Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = confocal sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 61402 KB  
Article
Low-Cost Spinning Disk Confocal Microscopy with a 25-Megapixel Camera
by Guy M. Hagen, Brian Lewis, Summer Levis, Joseph R. Hamilton and Tristan C. Paul
Sensors 2025, 25(23), 7183; https://doi.org/10.3390/s25237183 - 25 Nov 2025
Viewed by 684
Abstract
Spinning disk confocal microscopy enables fast optical sectioning with low phototoxicity but is often inaccessible due to high hardware costs. We present a lower-cost solution using a 25-megapixel machine vision CMOS camera and a custom-built spinning disk. This camera uses a back-illuminated sensor [...] Read more.
Spinning disk confocal microscopy enables fast optical sectioning with low phototoxicity but is often inaccessible due to high hardware costs. We present a lower-cost solution using a 25-megapixel machine vision CMOS camera and a custom-built spinning disk. This camera uses a back-illuminated sensor with high quantum efficiency and low read noise. High-resolution images of Thy1-GFP mouse brain slices, Drosophila embryos and larvae, and H&E-stained rat testis verified performance across 3D tissue volumes. The measured resolution was 215.8 nm in X, Y and 521.9 nm in Z with a 60×/1.42 NA objective. The custom disk, made with 18 µm pinholes (180 µm pitch) on a chrome photomask and mounted to an optical chopper motor, enables stable, near-telecentric imaging at lower magnifications. Micromanager software integration allows synchronized control of all hardware, which demonstrates that affordable CMOS sensors can potentially replace sCMOS in spinning disk microscopy, offering an open-access, scalable solution for advanced imaging. Full article
(This article belongs to the Special Issue Advanced Biomedical Imaging and Signal Processing)
Show Figures

Figure 1

16 pages, 3676 KB  
Article
Measurement of Form and Position Error of Small-Diameter Deep Holes Based on Collaboration Between a Lateral Confocal Displacement Sensor and Helical Scanning
by Yao Liu, Daguo Yu, Huifu Du and Tong Chen
Sensors 2025, 25(22), 6863; https://doi.org/10.3390/s25226863 - 10 Nov 2025
Viewed by 409
Abstract
In this study, an innovative measurement method integrating lateral confocal technology and composite motion control is proposed to address the physical space constraints and data processing problems in the detection of the shape and position errors in deep holes with large aspect ratios [...] Read more.
In this study, an innovative measurement method integrating lateral confocal technology and composite motion control is proposed to address the physical space constraints and data processing problems in the detection of the shape and position errors in deep holes with large aspect ratios and small diameters. By designing a lateral confocal displacement sensor and a cantilever measuring device, we break through the spatial constraints of 6 mm deep-hole inspection and solve the problems of rigidity and surface damage in the traditional contact probe. We constructed an axis-rotation coordinated motion control model and found that the measuring points were densely arranged in a helical trajectory along the inner wall of the hole. We developed the “virtual slicing–B-spline reconstruction” algorithm and used the adaptive motion control algorithm to achieve a more efficient measurement of the hole. The innovative “virtual slicing–B-spline reconstruction” algorithm, using adaptive grouping, dynamic slicing, and a fourth-order B-spline-fitting hierarchical processing framework, reached a straightness error assessment result of the 1 μm order. Experiments show that, under 0.5 mms feed rate and 12 rmp rotational speed, the standard deviation of straightness is ≤0.0008 mm and the standard deviation of cylindricity is ≤0.0064 mm; compared to the CMM (coordinate measuring machine) measurement results, the cylindricity and straightness evaluation errors obtained by the new measurement method are reduced by 4.6% and 4.5%, respectively. It provides a technical solution that improves both accuracy and efficiency for the precision inspection of small-diameter deep holes. Full article
(This article belongs to the Special Issue Measurement Sensors and Applications)
Show Figures

