Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.1.1. Satellite Image Data
3.1.2. Drone Data and Measured Data
3.1.3. Climate Data
3.1.4. Other Data
3.2. Methods
3.2.1. Glacier Boundary Extraction Methods
- (1)
- Calculation of band ratios. The primary method used for extracting the glacier area involved calculating the ratio. This method effectively delineates the glacier-covered regions, including areas obscured by shadow and thin surface moraines, with a high degree of accuracy [39]. However, the method is not effective in distinguishing water bodies, so the Normalized Water Body Index (NDWI) needs to be removed subsequently. The formula is as follows:
- (2)
- Adjusting the threshold parameters and generating binary images. The ratio data obtained in the previous step are classified using a decision tree, with appropriate thresholds selected. The threshold values vary for different regions and time periods. After repeated experiments and comparisons, this study sets the ratio threshold for TM data between 1.8 and 2.2, the ratio threshold for OLI data at 1, and the water index threshold at 0.23 to obtain the initial glacier boundaries.
- (3)
- Visual interpretation. The initial glacier boundaries, derived from remote sensing images, are subject to influences such as image quality, mountain shadows, and snow cover. To enhance boundary accuracy, these boundaries are compared with the Second Glacier Inventory dataset and visually corrected using high-resolution Google Earth imagery.
3.2.2. OGGM Model
- (1)
- Glacier Length Extraction: This study uses the flowline and catchment extraction module in the OGGM [30] to extract the maximum length of glaciers (hereinafter referred to as glacier length). Figure 2 shows the module flow chart. This module is based on the algorithm proposed by Kienholz et al. [41], which derives a set of central flowlines and branch flowlines for glaciers using the “cost grid–least-cost route approach” method [41]. Compared to other glacier length extraction methods, this module can calculate multiple central flowlines for a glacier area and define a main flowline to ensure the extraction of the maximum glacier length [30,41]. Compared to other glacier length extraction methods, this module can calculate multiple central flowlines for a glacier area and define a main flowline to ensure the extraction of the maximum glacier length.
- (2)
- Calculation of Glacier Mass Balance: The mass balance for the Turpan–Hami region is calculated using the OGGM. The mass balance at a specific elevation (z) is computed using the following formula:
- (3)
- Glacier Geometrical Evolution: The evolution of glacier geometry is modeled using the flowline model in the OGGM framework. This model considers the changes in glacier geometry under multiple climate scenarios, primarily modeling variations in glacier width, mass balance, ice flux, and velocity [42]. The calculation of glacier velocity is based on Glen’s flow law [43]. During the simulation, the model incorporates factors such as glacier deformation and basal sliding and applies fluid dynamics principles to model these processes. The relevant formulas and their theoretical background are thoroughly detailed in the work of Maussion et al. [30].
3.2.3. Percentages of Area Changes
3.3. Accuracy Assessment
3.3.1. Glacier Boundary Accuracy Evaluation
- (1)
- Impact of image spatial resolution
- (2)
- Comparison with measured data
3.3.2. OGGM Accuracy Evaluation
- (1)
- Accuracy verification of glacier length modeled
- (2)
- Accuracy evaluation of modeled glacier mass balance
- (3)
- Accuracy evaluation of glacier area modeled
4. Results and Analysis
4.1. Glacier Historical Changes (1990–2022)
4.1.1. Glacier Area Change
4.1.2. Glacier Length Change
4.1.3. Glacier Mass Balance Change
4.2. Future Glacier Change Prediction (2020–2100)
4.2.1. Future Glacier Area Change
4.2.2. Future Glacier Volume Change
4.2.3. Future Glacier Mass Balance Change
4.3. Glacier–Climate Response Relationship
4.3.1. Interannual Variation of Climate Factors
4.3.2. Glacier Change and Climate Response Analysis
- (1)
- Correlation Analysis Between Glacier Area Changes and Climatic Factors
- (2)
- Multivariate Standardized Regression Analysis
5. Discussion and Conclusions
5.1. Discussion
