleza and J. Félix Armando Soltero-Martínez
Polymers 2025, 17(15), 2061; https://doi.org/10.3390/polym17152061 - 28 Jul 2025
Viewed by 294
Abstract
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved [...] Read more.
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved by varying the PPO/PEO ratio and the molecular weight, on the phase behavior of three reverse Pluronics: 10R5 [(PPO)8–(PEO)22–(PPO)8], 17R4 [(PPO)14–(PEO)24–(PPO)14] and 31R1 [(PPO)26–(PEO)7–(PPO)26]. A broad set of physical measurements, including density, sound velocity, viscosity, and surface tension, was used to characterize the physical properties of the solutions. These data were complemented by additional techniques such as direct observation, dynamic light scattering, and rheological measurements. Based on the primary measurements, molar volume, apparent adiabatic compressibility, and hydration profiles were subsequently derived. Phase diagrams were constructed for each system over concentration ranges of 0.1–90 wt.% and temperatures between 6 and 70 °C, identifying distinct regions corresponding to random networks, flower-like micelles, and micellar networks. Notably, the 31R1/water system does not form flower-like micelles, whereas both the 17R4/water and 10R5/water systems display such structures, albeit in a narrow interval, that shift toward higher concentrations and temperatures with increasing PPO/PEO ratio. Altogether, the present study provides new insights into the physicochemical behavior of reverse Pluronic systems, offering a foundation for their rational design as hydrophobic nanocarriers, either as standalone entities or in conjunction with other copolymers. Full article
(This article belongs to the Special Issue Self-Assembly of Block Copolymers and Nanoparticles)
Show Figures

Graphical abstract

22 pages, 4514 KiB  
Article
An Ab Initio Study of Aqueous Copper(I) Speciation in the Presence of Chloride
by Daniel C. M. Whynot, Christopher R. Corbeil, Darren J. W. Mercer and Cory C. Pye
Molecules 2025, 30(15), 3147; https://doi.org/10.3390/molecules30153147 - 27 Jul 2025
Viewed by 424
Abstract
The determination of multiple energy minima on complex potential energy surfaces is challenging. A systematic desymmetrization procedure was employed to find stationary points on the copper(I) + chloride + water potential energy surface using HF, MP2, and B3LYP methods in conjunction with the [...] Read more.
The determination of multiple energy minima on complex potential energy surfaces is challenging. A systematic desymmetrization procedure was employed to find stationary points on the copper(I) + chloride + water potential energy surface using HF, MP2, and B3LYP methods in conjunction with the 6-31G*, 6-31+G*, and 6-311+G* basis sets. Comparison with experimental results demonstrated that the speciation of copper(I) in the presence of chloride and water may be formulated as [CuCl(H2O)]0, [CuCl2], and [CuCl3]2−. Our results indicate that the combination of the MP2 method along with basis sets containing diffuse functions gives excellent agreement with experimental Cu-Cl distances and vibrational frequencies. Poorer results were obtained at the HF levels and/or using the 6-31G* basis set. Full article
(This article belongs to the Special Issue Influence of Solvent Molecules in Coordination Chemistry)
Show Figures

Figure 1

29 pages, 9060 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 132
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

