Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
CNT Composite Synthesis
2.3. CNT and CNT Composite Characterization
2.4. Electrical, Mechanical, and Stability Analysis of CNT Composite Sensors
2.5. Prototype Design
2.6. Heat Mapping—Matlab/Python
3. Results and Discussion
3.1. CNT/Ecoflex Composite Fabrication
3.1.1. Feasibility Study 1
3.1.2. Feasibility Study 2
3.1.3. Feasibility Study 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- National Diabetes Statistics Report|Diabetes|CDC. Available online: https://www.cdc.gov/diabetes/php/data-research/index.html (accessed on 15 May 2024).
- Racaru, S.; Bolton Saghdaoui, L.; Roy Choudhury, J.; Wells, M.; Davies, A.H. Offloading Treatment in People with Diabetic Foot Disease: A Systematic Scoping Review on Adherence to Foot Offloading. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102493. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, A.; Finlayson, K.; Edwards, H.; Armstrong, D.G.; Najafi, B.; van Netten, J.J.; Lazzarini, P.A. The Validity and Reliability of Self-Reported Adherence to Using Offloading Treatment in People with Diabetes-Related Foot Ulcers. Sensors 2023, 23, 4423. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M.; Manu, C.; Vas, P. The Current Burden of Diabetic Foot Disease. J. Clin. Orthop. Trauma 2021, 17, 88–93. [Google Scholar] [CrossRef] [PubMed]
- CDER-PHRMA-AASLD Conference, 2000, Clinical White Paper, Preconference Study Document Before Conference “Drug-Induced Liver Injury: A National and Global Problem”. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-induced-liver-injury-premarketing-clinical-evaluation (accessed on 15 May 2024).
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef]
- Rodrigues, B.T.; Vangaveti, V.N.; Urkude, R.; Biros, E.; Malabu, U.H. Prevalence and Risk Factors of Lower Limb Amputations in Patients with Diabetic Foot Ulcers: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102397. [Google Scholar] [CrossRef]
- Park, C.; Mishra, R.; Vigano, D.; Macagno, M.; Rossotti, S.; D’Huyvetter, K.; Garcia, J.; Armstrong, D.G.; Najafi, B. Smart Offloading Boot System for Remote Patient Monitoring: Toward Adherence Reinforcement and Proper Physical Activity Prescription for Diabetic Foot Ulcer Patients. J. Diabetes Sci. Technol. 2023, 17, 42–51. [Google Scholar] [CrossRef]
- Zhu, X.; Olsson, M.M.; Bajpai, R.; Lim, V.H.; Goh, L.J. Factors Associated with Healing Outcomes in Primary Care Patients with Diabetic Foot Ulcers: A Retrospective Study in a Multiethnic Sample. Adv. Ski. Wound Care 2022, 35, 22–29. [Google Scholar] [CrossRef]
- Zwaferink, J.B.J.; Custers, W.; Paardekooper, I.; Berendsen, H.A.; Bus, S.A. Optimizing Footwear for the Diabetic Foot: Data-Driven Custom-Made Footwear Concepts and Their Effect on Pressure Relief to Prevent Diabetic Foot Ulceration. PLoS ONE 2020, 15, 90–98. [Google Scholar] [CrossRef]
- Srass, H.; Ead, J.K.; Armstrong, D.G. Adherence and the Diabetic Foot: High Tech Meets High Touch? Sensors 2023, 23, 6898. [Google Scholar] [CrossRef]
- Chatwin, K.E.; Abbott, C.A.; Rajbhandari, S.M.; Reddy, P.N.; Bowling, F.L.; Boulton, A.J.M.; Reeves, N.D. An Intelligent Insole System with Personalised Digital Feedback Reduces Foot Pressures during Daily Life: An 18-Month Randomised Controlled Trial. Diabetes Res. Clin. Pract. 2021, 181, 109091. [Google Scholar] [CrossRef]
- Jarl, G.; Rusaw, D.F.; Terrill, A.J.; Barnett, C.T.; Woodruff, M.A.; Lazzarini, P.A. Personalized Offloading Treatments for Healing Plantar Diabetic Foot Ulcers. J. Diabetes Sci. Technol. 2023, 17, 99–106. [Google Scholar] [CrossRef]
- Lung, C.W.; Wu, F.L.; Liao, F.; Pu, F.; Fan, Y.; Jan, Y.K. Emerging Technologies for the Prevention and Management of Diabetic Foot Ulcers. J. Tissue Viability 2020, 29, 61–68. [Google Scholar] [CrossRef]
- Medicare Claims Processing Manual, Durable Medical Equipment, Prosthetics, Orthotics, and Supplies (DMEPOS). 2012. Available online: https://aq-iq.com/cms-medicare-claims-processing-manual/ (accessed on 28 June 2025).