Glacier/Region | Retreat Area (km2) | Glacier Retreat Rate (%) | Average Annual Retreat Rate (%·a−1) | Period | Reference |
---|---|---|---|---|---|
Barkol | 4.49 | 25.67 | 1.22 | 1990–2011 | [32] |
Bogurda | 72.46 | 33.58 | 1.60 | 1990–2011 | |
Bogurda | 48.73 | 30.81 | 1.66 | 1990–2015 | [60] |
Karlik | 51.08 | 32.15 | 1.46 | 1990–2015 | |
Karlik | / | 17.78 | / | 2005–2015 | [58] |
Karlik | 15.85 | 13.59 | / | 1992–2001 | [59] |
Karlik | 0.22 | 0.22 | / | 2001–2006 | |
Karlik | 21.68 | 16.08 | 0.77 | 1990–2011 | [32] |
Glaciers in Turpan | / | / | 1.98 | 2001–2011 | [63] |
Glaciers in Hami | / | / | 1.47 | 2001–2011 | |
Eastern Tianshan | 98.63 | 26.80 | 1.28 | 1990–2011 | [32] |
Eastern Tianshan | 819.00 | / | 1.58 | 2001–2021 | [63] |
5.2. Conclusions
- (1)
- Historical Glacier Changes: From 1990 to 2022, glaciers in the Turpan–Hami region experienced significant retreat. The total glacier area decreased from 204.04 ± 0.887 km2 to 133.52 ± 0.742 km2, a reduction of 70.52 km2 with an average annual reduction of 2.20 km2·a−1, corresponding to a 34.56% retreat. Meanwhile, the number of glaciers declined markedly from 304 to 236, and the total length of glacier centerlines contracted from 331.80 km to 258.47 km, with an average retreat of 7.54 m·a−1 per glacier, indicating an overall trend of glacier recession. In terms of mass balance, glaciers in the region experienced a long-term average annual loss of –0.34 m w.e.·a−1. The extent of glacier retreat was closely related to initial glacier size and geographical location. Smaller glaciers exhibited higher retreat rates, and glaciers on the northern slopes showed significantly greater area loss (36.52%) compared to those on southern slopes (32.80%), suggesting a stronger climatic sensitivity. In addition to their smaller area, the relatively low mass of small glaciers also plays a key role in this heightened sensitivity.
- (2)
- Future Glacier Change Predictions: Based on projections from GCMs, glaciers in the TH region are expected to continue retreating significantly over the next 80 years. Under the SSP126 scenario, by 2100, the total glacier area is projected to decrease by approximately 89%, from 136.01 km2 in 2020 to 14.42 km2. Under the SSP370 scenario, the total glacier area could shrink to 0.80 km2, a reduction of up to 99%. In the high-emission SSP585 scenario, the retreat rate accelerates, and glaciers are expected to nearly disappear by 2057. In all scenarios, the glacier mass balance remains consistently negative, with the retreat being most pronounced under the high-emission scenario, leading to the near-total disappearance of glacier volume. This underscores the importance of mitigation measures in slowing down glacier retreat. Regional variation reveals substantial differences in the rate of area change across subregions, with smaller glaciers experiencing more pronounced retreat, especially before 2050, when small glaciers will account for the majority of the overall area reduction.
- (3)
- Glacier Response to Climate: Glacier retreat in the Turpan–Hami region is primarily driven by long-term climate change, with temperature increase playing the dominant role. Notably, the significant rise in temperature and the increase in solar radiation have led to rapid glacier shrinkage. Ridge regression analysis (R2 = 0.4431) further confirms that melt-season temperature (–6.93), annual mean temperature (–4.93), and solar radiation (–4.46) are the strongest drivers of glacier retreat. Precipitation shows a weaker positive effect (+0.72), while its interaction with temperature (+0.14) reveals a conditional influence—contributing to glacier accumulation under cooler conditions but becoming less effective or even accelerating melting as temperatures rise. Throughout the study period, increased solar radiation also played a significant role in enhancing glacier melt. These findings highlight the high climatic sensitivity of glaciers in this region, especially to rising temperatures and intensified solar radiation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TH | Turpan–Hami Region |
GEE | Google Earth Engine |
OGGM | The Open Global Glacier Model |
RGI | Randolph Glacier Inventory |
GCM | Global Climate Model |
NDWI | Normalized Difference Water Index |
PAC | Percentages of Area Changes |