25 pages, 1882 KiB  
Article
An Assessment of Collector-Drainage Water and Groundwater—An Application of CCME WQI Model
by Nilufar Rajabova, Vafabay Sherimbetov, Rehan Sadiq and Alaa Farouk Aboukila
Water 2025, 17(15), 2191; https://doi.org/10.3390/w17152191 - 23 Jul 2025
Viewed by 472
Abstract
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions [...] Read more.
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions by utilizing water with varying salinity levels. Moreover, establishing optimal drinking water conditions for human populations within an ecosystem can help mitigate future negative succession processes. The purpose of this study is to evaluate the quality of two distinct water sources in the Amudarya district of the Republic of Karakalpakstan, Uzbekistan: collector-drainage water and groundwater at depths of 10 to 25 m. This research is highly relevant in the context of climate change, as improper management of water salinity, particularly in collector-drainage water, may exacerbate soil salinization and degrade drinking water quality. The primary methodology of this study is as follows: The Food and Agriculture Organization of the United Nations (FAO) standard for collector-drainage water is applied, and the water quality index is assessed using the CCME WQI model. The Canadian Council of Ministers of the Environment (CCME) model is adapted to assess groundwater quality using Uzbekistan’s national drinking water quality standards. The results of two years of collected data, i.e., 2021 and 2023, show that the water quality index of collector-drainage water indicates that it has limited potential for use as secondary water for the irrigation of sensitive crops and has been classified as ‘Poor’. As a result, salinity increased by 8.33% by 2023. In contrast, groundwater quality was rated as ‘Fair’ in 2021, showing a slight deterioration by 2023. Moreover, a comparative analysis of CCME WQI values for collector-drainage and groundwater in the region, in conjunction with findings from Ethiopia, India, Iraq, and Turkey, indicates a consistent decline in water quality, primarily due to agriculture and various other anthropogenic pollution sources, underscoring the critical need for sustainable water resource management. This study highlights the need to use organic fertilizers in agriculture to protect drinking water quality, improve crop yields, and promote soil health, while reducing reliance on chemical inputs. Furthermore, adopting WQI models under changing climatic conditions can improve agricultural productivity, enhance groundwater quality, and provide better environmental monitoring systems. Full article
Show Figures

Figure 1

28 pages, 5314 KiB  
Article
Environmental Cyanide Pollution from Artisanal Gold Mining in Burkina Faso: Human Exposure Risk Analysis Based on a Conceptual Site Model
by Edmond N’Bagassi Kohio, Seyram Kossi Sossou, Hela Karoui and Hamma Yacouba
Int. J. Environ. Res. Public Health 2025, 22(7), 1125; https://doi.org/10.3390/ijerph22071125 - 16 Jul 2025
Viewed by 408
Abstract
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) [...] Read more.
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) and topsoil (0–20 cm) were analyzed using the pyridine–pyrazolone method. Data were statistically and spatially processed using SPSS version 29.0 and the Google Earth Engine in conjunction with QGIS version 3.34, respectively. A site conceptual model (SCM) was also developed, based on the literature review, field observations, and validation by multidisciplinary experts in public health, toxicology, ecotoxicology, environmental engineering, and the mining sector, through a semi-structured survey. The results showed that 9.26% of the water samples exceeded the WHO guideline (0.07 mg/L), with peaks of 1.084 mg/L in Guido and 2.42 mg/L in Galgouli. At Zougnazagmiline, the water type differences were significant (F = 64.13; p < 0.001), unlike the other sites. In the soil, 29.36% of the samples exceeded 0.5 mg/kg, with concentrations reaching 9.79 mg/kg in Galgouli. A spatial analysis revealed pollution concentrated near the mining areas but spreading to residential and agricultural zones. The validated SCM integrates pollution sources, transport mechanisms, exposure routes, and vulnerable populations, offering a structured tool for environmental monitoring and health risk assessment in cyanide-impacted mining regions. Full article
Show Figures

Figure 1

40 pages, 6079 KiB  
Article
Stream Community Metabolism and Dissolved-Oxygen Dynamics: Where Did the Oxygen Come From?
by James N. McNair and Jay R. Zuidema
Environments 2025, 12(7), 236; https://doi.org/10.3390/environments12070236 - 10 Jul 2025
Viewed by 529
Abstract
Stream metabolism is traditionally defined as the combined metabolism of all aerobic organisms in a stream. Its component processes of oxygenic photosynthesis and aerobic respiration create and consume dissolved oxygen (DO) and therefore can be measured using time series of DO concentration, solar [...] Read more.
Stream metabolism is traditionally defined as the combined metabolism of all aerobic organisms in a stream. Its component processes of oxygenic photosynthesis and aerobic respiration create and consume dissolved oxygen (DO) and therefore can be measured using time series of DO concentration, solar radiation, and water temperature, in conjunction with a model of DO dynamics that includes photosynthesis, respiration, and oxygen exchange with the atmosphere. A complication is that stream communities typically exhibit pronounced longitudinal heterogeneity in habitat type (e.g., shaded versus unshaded reaches) and species composition and abundance. The influence of a given stream reach and associated community on DO concentration propagates downstream with the current, gradually being replaced, over a transition zone, by the influence of the next downstream reach. Knowing the approximate length of this transition zone is important when estimating stream metabolism with one-station DO monitoring, since it indicates which stream reach and associated community the metabolism estimates apply to. We propose new methods for estimating the transition-zone length and for estimating the proportions of DO at a given location in a stream reach that entered the reach from upstream, from photosynthesis within the reach, and from atmospheric uptake within the reach. We also propose methods for estimating the residence-time distribution of DO present at a given stream location, and the corresponding distribution of upstream distances at which the DO entered the stream. Both distributions are approximately exponential. Thus, habitat immediately upstream of the sonde has the greatest influence on metabolism estimates with one-station monitoring, and it is therefore important to place the sonde so this habitat is representative of the study reach. Full article
Show Figures

