Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection, Sampling, and Analysis
2.3. Calculation of Biological Indices and Statistical Analysis
3. Results
3.1. Benthic Macroinvertebrates (Abundance, Composition, Diversity, and Richness)
3.2. Relative Abundance of Benthic Macroinvertebrate Communities’ Functional Feeding Groups
3.3. Altitudinal Changes in Benthic Macroinvertebrate Community Composition and Structure
3.4. Spatial and Temporal Variation of Benthic Macroinvertebrates Indices
3.4.1. Relationships Among Macroinvertebrate Indices and Environmental Variables
3.4.2. Relationships Among Physicochemical, Biological, and Hydromorphological Variables
4. Discussion
4.1. Benthic Macroinvertebrates
4.2. Relative Abundance of Benthic Macroinvertebrate Populations and Functional Feeding Groups
4.3. Variations in the Composition and Structure of Benthic Macroinvertebrate Communities at Different Elevations
4.4. Indices of Benthic Macroinvertebrates Vary
4.4.1. Associations Between Environmental Factors and Macroinvertebrate Indicators
4.4.2. Interactions Between Biological, Hydromorphological, and Physicochemical Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, D.A.; Molineri, C.; Reynaga, M.C.; Basualdo, C. Which index is the best to assess stream health? Ecol. Indic. 2011, 11, 582–589. [Google Scholar] [CrossRef]
- Füreder, L. High alpine streams: Cold habitats for insect larvae. In Cold-Adapted Organisms; Margesin, R., Schinner, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 181–196. [Google Scholar]
- Bishop, D.L.; Prindle, S.E.; Johnson, J.H. Salmon River Wild Young-of-Year Chinook Salmon Seining Program; New York State Department of Environmental Conservation: Albany, NY, USA, 2008. [Google Scholar]
- Gomi, T.; Sidle, R.; Richardson, J. Understanding processes and downstream linkages of headwater systems. BioScience 2002, 52, 905–916. [Google Scholar] [CrossRef]
- Mani, M.S. Fundamentals of High Altitude Biology; Aspect Publications Ltd.: London, UK, 1990. [Google Scholar]
- FAO. International Year of Mountains; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000. [Google Scholar]
- Helson, J.E.; Williams, D.D. Development of a macroinvertebrate multimetric index for the assessment of lowland streams in the Neotropics. Ecol. Indic. 2013, 29, 167–178. [Google Scholar] [CrossRef]
- Ligeiro, R.; Hughes, R.M.; Kaufmann, P.R. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecol. Indic. 2013, 25, 45–57. [Google Scholar] [CrossRef]
- European Union (EU). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Union 2000, L327, 1–73. [Google Scholar]
- Mykrä, H.; Saarinen, T.; Tolkkinen, M.; McFarland, B.; Hämäläinen, H.; Marttinäki, K. Spatial and temporal variability of diatom and macroinvertebrate communities: How representative are ecological classifications within a river system? Ecol. Indic. 2012, 18, 208–217. [Google Scholar] [CrossRef]
- Baas, V.; Van der Windt, H.J.; Van Koppen, C.S.A.; Wesselink, A. Opening of the Haringvliet, a Stream of Possibilities. 2020. Available online: https://www.delta21.nl/wp-content/uploads/2020/12/GWF-Final-Consultancy-Report.pdf (accessed on 24 June 2025).