UAV | Unmanned Aerial Vehicle |
MB | Mass Balance |
DEM | Digital Elevation Model |
GSWP3 | Global Soil Wetness Project Phase 3 |
W5E5 | WATCH-WFDEI merged with ERA5 |
w.e. | Water Equivalent |
MAE | Mean Absolute Error |
Appendix A
Year | Region | Serial Number in GEE | Spatial Resolution |
1990 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_19900619 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19900511 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19900902 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19900607 | 30 m | |
1991 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_19910901 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19910717 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19910804 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19910829 | 30 m | |
1992 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_19920514 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19920905 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19920907 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19920815 | 30 m | |
1993 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_19930922 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19930519 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19930724 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19930919 | 30 m | |
1994 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_19940824 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19940826 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19940828 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19940906 | 30 m | |
1995 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_19950921 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19950525 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19950628 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19950925 | 30 m | |
1996 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_19960829 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19960527 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19960918 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19960810 | 30 m | |
1997 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_19970708 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19970903 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19970703 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19970509 | 30 m | |
1998 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_19980913 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_19980805 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_19980908 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_19980901 | 30 m | |
1999 | I | LANDSAT/LE07/C01/T1_SR/LE07_142030_19990823 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_19990901 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_19990919 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_19990811 | 30 m | |
2000 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_20000902 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20000826 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20000727 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20000922 | 30 m | |
2001 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_20010804 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20010610 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20010924 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20010824 | 30 m | |
2002 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_20020814 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20020629 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20020826 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20020928 | 30 m | |
2003 | I | LANDSAT/LE07/C01/T1_SR/LE07_142030_20030802 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_138030_20030915 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20030821 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20030915 | 30 m | |
2004 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_20040711 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20040906 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20040620 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20040816 | 30 m | |