Figure 1

5851 KB  
Proceeding Paper
Tool Wear Assessment in Composite Helical Milling via Acoustic Emission Monitoring
by Tony Emerson Marim, Catherine Bezerra Markert, Marcio Marques da Silva, Alessandro Roger Rodrigues, Fabio Romano Lofrano Dotto and Pedro de Oliveira Conceição Junior
Eng. Proc. 2025, 118(1), 39; https://doi.org/10.3390/ECSA-12-26547 - 7 Nov 2025
Abstract
This study investigates the machining challenges of fiber-reinforced composite materials (FRCMs), focusing on carbon fiber-reinforced polymer (CFRP) plates, which exhibit high abrasiveness, delamination tendency, and accelerated tool wear. Two solid carbide helical end mills, designed for composite machining, were evaluated through helical interpolation [...] Read more.
This study investigates the machining challenges of fiber-reinforced composite materials (FRCMs), focusing on carbon fiber-reinforced polymer (CFRP) plates, which exhibit high abrasiveness, delamination tendency, and accelerated tool wear. Two solid carbide helical end mills, designed for composite machining, were evaluated through helical interpolation drilling. Acoustic emission signals were continuously acquired via a piezoelectric sensor during standardized cycles, and tool wear was assessed using confocal microscopy and a digital altimeter. Signal processing played a central role, combining energy-based metrics and damage indices to identify the onset of wear and early delamination, enhancing the understanding of tool degradation and improving machining reliability. Full article
Show Figures

Figure 1

15 pages, 5568 KB  
Article
Development of Projection Optical Microscopy and Direct Observation of Various Nanoparticles
by Toshihiko Ogura
Optics 2025, 6(4), 50; https://doi.org/10.3390/opt6040050 - 9 Oct 2025
Viewed by 875
Abstract
The optical microscope is an indispensable observation instrument that has fundamentally contributed to progress in science and technology. Dark-field microscopy and scattered light imaging techniques enable high-contrast observation of nanoparticles in water. However, the scattered light is focused by the optical lenses, resulting [...] Read more.
The optical microscope is an indispensable observation instrument that has fundamentally contributed to progress in science and technology. Dark-field microscopy and scattered light imaging techniques enable high-contrast observation of nanoparticles in water. However, the scattered light is focused by the optical lenses, resulting in a blurred image of the nanoparticle structure. Here, we developed a projection optical microscope (PROM), which directly observes the scattered light from the nanoparticles without optical lenses. In this method, the sample is placed below the focus position of the microscope’s objective lens and the projected light is detected by an image sensor. This enables direct observation of the sample with a spatial resolution of approximately 20 nm. Using this method, changes in the aggregation state of nanoparticles in solution can be observed at a speed faster than the video frame rate. Moreover, the mechanism of such high-resolution observation may be related to the quantum properties of light, making it an interesting phenomenon from the perspective of optical engineering. We expect this method to be applicable to the observation and analysis of samples in materials science, biology and applied physics, and thus to contribute to a wide range of scientific, technological and industrial fields. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

6 pages, 540 KB  
Proceeding Paper
Development of a Biosensor for the Early Detection of Tuberculous Meningitis in Infants
by Dabin Kim, Willem Jacobus Perold and Novel N. Chegou
Eng. Proc. 2025, 109(1), 12; https://doi.org/10.3390/engproc2025109012 - 15 Sep 2025
Viewed by 547
Abstract
Tuberculous meningitis (TBM) is a severe illness that is predominantly observed in countries with a high burden of tuberculosis. It is primarily found in infants and human immunodeficiency virus (HIV)-infected adults, and, if left untreated, causes irreversible damage to the host’s nerve and [...] Read more.
Tuberculous meningitis (TBM) is a severe illness that is predominantly observed in countries with a high burden of tuberculosis. It is primarily found in infants and human immunodeficiency virus (HIV)-infected adults, and, if left untreated, causes irreversible damage to the host’s nerve and brain tissue, often leading to mortality. Current methods of TBM detection relies on cerebrospinal fluid (CSF) culture, which may only yield results in up to 6 weeks, is not very sensitive, and requires a biological safety level III laboratory to conduct. Other detection methods are equally not very sensitive and laborious. This research investigates the detection of interferon-gamma (IFN-γ) protein biomarker using fluoroimmunoassay with an optical biosensor and a custom-manufactured chip. The glass-surface of the chip was treated with 3-aminopropyltriethoxysilane (APTES) and incubated with glutaraldehyde to prepare for immobilization, after which a sandwich ELISA format was used to perform a dilution series by immobilizing the capture antibody, IFN-γ protein, and fluorescein isothiocyanate (FITC)-stained detection antibody onto the chip. The optical biosensor excited the FITC-stained antibodies to capture the emission light at multiple exposures, which were then merged to create a high dynamic range (HDR) image for image processing. The results from the optical biosensor were verified with a Zeiss LSM780 confocal microscope (Carl Zeiss (Pty) Limited, Cape Town, South Africa). The system demonstrated the capability to rapidly identify the biomarker, detect the binding sites, and quantify IFN-γ in blood serum. This fluorescent optical sensor proposes a possible approach for the development of a point-of-care system for TBM, providing a quicker and simpler method for the early detection of TBM. Full article
(This article belongs to the Proceedings of Micro Manufacturing Convergence Conference)
Show Figures