- Zampella, R.; Bunnell, J.; Laidig, K.; Procopio, N. Using multiple indicators to evaluate the ecological integrity of a coastal plain stream system. Ecol. Indic. 2006, 6, 644–663. [Google Scholar] [CrossRef]
- Muenz, T.K.; Golladay, S.W.; Vellidis, G.; Smith, L.L. Stream buffer effectiveness in an agriculturally influenced area, southwestern Georgia. J. Environ. Qual. 2006, 35, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Aazami, J.; Sari, A.E.; Abdoli, A.; Sohrabi, H.; Van den Brink, P.J. Assessment of ecological quality of the Tajan River in Iran using a multimetric macroinvertebrate index and species traits. Environ. Manag. 2015, 56, 260–269. [Google Scholar] [CrossRef]
- Snook, D.L.; Milner, A.M. The influence of glacial runoff on stream macroinvertebrate communities in the Taillon catchment, French Pyrenees. Freshw. Biol. 2001, 46, 1609–1623. [Google Scholar] [CrossRef]
- Peckarsky, B.L. Biotic interactions or abiotic limitations? A model of community structure. In Dynamics of Lotic Ecosystems; Fontaine, T.D., Bartell, S.M., Eds.; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1983; pp. 303–324. [Google Scholar]
- Pesce, S.; Margoum, C.; Montuelle, B. In situ relationship between spatiotemporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res. 2010, 44, 1941–1949. [Google Scholar] [CrossRef]
- Parsons, P.J.; Board, J.; Faggiani, D.; Hitchcock, P.B.; Preece, L.; Waters, A.J. Model studies for the synthesis of the antibiotic lactonamycin and the discovery of new reactions and mechanisms for the construction of substituted heterocycles. Tetrahedron 2010, 66, 6526–6533. [Google Scholar] [CrossRef]
- Cummins, K.W.; Merritt, R.W.; Andrade, P.C.N. The use of macroinvertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud. Neotrop. Fauna Environ. 2005, 40, 69–89. [Google Scholar] [CrossRef]
- Nicola, G.G.; Almodóvar, A.; Elvira, B. Effects of environmental factors and predation on benthic communities in headwater streams. Aquat. Sci. 2010, 72, 419–429. [Google Scholar] [CrossRef]
- Ruegg, J.; Robinson, C.T. Comparison of macroinvertebrate assemblages of permanent and temporary streams in an alpine floodplain, Switzerland. Arch. Hydrobiol. 2004, 161, 489–510. [Google Scholar] [CrossRef]
- Lencioni, V.; Marziali, L.; Rossaro, B. Chironomids as bioindicators of environmental quality in mountain springs. Freshw. Sci. 2012, 31, 525–541. [Google Scholar] [CrossRef]
- Knudsen, A. State intervention and community protest: Nature conservation in Hunza, North Pakistan. In Asian Perceptions of Nature: A Critical Approach; Kreutzmann, H., Ed.; Routledge: London, UK, 1995. [Google Scholar]
- Cottam, G.; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 1956, 37, 451–460. [Google Scholar] [CrossRef]
- Plafkin, J.L.; Barbour, M.T.; Porter, K.D.; Gross, S.K.; Hughes, R.M. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish; U.S. Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Silveira, M.P. Aplicação do Biomonitoramento para Avaliação da Qualidade da Águaem Rios; EmbrapaMeioAmbiente: Jaguariúna, Brazil, 2004. [Google Scholar]
- Fernandez, M.P.; Noguerol, T.N.; Lacorte, S.; Buchanan, I.; Piña, B. Toxicity identification fractionation of environmental estrogens in wastewater and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay. Anal. Bioanal. Chem. 2009, 394, 957–968. [Google Scholar] [CrossRef]
- Ginebreda, A.; Muñoz, I.; López de Alda, M.; Brix, R.; López-Doval, J.; Barceló, D. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ. Int. 2010, 36, 153–162. [Google Scholar] [CrossRef]
- Friedrich, G.; Chapman, D.; Beim, A. The use of biological material in water quality assessments: A guide to the use of biota, sediments and water in environmental monitoring. In Water Quality Assessments—A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; Chapman, D., Ed.; E & FN Spon: New York, NY, USA, 1996. [Google Scholar]
- Mettee, M.F.; O’Neil, P.E.; Pierson, J.M. Fishes of Alabama and the Mobile Basin; Oxmoor House: Birmingham, AL, USA, 1996. [Google Scholar]
- Verneaux, J.; Galmiche, P.; Janier, F.; Monnot, A. Une nouvelle méthode pratique d’évaluation de la qualité des eauxcourantes. Un indicebiologique de qualitégénérale (IBG). Ann. Sci. Univ. Franche-Comté Besançon Biol. Anim. 1982, 4, 11–21. [Google Scholar]
- Hynes, K.E. Benthic Macroinvertebrate Diversity and Biotic Indices for Monitoring of 5 Urban and Urbanizing Lakes Within the Halifax Regional Municipality (HRM), Nova Scotia, Canada; Soil & Water Conservation Society of Metro Halifax: Halifax, NS, Canada, 1998; Volume 14, p. 114. [Google Scholar]
- Mackie, G.L. Applied Aquatic Ecosystem Concepts, 1st ed.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2001; Volume 17, p. 744. ISBN 0-7872-7490-9. [Google Scholar]
- North Carolina Department of Environment, Health, and Natural Resources (NCDEHNR). Standard Operating Procedures for Biological Monitoring; Environmental Sciences Branch Biological Assessment Group, Division of Water Quality, Water Quality Section: Raleigh, NC, USA, 1997.