2005 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_20050815 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20050909 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20050802 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20050811 | 30 m | |
2006 | I | LANDSAT/LE07/C01/T1_SR/LE07_143030_20060801 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20060803 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20060829 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20060814 | 30 m | |
2007 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_20070727 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20070806 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20070731 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20070801 | 30 m | |
2008 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_20080706 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20080605 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20080709 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20080811 | 30 m | |
2009 | I | LANDSAT/LT05/C01/T1_SR/LT05_142030_20090725 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20090819 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20090602 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20090713 | 30 m | |
2010 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_20100804 | 30 m |
II | LANDSAT/LT05/C01/T1_SR/LT05_141030_20100721 | 30 m | |
III | LANDSAT/LT05/C01/T1_SR/LT05_139030_20100824 | 30 m | |
IV | LANDSAT/LT05/C01/T1_SR/LT05_138030_20100902 | 30 m | |
2011 | I | LANDSAT/LT05/C01/T1_SR/LT05_143030_20110807 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20110918 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20110920 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20110711 | 30 m | |
2012 | I | LANDSAT/LE07/C01/T1_SR/LE07_143030_20120817 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20120702 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20120821 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20120814 | 30 m | |
2013 | I | LANDSAT/LE07/C01/T1_SR/LE07_142030_20130610 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20130923 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20130824 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20130902 | 30 m | |
2014 | I | LANDSAT/LE07/C01/T1_SR/LE07_143030_20140807 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20140825 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20140608 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20140804 | 30 m | |
2015 | I | LANDSAT/LE07/C01/T1_SR/LE07_143030_20150826 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20150727 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20150814 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20150823 | 30 m | |
2016 | I | LANDSAT/LE07/C01/T1_SR/LE07_142030_20160805 | 30 m |
II | LANDSAT/LE07/C01/T1_SR/LE07_141030_20160915 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20160715 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20160910 | 30 m | |
2017 | I | LANDSAT/LC08/C01/T1_SR/LC08_142030_20170901 | 30 m |
II | LANDSAT/LC08/C01/T1_SR/LC08_141030_20170926 | 30 m | |
III | LANDSAT/LC08/C01/T1_SR/LC08_139030_20170811 | 30 m | |
IV | LANDSAT/LE07/C01/T1_SR/LE07_138030_20170812 | 30 m | |
2018 | I | LANDSAT/LC08/C01/T1_SR/LC08_143030_20180725 | 30 m |
II | LANDSAT/LC08/C01/T1_SR/LC08_141030_20180727 | 30 m | |
III | LANDSAT/LE07/C01/T1_SR/LE07_139030_20180721 | 30 m | |
IV | LANDSAT/LC08/C01/T1_SR/LC08_138030_20180807 | 30 m | |
2019 | I | LANDSAT/LC08/C01/T1_SR/LC08_143030_20190813 | 30 m |
II | LANDSAT/LC08/C01/T1_SR/LC08_141030_20190730 | 30 m | |
III | LANDSAT/LC08/C01/T1_SR/LC08_139030_20190817 | 30 m | |
IV | LANDSAT/LC08/C01/T1_SR/LC08_138030_20190810 | 30 m | |
2020 | I | LANDSAT/LE07/C01/T1_SR/LE07_142030_20200731 | 30 m |
II | LANDSAT/LC08/C01/T1_SR/LC08_141030_20200801 | 30 m | |
III | LANDSAT/LC08/C01/T1_SR/LC08_139030_20200718 | 30 m | |
IV | LANDSAT/LC08/C01/T1_SR/LC08_138030_20200727 | 30 m | |
2021 | I | LANDSAT/LC08/C02/T1_L2/LC08_142030_20210912 | 30 m |
II | LANDSAT/LC08/C02/T1_L2/LC08_141030_20210905 | 30 m | |
III | LANDSAT/LC08/C02/T1_L2/LC08_139030_20210822 | 30 m | |
IV | LANDSAT/LC08/C02/T1_L2/LC08_138030_20210916 | 30 m | |
2022 | I | LANDSAT/LC08/C02/T1_L2/LC08_142030_20220814 | 30 m |