Figure 1

16 pages, 2512 KB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 1120
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

17 pages, 5309 KB  
Article
Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics
by Monisha Elumalai, Andre Childs, Samantha Williams, Gabriel Arguello, Emily Martinez, Alaina Easterling, Dawn San Luis, Swaminathan Rajaraman and Charles M. Didier
Micromachines 2025, 16(7), 804; https://doi.org/10.3390/mi16070804 - 11 Jul 2025
Cited by 2 | Viewed by 1032
Abstract
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a [...] Read more.
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a shoe insole to monitor diabetic wound pressures, emphasizing the need for a high sensitivity, durability under cyclic mechanical loading, and a rapid response time. This investigation focuses on the electrical and mechanical properties of carbon nanotube (CNT) composites utilizing Ecoflex and polydimethylsiloxane (PDMS). Morphological characterization was conducted using Transmission Electron Microscopy (TEM), Laser Confocal Microscopy, and Scanning Electron Microscopy (SEM). The electrical and mechanical properties of the CNT/Ecoflex- and the CNT/PDMS-based sensor composites were then investigated. CNT/Ecoflex was then further evaluated due to its lower variability performance between cycles at the same pressure, as well as its consistently higher capacitance values across all trials in comparison to CNT/PDMS. The CNT/Ecoflex composite sensor showed a high sensitivity (2.38 to 3.40 kPa−1) over a pressure sensing range of 0 to 68.95 kPa. The sensor’s stability was further assessed under applied pressures simulating human weight. A custom insole prototype, incorporating 12 CNT/Ecoflex elastomeric matrix-based sensors (as an example) distributed across the metatarsal heads, midfoot, and heel regions, was developed and characterized. Capacitance measurements, ranging from 0.25 pF to 60 pF, were obtained across N = 3 feasibility trials, demonstrating the sensor’s response to varying pressure conditions linked to different body weights. These results highlight the potential of this flexible insole prototype for precise and real-time plantar surface monitoring, offering an approachable avenue for a challenging diabetic orthotics application. Full article
(This article belongs to the Special Issue Bioelectronics and Its Limitless Possibilities)
Show Figures

Figure 1

18 pages, 5087 KB  
Article
Testing Scheme Design for Grabbing Positioning and Release Mechanism in Space Microgravity Environment
by Yang Zhong, Huisen Zhang and Chao Xue
Sensors 2025, 25(10), 3010; https://doi.org/10.3390/s25103010 - 10 May 2025
Viewed by 945
Abstract
In the context of a space-based gravitational wave detection mission, the grabbing positioning and release mechanism (GPRM) is tasked with ensuring that the test mass (TM) is securely fixed in the appropriate configuration at the time of the satellite launch and subsequently releasing [...] Read more.
In the context of a space-based gravitational wave detection mission, the grabbing positioning and release mechanism (GPRM) is tasked with ensuring that the test mass (TM) is securely fixed in the appropriate configuration at the time of the satellite launch and subsequently releasing the TM in orbit at extremely low speeds across three translational and three rotational degrees of freedom. Consequently, the assessment of the GPRM functionality in a microgravity environment is a crucial step in the advancement of gravitational wave detection technology. In this paper, we present a space testing scheme for measuring the full six degrees of freedom of the test mass following its release. This was achieved through the use of a sensing system that employed spectral confocal displacement sensors and was equipped with a vacuum system, which enabled the simulation of a vacuum environment similar to that experienced in orbit. The accuracy of the testing scheme was validated by a Monte Carlo simulation test, which demonstrated that it could achieve 5 μm and 82 μrad in translational and rotational displacement measurement, respectively, and the translational and rotational velocities were found to be 0.08 μm/s and 1.4 μrad/s, respectively, over a four-second test time. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