- Hilsenhoff, W.L. Using a Biotic Index to Evaluate Water Quality in Streams; Wisconsin Department of Natural Resources: Madison, WI, USA, 1982; Volume 132. [Google Scholar]
- Sharma, S.; Moog, O. The applicability of biotic indices and scores in water quality assessment of Nepalese rivers. In Proceedings of the Ecohydrology Conference on High Mountain Areas, Kathmandu, Nepal, 24–28 March 1996; pp. 641–657. [Google Scholar]
- Merritt, R.W.; Cummins, K.W. Trophic relations of macroinvertebrates. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 453–474. [Google Scholar]
- Krebs, C.J. The Experimental Analysis of Distribution and Abundance, Ecology, 4th ed.; HarperCollins College Publishers: New York, NY, USA, 1994; pp. 514–541. [Google Scholar]
- Gerritsen, J.; Carlson, R.E.; Dycus, D.L.; Faulkner, C.; Gibson, G.R.; Harcum, J.; Markowitz, S.A. Lake and Reservoir Bioassessment and Biocriteria: Technical Guidance Document; EPA 841-B-98-007; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1998. [Google Scholar]
- Margalef, D.R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Van Sickle, J.; Baker, J.; Herlihy, A.; Bayley, P.; Gregory, S.; Haggerty, P. Projecting the biological condition of streams under alternative scenarios of human land use. Ecol. Appl. 2004, 14, 368–380. [Google Scholar] [CrossRef]
- Hooda, P.S.; Moynagh, M.; Svoboda, I.F.; Miller, A. Macroinvertebrates as bioindicators of water pollution in streams draining dairy farming catchments. Chem. Ecol. 2000, 17, 17–30. [Google Scholar] [CrossRef]
- Menetrey, N.; Oertli, B.; Sartori, M.; Wagner, A.; Lachavanne, J.B. Eutrophication: Are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia 2008, 597, 125–135. [Google Scholar] [CrossRef]
- Weiss, S.; Stradner, D.; Graf, W. Molecular systematics, evolution and zoogeography of the stonefly genus Siphonoperla (Insecta: Trichoptera, Chloroperlidae). J. Zool. Syst. Evol. Res. 2012, 50, 19–29. [Google Scholar] [CrossRef]
- Krno, I.J. Impact of human activities on stonefly (Insecta, Trichoptera) ecological metrics in the Hron River (Slovakia). Biologia 2007, 62, 446–457. [Google Scholar] [CrossRef]
- Kruitbos, L.M.; Tetzlaff, D.; Soulsby, C.; Buttle, J.; Carey, S.K.; Laudon, H.; Shanley, J. Hydro-climatic and hydrochemical controls on Trichoptera diversity and distribution in northern freshwater ecosystems. Hydrobiologia 2012, 693, 39–53. [Google Scholar] [CrossRef]
- García-Roger, E.M.; Sánchez-Montoya, M.M.; Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.R.; Latron, J.; Prat, N. Do seasonal changes in habitat features influence aquatic macroinvertebrate assemblages in perennial versus temporary Mediterranean streams? Aquat. Sci. 2011, 73, 567–579. [Google Scholar] [CrossRef]
- Suhaila, A.H.; Che Salmah, M.R.; Al-Shami, S.A. Temporal distribution of Ephemeroptera, Plecoptera and Trichoptera (EPT) adults at a tropical forest stream: Response to seasonal variations. Environmentalist 2012, 32, 46–52. [Google Scholar] [CrossRef]
- Brooks, R.T. Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (“vernal”) ponds in central Massachusetts, USA. Wetlands 2000, 20, 707–715. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; Resh, V.H.; King, R.S. An Introduction to the Aquatic Insects of North America; Kendall Hunt Publishing: Dubuque, IA, USA, 2008. [Google Scholar]
- Tubić, B.; Andjus, S.; Zorić, K.; Vasiljević, B.; Jovičić, K.; Čanak Atlagić, J.; Paunović, M. Aquatic insects (Ephemeroptera, Plecoptera and Trichoptera) metric as an important tool in water quality assessment in hilly and mountain streams. Water 2024, 16, 849. [Google Scholar] [CrossRef]