II | LANDSAT/LC08/C02/T1_L2/LC08_141030_20220908 | 30 m | |
III | LANDSAT/LC08/C02/T1_L2/LC08_139030_20220622 | 30 m | |
IV | LANDSAT/LC08/C02/T1_L2/LC08_138030_20220615 | 30 m |
References
- Dahe, Q.; Cunde, X.; Yongjian, D.; Tandong, Y.; Lingen, B.; Jiawen, R.; Ninglian, W.; Shiyin, L.; Lin, Z. Progress on cryospheric studies by international and Chinese communities and perspectives. J. Appl. Meteorol. Sci. 2006, 17, 649–656. [Google Scholar] [CrossRef]
- Ding, Y.; Xiao, C. Challenges in the study of cryospheric changes and their impacts. Adv. Earth Sci. 2013, 28, 1067. [Google Scholar] [CrossRef]
- Qin, D.; Ding, Y. Cryospheric changes and their impacts: Present, trends and key issues. Adv. Clim. Chang. Res. 2009, 5, 187–195. [Google Scholar] [CrossRef]
- Owen, L.A.; Thackray, G.; Anderson, R.S.; Briner, J.; Kaufman, D.; Roe, G.; Pfeffer, W.; Yi, C. Integrated research on mountain glaciers: Current status, priorities and future prospects. Geomorphology 2009, 103, 158–171. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S. High mountain areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 131–202. [Google Scholar] [CrossRef]
- Radić, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 2014, 42, 37–58. [Google Scholar] [CrossRef]
- Han, P.; Long, D.; Zhao, F.; Slater, L.J. Response of two glaciers in different climate settings of the Tibetan plateau to climate change through year 2100 using a hybrid modeling approach. Water Resour. Res. 2023, 59, e2022WR033618. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Mu, J.; Li, Z.; Zhang, H.; Liang, P. The global glacierized area: Current situation and recent change, based on the Randolph Glacier Inventory (RGI 6.0) published in 2017. J. Glaciol. Geocryol. 2018, 40, 238–248. [Google Scholar]
- Yan, L.; Gao, J.; Wang, J.; Hao, X. Glacier mapping based on GF-1 satellite remote sensing. J. Glaciol. Geocryol. 2020, 42, 1400–1406. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Li, Z.; Wang, F.; Li, H.; Li, Y.; Huang, X. Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960. J. Geogr. Sci. 2011, 21, 263–273. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim. Dyn. 2016, 46, 303–316. [Google Scholar] [CrossRef]
- Ye, B.; Yang, D.; Jiao, K.; Han, T.; Jin, Z.; Yang, H.; Li, Z. The Urumqi River source glacier No. 1, Tianshan, China: Changes over the past 45 years. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 044052. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Harbor, J.; Liu, G.; Yi, C.; Caffee, M.W. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China. Quat. Sci. Rev. 2016, 138, 105–118. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, C.; Zhang, X.; Xu, T.; Yan, N.; Gao, S. The environmental implications for dust in high-alpine snow and ice cores in Asian mountains. Glob. Planet. Change 2015, 124, 22–29. [Google Scholar] [CrossRef]
- Lee, X.; Qin, D.; Jiang, G.; Duan, K.; Zhou, H. Atmospheric pollution of a remote area of Tianshan Mountain: Ice core record. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Li, Y. Glacier changes and their linkage to the climate-topographic context in the Borohoro Mountains, Tian Shan 1977–2018. Water 2020, 12, 1502. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Ying, G.; Liu, F.; Long, Y. Variations in glacier runoff contributed by the increased negative mass balance over the last forty years in the Tien Shan Mountains. Water 2022, 14, 1006. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, S.; Wang, Z. Retreat and advance of modern glaciers in Bogda, Tianshan. J. Glaciol. Geocryol. 1983, 5, 143–152. [Google Scholar] [CrossRef]
- Li, K.; Li, Z.; Wang, C.; Huai, B. Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962–2006. J. Earth Sci. 2016, 27, 139–150. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, X.; Liu, S.; Zhang, D.; Xu, J. Variation of glacier length in the Altun Mountains during 1970–2016. J. Glaciol. Geocryol. 2021, 43, 49–60. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Han, H. Study on glacier mass balance in the Karlik Range, East Tianshan Mountains, 1972–2016. J. Glaciol. Geocryol. 2019, 41, 7–17. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, L.; Gao, Y.; Xiang, Y.; Mou, N.; Suo, L. An integrated method of glacier length extraction based on Gaofen satellite data. J. Glaciol. Geocryol. 2016, 38, 1615–1623. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, S.; Liu, Y. Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72–2001/02. Ann. Glaciol. 2009, 50, 39–45. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, S.; Wang, Y.; Wang, Y.; Hou, S. Recent 50-Year Glacier Mass Balance Changes over the Yellow River Source Region, Determined by Remote Sensing. Remote Sens. 2022, 14, 6286. [Google Scholar] [CrossRef]