12 pages, 5633 KB  
Article
Fabrication of Elastic Color-Changing Films—Elastomer Films Incorporating Mechanochromic Fluorenylidene–Acridane
by Koki Iwasaki and Yutaka Matsuo
Molecules 2025, 30(8), 1761; https://doi.org/10.3390/molecules30081761 - 14 Apr 2025
Cited by 2 | Viewed by 1070
Abstract
A pressure-sensitive elastomer film incorporating fluorenylidene–acridane (FA) in its folded conformation was successfully developed for use in pressure-sensitive applications. The elastomer network was swollen with acetone, creating space to accommodate FA molecules. Although FA dissolved in acetone and adopted a twisted conformer, a [...] Read more.
A pressure-sensitive elastomer film incorporating fluorenylidene–acridane (FA) in its folded conformation was successfully developed for use in pressure-sensitive applications. The elastomer network was swollen with acetone, creating space to accommodate FA molecules. Although FA dissolved in acetone and adopted a twisted conformer, a solvent exchange process with methanol facilitated the reprecipitation of FA in its yellow folded conformation within the elastomer matrix. Confocal and scanning electron microscopy confirmed the incorporation of FA in its folded form within the matrix, while film stretching testing and water resistance analyses highlighted the film’s durability. The film exhibited a reversible color change upon mechanical pressure, reverting back to yellow when treated with methanol. This approach presents a promising method for the integration of FA into elastomer films, with potential applications in flexible mechanical sensors and other responsive materials. Full article
Show Figures