Figure 1

16 pages, 1925 KiB  
Article
Simulation of Pb(II) and Ni(II) Adsorption in a Packed Column: Effects of Bed Height, Flow Rate, and Initial Concentration on Performance Metrics
by Candelaria Tejada-Tovar, Ángel Villabona-Ortíz, Ángel Gonzalez-Delgado, Rodrigo Ortega-Toro and Sebastián Ortega-Puente
Processes 2025, 13(7), 2141; https://doi.org/10.3390/pr13072141 - 5 Jul 2025
Viewed by 325
Abstract
Numerous studies have been conducted employing various techniques to remove pollutants from water bodies. Among these techniques, adsorption a surface phenomenon that utilises adsorbents derived from agricultural residues has shown considerable potential for the removal of contaminants such as heavy metals. However, most [...] Read more.
Numerous studies have been conducted employing various techniques to remove pollutants from water bodies. Among these techniques, adsorption a surface phenomenon that utilises adsorbents derived from agricultural residues has shown considerable potential for the removal of contaminants such as heavy metals. However, most of these investigations have been carried out at the laboratory scale, with limited efforts directed towards predicting the performance of these systems at an industrial level. Accordingly, the present study aims to model a packed bed column at industrial scale for the removal of Pb(II) and Ni(II) ions from aqueous solutions, employing biomass derived from oil palm residues as the adsorbent material. To achieve this, Aspen Adsorption was used as a modelling and simulation tool to evaluate the impact of bed height, inlet flow rate, and initial concentration through a parametric assessment. This evaluation incorporated the Freundlich, Langmuir, and Langmuir–Freundlich isotherm models in conjunction with the Linear Driving Force (LDF) kinetic model. The results indicated that the optimal operating parameters included a column height of 5 m, a flow rate of 250 m3/day, and an initial metal concentration of 5000 mg/L. Moreover, all models demonstrated removal efficiencies of up to 94.6% for both Pb(II) and Ni(II). An increase in bed height resulted in longer breakthrough and saturation times but led to a reduction in adsorption efficiency. Conversely, higher flow rates shortened these times yet enhanced efficiency. These findings underscore the potential of computational modelling tools as predictive instruments for evaluating the performance of adsorption systems at an industrial scale. Full article
(This article belongs to the Special Issue Separation Processes for Environmental Preservation)
Show Figures

Figure 1

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Cited by 1 | Viewed by 652
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