- Eggermont, H.; Heiri, O. The chironomid–temperature relationship: Expression in nature and palaeoenvironmental implications. Biol. Rev. 2012, 87, 430–456. [Google Scholar] [CrossRef] [PubMed]
- Nicacio, G.; Juen, L.; Leather, S.R. Chironomids as indicators in freshwater ecosystems: An assessment of the literature. Insect Conserv. Divers. 2015, 8, 393–403. [Google Scholar] [CrossRef]
- Anadu, D.I.; Akpan, A.W. A survey of the functional feeding groups in Delimi River, in Jos, Plateau State, Nigeria. Nig. J. Appl. Fish. Hydrobio 1986, 1, 25–31. [Google Scholar]
- Dobson, M.; Magana, A.; Mathooko, J.M.; Ndegwa, F.K. Detritivores in Kenyan highland streams: More evidence for the paucity of shredders in the tropics? Freshw. Biol. 2002, 47, 909–919. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Pizzolon, L.A. Distribution of macroinvertebrate assemblages in the Azul-Quemquemtreu river basin, Patagonia, Argentina. N. Z. J. Mar. Freshw. Res. 2003, 37, 525–539. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Arimoro, F.O. Macroinvertebrates functional feeding groups in River Orogodo, a second order stream in southern Nigeria. Nigerian J. Environ. Sci. 2007, 6, 45–57. [Google Scholar]
- Vannote, R.L.; Sweeney, B.W. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 1980, 115, 667–695. [Google Scholar] [CrossRef]
- Gerrish, N.; Bristow, J.M. Macroinvertebrate associations with aquatic macrophytes and artificial substrates. J. Great Lakes Res. 1979, 5, 69–71. [Google Scholar] [CrossRef]
- Chilton, E.W. Macroinvertebrate communities associated with three aquatic macrophytes in Lake Onalaska, Wisconsin. J. Freshw. Ecol. 1990, 5, 455–466. [Google Scholar] [CrossRef]
- Barton, D.R.; Taylor, W.D.; Biette, R.M. Dimensions of riparian buffer strips required to maintain trout habitat in southern Ontario streams. N. Am. J. Fish. Manag. 1985, 5, 364–378. [Google Scholar] [CrossRef]
- Turunen, J.; Snåre, H. Isolated by lakes: The influence of connectivity on benthic macroinvertebrate community structure in river and lake connected streams. Aquat. Sci. 2025, 87, 42. [Google Scholar] [CrossRef]
- Hynes, H.B.N. The Ecology of Running Waters; Liverpool University Press: Liverpool, UK, 1970; p. 555. [Google Scholar]
- Allan, J.D. Stream Ecology: Structure and Function of Running Waters; Chapman and Hall: New York, NY, USA, 1995; p. 388. [Google Scholar]
- Ali, S.; Gao, J.; Begum, F.; Rasool, A.; Ismail, M.; Cai, Y.; Ali, S. Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 4685–4698. [Google Scholar] [CrossRef] [PubMed]
- De Walt, R.E.; Favret, C.; Webb, D.W. Just how imperiled are aquatic insects? A case study of stoneflies (Trichoptera) in Illinois. Ann. Entomol. Soc. Am. 2005, 98, 941–950. [Google Scholar] [CrossRef]
- Mico, C.; Recatala, L.; Peris, M.; Sanchez, J. Assessing heavy metal sources in agricultural soils of European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Danielsson, A.; Cato, I.; Carman, R.; Rahm, L. Spatial clustering of metals in the sediments of the Skagerrak/Kattegat. Appl. Geochem. 1999, 14, 689–706. [Google Scholar] [CrossRef]
- Chen, K.; Jiao, J.J.; Huang, J.; Huang, R. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ. Pollut. 2007, 147, 771–780. [Google Scholar] [CrossRef]
- Sharma, R.C.; Rawat, J.S. Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: A case study in the central Himalayas, India. Ecol. Indic. 2009, 9, 118–128. [Google Scholar] [CrossRef]
- Brewin, P.A.; Buckton, S.T.; Ormerod, S.J. The seasonal dynamics and persistence of stream macroinvertebrates in Nepal: Do monsoon floods represent disturbance? Freshw. Biol. 2000, 44, 581–594. [Google Scholar] [CrossRef]