Graphical abstract

18 pages, 1807 KB  
Article
Digital Twins for 3D Confocal Microscopy: Near-Field, Far-Field, and Comparison with Experiments
by Poul-Erik Hansen, Tobias Pahl, Liwei Fu, Ida Nielsen, Felix Rosenthal, Stephan Reichelt, Peter Lehmann and Astrid Tranum Rømer
Sensors 2025, 25(7), 2001; https://doi.org/10.3390/s25072001 - 22 Mar 2025
Cited by 1 | Viewed by 1220
Abstract
To push the boundaries of confocal microscopy beyond its current limitations by predicting sensor responses for complex surface geometries, we build digital twins using three rigorous models, the finite element method (FEM), Fourier modal method (FMM), and boundary element method (BEM) to model [...] Read more.
To push the boundaries of confocal microscopy beyond its current limitations by predicting sensor responses for complex surface geometries, we build digital twins using three rigorous models, the finite element method (FEM), Fourier modal method (FMM), and boundary element method (BEM) to model light–surface interactions. Fourier optics are then used to calculate the sensor signals at the back focal plane and at the detector. A 3D illumination model is applied to 2D periodic structures for FEM and FMM modelings and to 3D aperiodic structures for BEM modeling. The lateral and vertical scanning processes of the confocal microscope are achieved through focal-point shifts of the objective, using plane-wave illuminations with varying incident and azimuthal angles. This approach reduces the need for repeated, time-intensive rigorous simulations of the scattering process when a fine scanning is desired. Furthermore, we give an in-depth description of a novel confocal microscopy method using FMM. For rectangular grating surfaces, the three models yield identical, highly accurate results, as validated by measured results. Simulations of the instrument transfer function, tilted gratings, and gratings with edge rounding offer insights into some experimentally observed effects. This research therefore provides a promising approach for correcting systematic errors in confocal microscopy. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 24073 KB  
Article
Anti-Interference Spectral Confocal Sensors Based on Line Spot
by Bo Wang, Jiafu Li, Mingzhe Luo, Fengshuang Liang and Jiacheng Hu
Sensors 2025, 25(5), 1337; https://doi.org/10.3390/s25051337 - 22 Feb 2025
Viewed by 1311
Abstract
Spectral confocal displacement sensors are non-contact optoelectronic sensors widely utilized for their high accuracy, speed, and ability to measure diverse surfaces. However, challenges including vibration, angular deflection, and surface quality variations can reduce sensor stability and accuracy when performing measurements such as lithium [...] Read more.
Spectral confocal displacement sensors are non-contact optoelectronic sensors widely utilized for their high accuracy, speed, and ability to measure diverse surfaces. However, challenges including vibration, angular deflection, and surface quality variations can reduce sensor stability and accuracy when performing measurements such as lithium battery wafer thickness, wafer warpage, and optical component surface topography. This study proposes a line-spot-based measurement method using a binary diffractive lens and cylindrical lens with a 20× objective, and then the overall structure is simulated and optimized by using ZEMAX, which realizes a confocal measurement system with a measurement range of 800 μm, line spot length of 3.8 mm, and width of 0.2 mm. The system, calibrated with a nanometer displacement stage, achieved 30 nm resolution and significantly improved dynamic stability (standard deviation (SD) of 0.013 μm) compared to a point spectral confocal sensor (SD of 0.064 μm). The results indicate the proposed sensor exhibits improved stability during scanning measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 3109 KB  
Article
Surface Grafting of Graphene Flakes with Fluorescent Dyes: A Tailored Functionalization Approach
by Ylea Vlamidis, Carmela Marinelli, Aldo Moscardini, Paolo Faraci, Stefan Heun and Stefano Veronesi
Nanomaterials 2025, 15(5), 329; https://doi.org/10.3390/nano15050329 - 20 Feb 2025
Viewed by 1423
Abstract
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions [...] Read more.
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions and spatially uncontrolled functionalization, pushing research toward more selective and controlled methods. A promising approach is 1,3-dipolar cycloaddition, successfully utilized with carbon nanotubes. In the present work, this method has been extended to graphene flakes with low defect concentration. A key innovation is the use of a custom-synthesized ylide with a protected amine group (Boc), facilitating subsequent attachment of functional molecules. Indeed, after Boc cleavage, fluorescent dyes (Atto 425, 465, and 633) were covalently linked via NHS ester derivatization. This approach represents a highly selective method of minimizing structural damage. Successful functionalization was demonstrated by Raman spectroscopy, photoluminescence spectroscopy, and confocal microscopy, confirming the effectiveness of the method. This novel approach offers a versatile platform, enabling its use in biological imaging, sensing, and advanced nanodevices. The method paves the way for the development of sensors and devices capable of anchoring a wide range of molecules, including quantum dots and nanoparticles. Therefore, it represents a significant advancement in graphene-based technologies. Full article
Show Figures

Figure 1

11 pages, 1773 KB  
Article
Stretching the Limits of Refractometric Sensing in Water Using Whispering-Gallery-Mode Resonators
by Kevin Soler-Carracedo, Antonia Ruiz, Susana Ríos, Sergio de Armas-Rillo, Leopoldo L. Martín, Martin Hohmann, Inocencio R. Martín and Fernando Lahoz
Chemosensors 2025, 13(2), 33; https://doi.org/10.3390/chemosensors13020033 - 24 Jan 2025
Cited by 3 | Viewed by 1114
Abstract
A novel application of microresonators for refractometric sensing in aqueous media is presented. To carry out this approach, microspheres of different materials and sizes were fabricated and doped with Nd3+ ions. Under 532 nm excitation, the microspheres presented typical NIR Nd3+ [...] Read more.
A novel application of microresonators for refractometric sensing in aqueous media is presented. To carry out this approach, microspheres of different materials and sizes were fabricated and doped with Nd3+ ions. Under 532 nm excitation, the microspheres presented typical NIR Nd3+ emission bands with superimposed sharp peaks, related to the Whispering Gallery Modes (WGMs), due to the geometry of the microspheres. When the microspheres were submerged in water with increasing concentrations of glycerol, spectral shifts for the WGMs were observed as a function of the glycerol concentration. These spectral shifts were studied and calibrated for three different microspheres and validated with the theoretical shifts, obtained by solving the Helmholtz equations for the electromagnetic field, considering the geometry of the system, and also by calculating the extinction cross-section. WGM shifts strongly depend on the diameter of the microspheres and their refractive index (RI) difference compared with the external medium, and are greater for decreasing values of the diameter and lower values of RI difference. Experimental sensitivities ranging from 2.18 to 113.36 nm/RIU (refractive index unit) were obtained for different microspheres. Furthermore, reproducibility measurements were carried out, leading to a repeatability of 2.3 pm and a limit of detection of 5 × 10−4 RIU. The proposed sensors, taking advantage of confocal microscopy for excitation and detection, offer a robust, reliable, and contactless alternative for environmental water analysis. Full article
Show Figures