- Engelhardt, M.; Schuler, T.V.; Andreassen, L.M. Glacier mass balance of Norway 1961-2010 calculated by a temperature-index model. Ann. Glaciol. 2013, 54, 32–40. [Google Scholar] [CrossRef]
- Maussion, F.; Butenko, A.; Champollion, N.; Dusch, M.; Eis, J.; Fourteau, K.; Gregor, P.; Jarosch, A.H.; Landmann, J.; Oesterle, F.; et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 2019, 12, 909–931. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, M.; Zhang, L.; Shao, W.; Chen, Y.; Dong, Y. Three Decades of Oasis Transition and Its Driving Factors in Turpan–Hami Basin in Xinjiang, China: A Complex Network Approach. Remote Sens. 2024, 16, 465. [Google Scholar] [CrossRef]
- Li, J.; Yang, T.; He, Y. Response of glacier retreat to climate in Eastern Tianshan from 1990–2011. Res. Soil Water Conserv. 2014, 21, 212–216. [Google Scholar] [CrossRef]
- Lange, S.; Menz, C.; Gleixner, S.; Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Schmied, H.M.; Hersbach, H.; Buontempo, C. WFDE5 over Land Merged with ERA5 over the Ocean (W5E5 v2.0); ISIMIP Repository: Lisbon, Portugal, 2021. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2022); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2020); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Wang, K. Homogeneous Grid Dataset of Chinaese Land Surface Observation (Surface Solar Radiation, Surface Wind Speed, Relative Humidity and Land Surface Evapotranspiration); National Tibetan Plateau Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Paul, F. Evaluation of different methods for glacier mapping using Landsat TM. EARSeL Eproceedings 2000, 1, 239–245. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Kienholz, C.; Rich, J.; Arendt, A.; Hock, R. A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere 2014, 8, 503–519. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Glen, J.W. The creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 228, 519–538. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Li, Z.; Wang, F.; Li, H.; Li, Y.; Huang, X. Response of glacier area variation to climate change in Chinese Tianshan Mountains in the past 50 years. Acta Geogr. Sin. 2011, 66, 38r46. [Google Scholar] [CrossRef]
- Ji, Q.; Dong, J.; Liu, R.; Xiao, Z.; Yang, T. Glacier changes in response to climate change in the Himalayas in 1990–2015. Sci. Geogr. Sin. 2020, 40, 486–496. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Zhao, X.; Guo, W.; Liu, S.; Wei, J.; Zhang, Y. Analysis of glacier changes in China from 2008 to 2018. J. Glaciol. Geocryol. 2021, 43, 976–998. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.; Konovalov, V.; Le Bris, R. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere 2014, 8, 359–376. [Google Scholar] [CrossRef]
- Yao, X.; Liu, S.; Zhu, Y.; Gong, P.; An, L.; Li, X. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. J. Glaciol. Geocryol. 2015, 37, 1563–1570. [Google Scholar]
- Zhou, S.; Yao, X.; Zhang, D.; Zhang, Y.; Liu, S.; Min, Y. Remote sensing monitoring of advancing and surging glaciers in the Tien Shan, 1990–2019. Remote Sens. 2021, 13, 1973. [Google Scholar] [CrossRef]
- Xiao, L.; Li, S.; Wu, K.; Liu, S.; Zhu, Y.; Afzal, M.M.; Zhou, J.; Yi, Y.; Wei, J.; Duan, Y. A Geodetic-Data-Calibrated Ice Flow Model to Simulate Historical and Future Response of Glaciers in Southeastern Tibetan Plateau. Remote Sens. 2024, 16, 522. [Google Scholar] [CrossRef]
- Le Bris, R.; Paul, F. An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers. Comput. Geosci. 2013, 52, 234–245. [Google Scholar] [CrossRef]
- Hagg, W.; Mayer, C.; Lambrecht, A.; Kriegel, D.; Azizov, E. Glacier changes in the big Naryn basin, Central Tian Shan. Glob. Planet. Change 2013, 110, 40–50. [Google Scholar] [CrossRef]