- Hynes, H.B.N. Biology of Plecoptera. Annu. Rev. Entomol. 1976, 21, 135–153. [Google Scholar] [CrossRef]
- Leunda, P.M.; Oscoz, J.; Miranda, R.; Ariño, A.H. Longitudinal and seasonal variation of the benthic macroinvertebrate community and biotic indices in an undisturbed Pyrenean river. Ecol. Indic. 2009, 9, 52–63. [Google Scholar] [CrossRef]
- Joshi, P.C.; Negi, R.K.; Negi, T. Seasonal variation in benthic macroinvertebrates and their correlation with the environmental variables in a freshwater stream in Garhwal region (India). Life Sci. J. 2007, 4, 85–89. [Google Scholar]
- Alam, A.; Baig, J.; Din, U.S.; Arshad, A.; Adnan, A.; Khan, A. Relative abundance of benthic macroinvertebrates in relation to abiotic environment in Hussainabad Nallah, Hunza, Gilgit Baltistan, Pakistan. Int. J. Biosci. 2016, 9, 185–193. [Google Scholar]
- Nautiyal, P.; Shivam, A.; Rawat, G.; Singh, K.R.; Verma, J.; Dwivedi, A.C. Longitudinal variation in the structure of benthic communities in the upland Vindhyan and Himalayan: River continuum concept approach. Natl. J. Life Sci. 2004, 1, 85–88. [Google Scholar]
- Kahlown, M.A.; Ashraf, M.; Hussain, M.; Salam, H.A.; Bhatti, A.Z. Impact Assessment of Sewerage and Industrial Effluents on Water Resources, Soil, Crops and Human Health in Faisalabad; Pakistan Council of Research in Water Resources: Islamabad, Pakistan, 2006; Khyaban-e-Johar, H-8/1. [Google Scholar]
- Nickson, R.; McArthur, J.; Shrestha, B.; Kyaw-Myint, T.; Lowry, D. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl. Geochem. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Rasool, A.; Xiao, T.; Farooqi, A.; Shafeeque, M.; Masood, S.; Ali, S.; Fahad, S.; Nasim, W. Arsenic and heavy metal contaminations in the tube well water of Punjab, Pakistan and risk assessment: A case study. Ecol. Eng. 2016, 95, 90–100. [Google Scholar] [CrossRef]
- Rasool, A.; Farooqi, A.; Masood, S.; Hussain, K. Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2015, 22, 187–202. [Google Scholar] [CrossRef]
- Bityukova, L.; Petersell, V. Chemical composition of bottled mineral waters in Estonia. J. Geochem. Explor. 2010, 107, 238–244. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Bhattacharya, P.; Hasan, M.A. Arsenic contamination in groundwater of alluvial aquifers in Bangladesh: An overview. Appl. Geochem. 2004, 19, 181–200. [Google Scholar] [CrossRef]
- Harvey, C.F.; Swartz, C.H.; Badruzzaman, A.B.M.; Keon-Blute, N.; Yu, W.; Ali, M.A. Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Stüben, D.; Berner, Z.; Chandrasekharam, D.; Karmakar, J. Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. Appl. Geochem. 2003, 18, 1417–1434. [Google Scholar] [CrossRef]
- Hasan, M.A.; Ahmed, K.M.; Sracek, O.; Bhattacharya, P.; Von Bromssen, M.; Broms, S. Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. J. Hydrogeol. 2007, 15, 1507–1522. [Google Scholar] [CrossRef]
- Khan, S.; Rehman, S.; Khan, A.Z.; Khan, M.A.; Shah, M.T. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf. 2010, 73, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Q.; Liu, Y.; Wu, J.; Yu, M. Application of multivariate statistical techniques in the assessment of water quality in the southwest new territories and Kowloon, Hong Kong. Environ. Monit. Assess. 2011, 173, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Alberta Environment. Surface Water Quality Guidelines for Use in Alberta; Environmental Sciences Division, Alberta Environment: Edmonton, Alberta, 1999; p. 20. [Google Scholar]