Figure 1

11 pages, 7113 KB  
Article
In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride
by Zhihang An, Renping Liu, Zhenhao Dai, Jiaping Liu, Jiaying Du, Zhongyi Sheng and Heyang Liu
Polymers 2024, 16(22), 3147; https://doi.org/10.3390/polym16223147 - 12 Nov 2024
Viewed by 1320
Abstract
Despite the remarkable progress in the modification and application of polyvinyl chloride (PVC), developing processing aids for the induced crystallization of PVC and characterizing its interfacial layer remain challenges. Herein, we propose a new polymeric nucleating agent, polyamidea12-graft-styrene–maleic anhydride copolymer (PA12-g-SMA), which possesses [...] Read more.
Despite the remarkable progress in the modification and application of polyvinyl chloride (PVC), developing processing aids for the induced crystallization of PVC and characterizing its interfacial layer remain challenges. Herein, we propose a new polymeric nucleating agent, polyamidea12-graft-styrene–maleic anhydride copolymer (PA12-g-SMA), which possesses high compatibility and crystallinity, effectively improving the crystallinity to 15.1%, the impact strength to 61.03 kJ/m2, and the degradation temperature of PVC to 267 °C through a single and straightforward processing step. Additionally, after the introduction of two different fluorescent sensors in PA12-g-SMA and PVC, the interfacial layer of the induced crystallization can be monitored in situ via a confocal laser scanning microscope (CLSM). This study highlights a rare strategy for significantly enhancing the physical properties of rigid PVC through simply adding a polymeric nucleating agent during processing, while also emphasizing the importance of visualizing the interfacial layer to understand various polymer crystallization processes. Full article
(This article belongs to the Special Issue Additively Manufactured Polymers: Design, Testing and Applications)
Show Figures

Graphical abstract

15 pages, 4295 KB  
Article
Long-Distance Measurements Using a Chromatic Confocal Sensor
by Kiril Ivanov Kurtev, Juan Manuel Trujillo-Sevilla and José Manuel Rodríguez-Ramos
Appl. Sci. 2024, 14(21), 9943; https://doi.org/10.3390/app14219943 - 30 Oct 2024
Cited by 2 | Viewed by 2920
Abstract
In this work, we demonstrate the use of a chromatic confocal sensor for long-distance measurements. The sensor increases the working distance of state-of-the-art confocal sensors by a factor of 10, reaching a working distance of 620 mm. The chromatic aberration exhibited by a [...] Read more.
In this work, we demonstrate the use of a chromatic confocal sensor for long-distance measurements. The sensor increases the working distance of state-of-the-art confocal sensors by a factor of 10, reaching a working distance of 620 mm. The chromatic aberration exhibited by a lens was utilized to establish the working range. The chromatic dispersion of the optics led to images of the different wavelength components at different longitudinal points along the optical axis. The sensor employs a robust algorithm to measure relative displacements of the sample’s motion. The calibration process simplifies data analysis and improves the accuracy of displacement measurements in experimental setups. To facilitate the design process, a simulator was developed specifically for this purpose. The calibration data obtained in both the experimental and the simulated data show that the simulator was able to predict the sensitivity with an error of 5%. We also describe the effect on the sensitivity of oversampling the spectrum. In addition, the superiority of low-pass filtering over Gaussian fitting over the detected spectrum is shown. Full article
Show Figures

Figure 1

Back to TopTop