20 pages, 9463 KiB  
Article
Mechanical Property Analysis and Sulfate Ion Concentration Prediction of Mortar and Concrete Exposed to Dry–Wet Sulfate Erosion Under Continuous Bending Loads
by Yong Wen, Yuhang Li, Enze Hao, Kaiming Pan, Guoqi Han and Yang Chen
Appl. Sci. 2025, 15(13), 7345; https://doi.org/10.3390/app15137345 - 30 Jun 2025
Viewed by 207
Abstract
The objective of this study is to examine the variations in the properties of cementitious materials subjected to bending loads in conjunction with dry and wet cycles of sulfate exposure. This investigation involved applying continuous bending loads at 0%, 20%, and 40% of [...] Read more.
The objective of this study is to examine the variations in the properties of cementitious materials subjected to bending loads in conjunction with dry and wet cycles of sulfate exposure. This investigation involved applying continuous bending loads at 0%, 20%, and 40% of the ultimate bending capacity to cementitious material specimens. Furthermore, three sets of mortars and concretes with differing water–cement ratios were formulated and analyzed using X-ray diffraction, scanning electron microscopy, and compressive strength tests. The findings indicated that while the flexural strength, compressive strength, and porosity of the specimens initially increased, they ultimately declined as the cementitious materials degraded over time within the sulfate solution. Additionally, it was observed that an increase in bending load corresponded with a decrease in flexural strength, alongside a rise in the internal sulfate ion concentration. By integrating an enhanced form of Fick’s second law with chemical reaction kinetics, a transport model for sulfate ions in cement-based materials was developed under the coupling effect of bending load and sulfate exposure, utilizing Comsol Multiphysics. The simulation results, which align well with the experimental observations, exhibit an error of approximately 5% at a depth of 5 mm. Full article
Show Figures

Figure 1

21 pages, 3017 KiB  
Article
Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan
by Salar Ali, Junfeng Gao, Alamdar Hussain, Atta Rasool, Saad Abdullah and Attarad Ali
Water 2025, 17(13), 1948; https://doi.org/10.3390/w17131948 - 29 Jun 2025
Viewed by 417
Abstract
This study assesses the ecological status of alpine lotic ecosystems in Khunjerab National Park, Pakistan, situated at approximately 4000 m in the Karakoram Range along the Pakistan–China border. An integrative approach was employed, evaluating alpine stream ecosystems through benthic macroinvertebrate indices in conjunction [...] Read more.
This study assesses the ecological status of alpine lotic ecosystems in Khunjerab National Park, Pakistan, situated at approximately 4000 m in the Karakoram Range along the Pakistan–China border. An integrative approach was employed, evaluating alpine stream ecosystems through benthic macroinvertebrate indices in conjunction with physicochemical habitat parameters. Samples were gathered using kick nets and hand-picking at seventeen randomly selected sites in early spring and summer. The study recorded 710 summer taxa from 41 families and seven orders, and 1250 early spring taxa from 30 families and six orders. The abundance of macroinvertebrates increased in early spring, while taxonomic diversity increased during the summer. Statistical tests revealed a strong relationship between water quality conditions and biological features. The biotic index reached its peak in early spring, while diversity indices peaked in summer when Ephemeroptera dominated. Due to the macroinvertebrate source in early spring, the majority of EPT taxa were abundant at all alpine stream sites during early spring, except for upstream sites in summer. The indices from the biotic metric evaluation revealed low levels of natural environmental disturbance caused by humans. This research is significant in terms of natural resource conservation and health assessment based on the benthic fauna community structure in alpine streams. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 3376 KiB  
Article
A Study of Ultra-Thin Surface-Mounted MEMS Fibre-Optic Fabry–Pérot Pressure Sensors for the In Situ Monitoring of Hydrodynamic Pressure on the Hull of Large Amphibious Aircraft
by Tianyi Feng, Xi Chen, Ye Chen, Bin Wu, Fei Xu and Lingcai Huang
Photonics 2025, 12(7), 627; https://doi.org/10.3390/photonics12070627 - 20 Jun 2025
Viewed by 288
Abstract
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their [...] Read more.
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their large size, fragility, intrusiveness, limited range, frequency response limitations, accuracy issues, and low sampling frequency. Fibre-optic sensors’ small size, immunity to electromagnetic interference, and reduced susceptibility to environmental disturbances have led to their progressive development in maritime and aeronautic fields. This research proposes a novel hydrodynamic profile encapsulation method using ultra-thin surface-mounted micro-electromechanical system (MEMS) fibre-optic Fabry–Pérot pressure sensors (total thickness of 1 mm). The proposed sensor exhibits an exceptional linear response and low-temperature sensitivity in hydrostatic calibration tests and shows superior response and detection accuracy in water-entry tests of wedge-shaped bodies. This work exhibits significant potential for the in situ monitoring of hydrodynamic loads during water landing, contributing to the research of large amphibious aircraft. Furthermore, this research demonstrates, for the first time, the proposed surface-mounted pressure sensor in conjunction with a high-speed acquisition system for the in situ monitoring of hydrodynamic pressure on the hull of a large amphibious prototype. Following flight tests, the sensors remained intact throughout multiple high-speed hydrodynamic taxiing events and 12 full water landings, successfully acquiring the complete dataset. The flight test results show that this proposed pressure sensor exhibits superior robustness in extreme environments compared to traditional invasive electrical sensors and can be used for full-scale hydrodynamic load flight tests. Full article
Show Figures