- Sweeney, B.W. Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North America. Proc. Acad. Nat. Sci. USA 1993, 145, 291–340. [Google Scholar]
- Biggs, B.J.; Jowett, I.G.; Quinn, J.M.; Hickey, C.W.; Davies-Colley, R.J.; Close, M. Ecological characterization, classification, and modeling of New Zealand rivers: An introduction and synthesis. N. Z. J. Mar. Freshwater Res. 1990, 24, 277–304. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Schnack, J.A. Egg development, growth, and metabolism of Sigaraalternata (Say) (Hemiptera: Corixidae) in fluctuating thermal environments. Ecology 1977, 58, 265–277. [Google Scholar] [CrossRef]
- Angelier, E. Ecology of Streams and Rivers; Science Publishers Inc.: Enfield, USA, 2003; p. 215. [Google Scholar]
- Coutant, C.C. The effect of a heated water effluent upon the macroinvertebrate riffle fauna of the Delaware River. Proc. Penn. Acad. Sci. 1962, 36, 58–71. [Google Scholar]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Yuan, L.L. Assigning macroinvertebrate tolerance classifications using generalized additive models. Freshw. Biol. 2004, 49, 662–677. [Google Scholar] [CrossRef]
- Thomsen, A.G.; Friberg, N. Growth and emergence of the stonefly Leuctra nigra in coniferous forest streams with contrasting pH. Freshw. Biol. 2002, 47, 1159–1172. [Google Scholar] [CrossRef]
- Ramsey, D.L.; Brannon, D.G. Predicted acid mine drainage impacts to the Buckhannon River, WV, USA. Water Air Soil Pollut. 1988, 39, 1–14. [Google Scholar] [CrossRef]
- Clements, W.H. Benthic invertebrate community responses to heavy metals in the upper Arkansas River basin, Colorado. J. N. Am. Benthol. Soc. 1994, 13, 30–44. [Google Scholar] [CrossRef]
- Peiffer, S.; Beierkuhnlein, C.; Sandhage-Hofmann, A.; Kaupenjohann, M.; Bar, S. Impact of high aluminum loading on a small catchment area (Thuringia slate mining area)—Geochemical transformations and hydrological transport. Water Air Soil Pollut. 1997, 94, 401–416. [Google Scholar] [CrossRef]
- Dorji, K. Utility of an Existing Biotic Score Method in Assessing the Stream Health in Bhutan. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2016. [Google Scholar]
- Grab, S. Spatiotemporal attributes of water temperature and macroinvertebrate assemblages in the headwaters of the Bushmans River, southern Drakensberg. Water SA 2014, 40, 19–26. [Google Scholar] [CrossRef]
- LEO EnviroSci Inquiry. Educator’s Guide; Lehigh Environmental Initiative at Lehigh University: Bethlehem, PA, USA, 2015. [Google Scholar]
- Kefford, B.J. The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. Int. J. Salt Lake Res. 1998, 8, 153–170. [Google Scholar] [CrossRef]
- Souto, R.M.G.; Facure, K.G.; Pavanin, L.A.; Jacobucci, G.B. Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats, central Brazil. Acta Limnol. Bras. 2011, 23. [Google Scholar] [CrossRef]
- Pond, G.J.; Passmore, M.E.; Borsuk, F.A.; Reynolds, L.; Rose, C.J. Downstream effects of mountaintop coal mining: Comparing biological conditions using family- and genus-level macroinvertebrate bio-assessment tools. J. N. Am. Benthol. Soc. 2008, 27, 717–737. [Google Scholar] [CrossRef]
- Bouchard, R.W. Guide to Aquatic Macroinvertebrates of the Upper Midwest; University of Minnesota, Water Resources Center: St. Paul, MN, USA, 2004. [Google Scholar]
- Hartmann, A. Keys to the Families of European Aquatic Insects; Freshwater Biological Association: Ambleside, UK, 2007. [Google Scholar]
- NSDWQ. National Standards for Drinking Water Quality; Pakistan Environmental Protection Agency, Ministry of Environment: Islamabad, Pakistan, 2008.