- Huybers, K.; Roe, G.H. Spatial patterns of glaciers in response to spatial patterns in regional climate. J. Clim. 2009, 22, 4606–4620. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, T.; Kang, S.; Shangguan, D.; Luo, X. Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth-Sci. Rev. 2021, 220, 103735. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Shen, Y.; Li, X.; Xu, J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011, 21, 1007–1018. [Google Scholar] [CrossRef]
- Huang, X.; Bao, A.; Guo, H.; Meng, F.; Zhang, P.; Zheng, G.; Yu, T.; Qi, P.; Nzabarinda, V.; Du, W. Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China. J. Arid Land 2022, 14, 502–520. [Google Scholar] [CrossRef]
- Qian, Y.; Wu, S.; Wu, Z. Changes of glacier resource in Karlik Mountain in the last 50 years and the measures of protection. Arid Land Geogr. 2011, 34, 719–725. [Google Scholar] [CrossRef]
- Huang, X.; Bao, A.; Guo, H.; Meng, F.; Zhang, P. Change of typical glaciers and its response to meteorological factors in the eastern Tianshan Mountains in China in recent 20 years. Arid Zone Res. 2017, 34, 870–880. [Google Scholar] [CrossRef]
- Xuewen, Y.; Ninglian, W.; Qian, L.; An’an, C. Glacier changes on the north slope of Tianshan Mountains in recent 60 years. Arid Land Geogr. 2023, 46, 1073–1083. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis; Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 2. [Google Scholar] [CrossRef]
- Zhuang, L.; Ke, C.; Cai, Y.; Nourani, V. Measuring glacier changes in the Tianshan Mountains over the past 20 years using Google Earth Engine and machine learning. J. Geogr. Sci. 2023, 33, 1939–1964. [Google Scholar] [CrossRef]
- Grant, K.; Rohling, E.; Bar-Matthews, M.; Ayalon, A.; Medina-Elizalde, M.; Ramsey, C.B.; Satow, C.; Roberts, A. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 2012, 491, 744–747. [Google Scholar] [CrossRef]
- Armour, K.C.; Bitz, C.M.; Thompson, L.; Hunke, E.C. Controls on Arctic sea ice from first-year and multiyear ice survivability. J. Clim. 2011, 24, 2378–2390. [Google Scholar] [CrossRef]
- Zhang, J.; Steele, M.; Schweiger, A. Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability. Geophys. Res. Lett. 2010, 37, L20505. [Google Scholar] [CrossRef]
Tag | Glacier | Date | Coverage (km2) | Flight Altitude (m) | Average Ground Sampling Distance (cm) | Number of Photos Taken (Valid Photos) |
---|---|---|---|---|---|---|
1 | Tuergan No. 1 Glacier | 13 July 2023 | 0.179 | 150 | 13.68 | 58 (58) |
2 | Tuergan No. 2 Glacier | 15 July 2023 | 0.233 | 150 | 12.25 | 110 (110) |
3 | Miaoergou No. 2 Glacier | 17 July 2023 | 0.517 | 150 | 11.09 | 266 (266) |
Model | Institute |
---|---|
GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL), USA |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M), Germany |
MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan |
IPSL-CM6A-LR | Institut Pierre-Simon Laplace (IPSL), France |
UKESM1-0-LL | UK Climate Research and Innovation, UK |
Year | Glacier Area (km2) | Area Error (km2) | (%) |
---|---|---|---|
1990 | 204.04 | 0.887 | 0.43 |
1991 | 203.72 | 0.885 | 0.43 |
1992 | 200.99 | 0.887 | 0.44 |
1993 | 198.82 | 0.872 | 0.44 |
1994 | 195.85 | 0.872 | 0.45 |
1995 | 182.74 | 0.808 | 0.44 |
1996 | 182.19 | 0.808 | 0.44 |
1997 | 175.70 | 0.795 | 0.45 |
1998 | 173.14 | 0.796 | 0.46 |
1999 | 171.87 | 0.794 | 0.46 |
2000 | 158.14 | 0.832 | 0.53 |
2001 | 155.01 | 0.827 | 0.53 |
2002 | 155.39 | 0.827 | 0.53 |
2003 | 154.86 | 0.828 | 0.53 |
2004 | 154.84 | 0.840 | 0.54 |
2005 | 147.26 | 0.800 | 0.54 |
2006 | 145.90 | 0.792 | 0.54 |
2007 | 146.06 | 0.796 | 0.54 |
2008 | 143.34 | 0.820 | 0.57 |
2009 | 141.58 | 0.802 | 0.57 |
2010 | 145.29 | 0.820 | 0.56 |
2011 | 145.24 | 0.820 | 0.56 |
2012 | 145.52 | 0.820 | 0.56 |
2013 | 145.78 | 0.819 | 0.56 |
2014 | 144.85 | 0.810 | 0.56 |
2015 | 147.32 | 0.835 | 0.57 |
2016 | 138.37 | 0.806 | 0.58 |
2017 | 128.59 | 0.764 | 0.59 |
2018 | 136.65 | 0.772 | 0.57 |
2019 | 136.92 | 0.762 | 0.56 |
2020 | 137.86 | 0.753 | 0.55 |
2021 | 135.68 | 0.747 | 0.55 |
2022 | 133.52 | 0.742 | 0.56 |
Tag | Glacier | Glacier Area Calculated from UAV Images (km2) | Glacier Area Calculated in This Article (km2) | Error (km2) |
---|---|---|---|---|
1 | Tuergan No. 1 Glacier | 0.0686 | 0.0700 | 0.0015 |
2 | Tuergan No. 2 Glacier | 0.1013 | 0.1029 | 0.0017 |
3 | Miaoergou No. 2 Glacier | 0.3633 | 0.3720 | 0.0086 |