Figure 1

20 pages, 6516 KiB  
Article
On Flood Detection Using Dual-Polarimetric SAR Observation
by Su-Young Kim, Yeji Lee and Sang-Eun Park
Remote Sens. 2025, 17(11), 1931; https://doi.org/10.3390/rs17111931 - 2 Jun 2025
Viewed by 512
Abstract
This study aims to elucidate the optimal exploitation of polarimetric scattering information in dual-pol SAR data. For an effective comparison of the flood detection performance between dual-pol parameters, we presented a simple fuzzy-based flood detection algorithm. Scattering characteristics of water surface and non-water [...] Read more.
This study aims to elucidate the optimal exploitation of polarimetric scattering information in dual-pol SAR data. For an effective comparison of the flood detection performance between dual-pol parameters, we presented a simple fuzzy-based flood detection algorithm. Scattering characteristics of water surface and non-water land can vary depending on the region and flood conditions. Therefore, the flood detection performance of the dual-pol parameters was evaluated across three datasets with different geographic, climatic, and land cover conditions. The results demonstrated that accurate and stable performance in the detection of inundated areas under different surface conditions can be achieved by combining water body information from dual-pol channels in a disjunctive way. It also suggests that synergy in flood detection can be expected when using polarization observation data by considering each polarimetric channel as an independent information source and combining them rather than deriving the most relevant polarization parameter. Furthermore, combining common information from two dual-pol channels in a conjunctive way could provide the most reliable SAR flood detection results with minimum false alarms from the user’s perspective. Based on these experimental results, a two-class flood classification scheme was proposed for improving the applicability of SAR remote sensing in identifying flooded areas. Full article
Show Figures

Figure 1

35 pages, 17827 KiB  
Article
Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century
by Yuqian Chen, Baozhong He, Xing Jiang, Gulinigaer Yisilayili and Zhihao Zhang
Sustainability 2025, 17(11), 5093; https://doi.org/10.3390/su17115093 - 1 Jun 2025
Viewed by 562
Abstract
Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in [...] Read more.
Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in the Karez system. However, studies on glacier changes in this region are limited, and recent data are scarce. This study utilizes annual Landsat composite images from 1990 to 2022 obtained via the Google Earth Engine (GEE). It utilizes a ratio threshold approach in conjunction with visual analysis to gather the glacier dataset specific to the Turpan–Hami region. The Open Global Glacier Model (OGGM) is used to model the flowlines and mass balance of around 300 glaciers. The study analyzes the glacier change trends, distribution characteristics, and responses to climate factors in the Turpan–Hami region over the past 30 years. Additionally, future glacier changes through the end of the century are projected using CMIP6 climate data. The findings indicate that the following: (1) From 1990 to 2022, glaciers in the research area underwent considerable retreat. The total glacier area decreased from 204.04 ± 0.887 km2 to 133.52 ± 0.742 km2, a reduction of 70.52 km2, representing a retreat rate of 34.56%. The number of glaciers also decreased from 304 in 1990 to 236 in 2022. The glacier length decreased by an average of 7.54 m·a−1, with the average mass balance at −0.34 m w.e.·a−1, indicating a long-term loss of glacier mass. (2) Future projections to 2100 indicate that under three climate scenarios, the area covered by glaciers could diminish by 89%, or 99%, or even vanish entirely. In the SSP585 scenario, glaciers are projected to nearly disappear by 2057. (3) Rising temperatures and solar radiation are the primary factors driving glacier retreat in the Turpan–Hami area. Especially under high emission scenarios, climate warming will accelerate the glacier retreat process. Full article
Show Figures

Figure 1

Back to TopTop