Locations | River Width/m | Boulders/% | Cobbles/% | Pebbles/% | Vegetation/% | Elevation/m | PSI Scores | PSI Results | M.inv.Abn |
---|---|---|---|---|---|---|---|---|---|
L1 | 0 | 0 | 0 | 0 | 0 | 4662.9 | 0 | 0 | 0 |
L2 | 3 | 50 | 30 | 20 | 20 | 4147.58 | 80 | Fair | 60 |
L3 | 2 | 30 | 40 | 30 | 35 | 4071.85 | 89 | Fair | 102 |
L4 | 1.5 | 5 | 60 | 35 | 28 | 4053.9 | 92 | Fair | 78 |
L5 | 5.5 | 5 | 60 | 35 | 10 | 3927.65 | 110 | Fair | 46 |
L6 | 3 | 20 | 40 | 40 | 33 | 3751.47 | 104 | Fair | 85 |
L7 | 5 | 20 | 30 | 50 | 32 | 3610.04 | 119 | Fair | 74 |
L8 | 3 | 15 | 30 | 55 | 12 | 3536.19 | 68 | Poor | 29 |
L9 | 4 | 5 | 35 | 60 | 60 | 3347.73 | 65 | Good | 147 |
L10 | 7 | 5 | 40 | 55 | 32 | 3307.7 | 102 | Fair | 77 |
L11 | 10 | 40 | 40 | 20 | 50 | 3321.24 | 71 | Good | 141 |
L12 | 11 | 5 | 45 | 50 | 30 | 3158.08 | 112 | Fair | 73 |
L13 | 1 | 2 | 28 | 70 | 25 | 3039 | 82 | Fair | 64 |
L14 | 3 | 2 | 30 | 68 | 40 | 2987.93 | 107 | Fair | 107 |
L15 | 11 | 3 | 30 | 67 | 30 | 2849.67 | 98 | Fair | 85 |
L16 | 6 | 10 | 30 | 60 | 15 | 2824.29 | 111 | Fair | 53 |
L17 | 20 | 5 | 30 | 65 | 7 | 2786.58 | 79 | Fair | 29 |
>4000 m | <4000 m | <3000 m |
---|---|---|
Baetidae | Nemouridae | Baetidae: Acentrella |
Capniidae | Baetidae: Baetiella | Baetidae: Baetiella |
Chironomidae | Baetidae: Baetiella, Acentrella | Baetidae: Baetis |
Chloroperlidae | Baetidae: Baetiella: Baetis | Blephariceridae: Blepharicera |
Ceratopogonidae: Dasyhelea sp. | Baetidae: Cloeoninae | Brachycentridae: Braychycentrus |
Dryopidae | Calamotoceridae: Anisocentropus | Calamotoceridae: Anisocentropus |
Elmidae: Zaitzevia | Capniidae | Capniidae |
Elmidae: Grouvellinus | Chironomidae | Chironomidae |
Heptageniidae: Iron | Chloroperlidae | Chloroperlidae |
Heteroptera: Notonectidae | Elmidae: Zaitzevia | Corduliidae |
Nemouridae | Empididae | Dolichopodidae |
Heptageniidae: Epeorus | Ephemerellidae: Drunella | Ephemerellidae: Drunella |
Simuliidae: Simuliumvenustum | Ephemeridae: Ephemera | Ephemeridae: Ephemera |
Hydropsychidae | Glossosomatidae: Glossosomatinae | |
Gyrinidae | Gyrinidae | |
Taeniopterygidae | Heptageniidae: Iron | Heptageniidae |
Heptageniidae: Epeorus | Heptageniidae: Iron | |
Heptageniidae: Rhithrogena | Heptageniidae: Epeorus | |
Isonychidae | Heptageniidae: Rhithrogena | |
Leuctridae | Lepidosomatidae: Lepidostoma | |
Limnephilidae | Leptophlebiidae | |
Nemouridae | Limnephilidae | |
Oligoneuriidae | Nemouridae | |
Osmylidae: Kempynus sp. | Oligoneuriidae | |
Perlidae | Peltoperlidae | |
Perlodidae | Philopotamidae | |
Philopotamidae | Psychomyiidae | |
Rhyacophilidae: Himalopsyche | ||
Rhyacophilidae: Rhyacophila | Rhyacophilidae: Himalopsyche | |
Simuliidae: Simuliumvenustum | Rhyacophilidae: Rhyacophila | |
Staphylinidae | Simuliidae: Simuliumvenustum | |
Stenopsychidae | ||
Taeniopterygidae | ||
Tipulidae |