Tag | Glacier | Glacier Actual Retreat Distance in 2022–2023 (m) | Glacier Length in the Data Set of This Article (m) | Average Annual Glacier Retreat Length (m) | |
---|---|---|---|---|---|
1990 | 2022 | ||||
1 | Tuergan No. 1 Glacier | 25.44 | 5333 | 4736 | 18.66 |
2 | Tuergan No. 2 Glacier | 9.59 | 4777 | 4546 | 7.22 |
3 | Miaoergou No. 2 Glacier | 12.23 | 4295 | 3892 | 12.59 |
Glacier Area Grade (km2) | Number of Glaciers | Glacier Area (km2) | ||||||
---|---|---|---|---|---|---|---|---|
1990 | 2022 | Loss of Contribution | Completely Disappeared Glacier | 1990 | 2022 | Loss of Contribution | Completely Disappeared Glacier Area | |
≤0.1 | 126 | 95 | −10.20% | 88 | 5.00 | 3.98 | −0.50% | 3.52 |
0.1–0.5 | 83 | 75 | −2.63% | 23 | 22.24 | 18.05 | −2.05% | 5.10 |
0.5–1 | 35 | 29 | −1.97% | 1 | 24.59 | 20.19 | −2.16% | 0.79 |
1–2 | 36 | 17 | −6.25% | 0 | 51.27 | 22.62 | −14.04% | 0 |
2–5 | 17 | 19 | 0.66% | 0 | 55.29 | 61.46 | +3.03% | 0 |
≥5 | 7 | 1 | −1.97% | 0 | 45.66 | 7.22 | −18.84% | 0 |
Sum | 304 | 236 | −22.37% | 112 | 204.04 | 133.52 | −34.56% | 9.41 |
Sub- Region | Aspect | River Basin | River Basin Area (km2) | Basin Area Proportion | Changes in the Number of Glaciers, 1990–2022 | Area Changes, 1990–2022 (km2) | Relative Change Rate, 1990–2022 | Overall Change Rate, 1990–2022 |
---|---|---|---|---|---|---|---|---|
I | North | 5Y730A | 142.86 | 1.81% | 0 | −0.70 | −68.32% | −0.34% |
South | 5Y811E | 145.31 | 1.84% | −3 | −0.15 | −100.00% | −0.07% | |
South | 5Y813A | 1106.77 | 14.01% | −5 | −2.15 | −58.89% | −1.05% | |
II | South | 5Y814A | 419.01 | 5.30% | −11 | −1.43 | −64.27% | −0.70% |
South | 5Y814B | 343.26 | 4.34% | −8 | −2.04 | −39.46% | −1.00% | |
South | 5Y814C | 288.48 | 3.65% | −9 | −4.80 | −37.10% | −2.35% | |
South | 5Y814F | 553.75 | 7.01% | −7 | −1.83 | −42.43% | −0.90% | |
South | 5Y814G | 206.84 | 2.62% | −7 | −0.31 | −92.41% | −0.15% | |
III | North | 5Y712A | 440.50 | 5.57% | −1 | −6.57 | −52.17% | −3.22% |
North | 5Y712B | 297.52 | 3.77% | −12 | −3.56 | −85.83% | −1.74% | |
North | 5Y712C | 219.17 | 2.77% | −4 | −2.12 | −75.62% | −1.04% | |
South | 5Y821A | 471.50 | 5.97% | −7 | −1.31 | −81.06% | −0.64% | |
South | 5Y821B | 332.04 | 4.20% | −4 | −2.60 | −52.37% | −1.27% | |
IV | North | 5Y711A | 448.34 | 5.67% | −3 | −7.49 | −44.72% | −3.67% |
North | 5Y711B | 339.56 | 4.30% | +3 | −7.69 | −25.82% | −3.77% | |
North | 5Y711C | 407.67 | 5.16% | +3 | −1.48 | −10.00% | −0.72% | |
North | 5Y822A | 161.30 | 2.04% | +1 | −5.73 | −38.53% | −2.81% | |
South | 5Y822B | 129.47 | 1.64% | +5 | −4.65 | −18.58% | −2.28% | |
South | 5Y822C | 550.37 | 6.97% | +3 | −6.05 | −29.05% | −2.97% | |
South | 5Y822D | 369.51 | 4.68% | 0 | −5.05 | −35.18% | −2.47% | |
South | 5Y822E | 208.53 | 2.64% | −1 | −1.93 | −22.95% | −0.95% | |
South | 5Y822F | 319.85 | 4.05% | −1 | −0.88 | −26.97% | −0.43% | |
SUM | 7901.61 | 100% | −68 | −70.52 | / | −34.56% |
Region | Glacier Mass Balance (m w.e.·a−1) | ||
---|---|---|---|
1990–2002 | 2003–2022 | 1990–2022 | |
I | −0.17 | −0.42 | −0.32 |
II | −0.28 | −0.53 | −0.43 |
III | −0.34 | −0.69 | −0.55 |
IV | +0.02 | −0.40 | −0.24 |
TH Region | −0.13 | −0.48 | −0.34 |
Climate Factor | Average Annual Temperature (°C) | Average Melt-Season Temperature (°C) | Total Precipitation (mm) | Average Annual Solar Radiation (W/m2) | Annual Maximum Solar Radiation (W/m2) |
---|---|---|---|---|---|
Correlation Coefficient | −0.51 ** | −0.58 ** | 0.35 * | −0.36 * | −0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; He, B.; Jiang, X.; Yisilayili, G.; Zhang, Z. Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century. Sustainability 2025, 17, 5093. https://doi.org/10.3390/su17115093
Chen Y, He B, Jiang X, Yisilayili G, Zhang Z. Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century. Sustainability. 2025; 17(11):5093. https://doi.org/10.3390/su17115093
Chicago/Turabian StyleChen, Yuqian, Baozhong He, Xing Jiang, Gulinigaer Yisilayili, and Zhihao Zhang. 2025. "Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century" Sustainability 17, no. 11: 5093. https://doi.org/10.3390/su17115093
APA StyleChen, Y., He, B., Jiang, X., Yisilayili, G., & Zhang, Z. (2025). Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century. Sustainability, 17(11), 5093. https://doi.org/10.3390/su17115093