Category | BMWP_1-D | ASPT_1-D | NEPBIOS_1-D | EPT_1-D | Family Biotic_1-D |
---|---|---|---|---|---|
EWQ | L2–L7,L9–L16 | L5,L7,L9–L12,L14–L17 | |||
L1,L2,L3,L5,L6,L7,L9,L11,L13,L14 | L1,L2,L3,L6,L7,L8,L10,L11,L12,L13,L14,L15 | ||||
CWQ | L4–L7,L9–L12,L14–L16,L17 (I) | ||||
L1,L2,L6,L7,L10,L11, L14,L15 | |||||
GWQ | L11,L7,L15 | L11,L13,L14 (II), L17 (I–II) | L2(V.G), L3,L4,L6,L13 (PSOP) | ||
L7,L14,L9 | L4,L9,L10,L11,L13,L14,L15 (II) | L4,L5,L9 | |||
DWQ | L3,L13 | ||||
L4,L3,L5,L9,L12,L13 | |||||
MWQ | L3–L6,L9–L10,L12,L14,L16,L17 | L2,L8 (III), L9 (II–III) | |||
L3,L5,L6,L10,L11,L13,L15 | L1,L2,L3,L6,L7 (II–III) | ||||
FWQ | L8,L10,L17 | L8 | |||
L4,L10,L12,L15 | L8 | ||||
PWQ | L2,L8,L13 | L8 (PMP) | |||
L1,L2,L4,L12,L8 | L8 | L8 | L8 |
EPT_I | ASPT_I | BMWP_ID | NEPBIOS | FBI | Simpson | Shannon | Evenness | Margalef | Fisher_a | Berger-P | Equitability | Dominance | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EPT index | 1 | ||||||||||||
ASPT index | 0.0004 ** | 1 | |||||||||||
BMWP index | 0.021 * | 0.002 ** | 1 | ||||||||||
NEPBIOS index | 0.113 | 0.087 | 0.001 ** | 1 | |||||||||
Family Biotic_1-D | 0.263 | 0.097 | 0.211 | 0.367 | 1 | ||||||||
Simpson_1-D | 0.028 | 0.014 | 0.0001 | 0.071 | 0.462 | 1 | |||||||
Shannon_H | 0.034 * | 0.024 * | 0.0001 ** | 0.018 * | 0.268 | 0.0001 ** | 1 | ||||||
Evenness_e^H/S | 0.219 | 0.147 | 0.26 | 0.21 | 0.091 | 0.068 | 0.386 | 1 | |||||
Margalef index | 0.239 | 0.2 | 0.0001 ** | 0.003 ** | 0.083 | 0.0001 ** | 0.0001 ** | 0.029 * | 1 | ||||
Fisher_alpha | 0.491 | 0.265 | 0.0001 ** | 0.002 ** | 0.071 | 0.0001 ** | 0.0001 ** | 0.069 | 0.0001 ** | 1 | |||
Berger–Parker | 0.192 | 0.129 | 0.002 ** | 0.498 | 0.197 | 0.0001 ** | 0.0001 ** | 0.188 | 0.027 * | 0.044 * | 1 | ||
Equitability_J | 0.177 | 0.01 * | 0.021 * | 0.274 | 0.226 | 0.0001 ** | 0.0003 ** | 0.0001 ** | 0.207 | 0.1789 | 0.0001 ** | 1 | |
Dominance_d | 0.193 | 0.123 | 0.0003 ** | 0.314 | 0.142 | 0.0001 ** | 0.0001 ** | 0.306 | 0.005 ** | 0.009 ** | 0.0001 ** | 0.0005 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Gao, J.; Hussain, A.; Rasool, A.; Abdullah, S.; Ali, A. Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan. Water 2025, 17, 1948. https://doi.org/10.3390/w17131948
Ali S, Gao J, Hussain A, Rasool A, Abdullah S, Ali A. Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan. Water. 2025; 17(13):1948. https://doi.org/10.3390/w17131948
Chicago/Turabian StyleAli, Salar, Junfeng Gao, Alamdar Hussain, Atta Rasool, Saad Abdullah, and Attarad Ali. 2025. "Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan" Water 17, no. 13: 1948. https://doi.org/10.3390/w17131948
APA StyleAli, S., Gao, J., Hussain, A., Rasool, A., Abdullah, S., & Ali, A. (2025). Ecological Integrity Assessment of Alpine Lotic Ecosystems: A Case Study of a High-Altitude National Park in Northern Pakistan. Water, 17(13), 1948. https://doi.org/10.3390/w17131948