- Centers for Medicare & Medicaid Services, DURABLE MEDICAL EQUIPMENT, PROSTHETICS, ORTHOTICS, and SUPPLIES (DMEPOS) QUALITY STANDARDS, October 2008. Available online: https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/MedicareProviderSupEnroll/downloads/DMEPOSAccreditationStandards.pdf (accessed on 28 June 2025).
- CMS DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services. 2016; pp. 1–7. Available online: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/CMS-Statistics-Reference-Booklet/index.html (accessed on 28 June 2025).
- Heck, I.; Lu, W.; Wang, Z.; Zhang, X.; Adak, T.; Cu, T.; Crumley, C.; Zhang, Y.; Wang, X.S. Soft, Wireless Pressure-Sensor-Integrated Smart Bandage for the Management of Diabetic Foot Ulcers. Adv. Mater. Technol. 2023, 8, 2200821. [Google Scholar] [CrossRef]
- Al-kahtani, M.S.; Khan, F.; Taekeun, W. Application of Internet of Things and Sensors in Healthcare. Sensors 2022, 22, 5738. [Google Scholar] [CrossRef]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping Healthcare with Wearable Biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar] [CrossRef]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar] [CrossRef]
- Wang, L.; Tian, S.; Zhu, R. A New Method of Continuous Blood Pressure Monitoring Using Multichannel Sensing Signals on the Wrist. Microsyst. Nanoeng 2023, 9, 117. [Google Scholar] [CrossRef]
- Akbari Nakhjavani, S.; Mirzajani, H.; Carrara, S.; Onbaşlı, M.C. Advances in Biosensor Technologies for Infectious Diseases Detection. TrAC—Trends Anal. Chem. 2024, 180, 117979. [Google Scholar] [CrossRef]
- Nanukuttan, S.; Yang, K.; Basheer, P.A.M. Non-Destructive Testing and Structural Health Monitoring. In ICE Handbook of Concrete Durability, Second Edition: A Practical Guide to the Design of Resilient Concrete Structures; Emerald Publishing Limited: Leeds, UK, 2023; pp. 449–491. [Google Scholar] [CrossRef]
- Tang, J.; Bader, D.L.; Moser, D.; Parker, D.J.; Forghany, S.; Nester, C.J.; Jiang, L. A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors 2023, 23, 3126. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable Sensors for Telehealth Based on Emerging Materials and Nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K.S.; Kim, J.U.; Yoo, P.J.; Kim, T. il Dramatically Enhanced Mechanosensitivity and Signal-to-Noise Ratio of Nanoscale Crack-Based Sensors: Effect of Crack Depth. Adv. Mater. 2016, 28, 8130–8137. [Google Scholar] [CrossRef]
- Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines 2022, 13, 119. [Google Scholar] [CrossRef]
- Panth, M.; Cook, B.; Alamri, M.; Ewing, D.; Wilson, A.; Wu, J.Z. Flexible Zinc Oxide Nanowire Array/Graphene Nanohybrid for High-Sensitivity Strain Detection. ACS Omega 2020, 5, 27359–27367. [Google Scholar] [CrossRef]
- Xu, W.; Yang, T.; Qin, F.; Gong, D.; Du, Y.; Dai, G. A Sprayed Graphene Pattern-Based Flexible Strain Sensor with High Sensitivity and Fast Response. Sensors 2019, 19, 1077. [Google Scholar] [CrossRef]
- Leemets, K.; Mäeorg, U.; Aabloo, A.; Tamm, T. Effect of Contact Material and Ambient Humidity on the Performance of MWCNT/PDMS Multimodal Deformation Sensors. Sens. Actuators A Phys. 2018, 283, 1–8. [Google Scholar] [CrossRef]
- Physical, A.A.; He, Y.; Lu, X.; Wu, D.; Zhou, M.; He, G.; Zhang, J.; Zhang, L.; Liu, H.; Liu, C. CNT/PDMS Conductive Foam-Based Piezoresistive Sensors with Low Detection Limits, Excellent Durability, and Multifunctional Sensing Capability. Sens. Actuators A Phys. 2023, 358, 114408. [Google Scholar] [CrossRef]
- He, Y.; Zhou, M.; Mahmoud, M.H.H.; Lu, X.; He, G.; Zhang, L.; Huang, M.; Elnaggar, A.Y.; Lei, Q.; Liu, H.; et al. Multifunctional Wearable Strain/Pressure Sensor Based on Conductive Carbon Nanotubes/Silk Nonwoven Fabric with High Durability and Low Detection Limit. Adv. Compos. Hybrid Mater. 2022, 5, 1939–1950. [Google Scholar] [CrossRef]
- Fenta, E.W.; Mebratie, B.A. Advancements in Carbon Nanotube-Polymer Composites: Enhancing Properties and Applications through Advanced Manufacturing Techniques. Heliyon 2024, 10, e36490. [Google Scholar] [CrossRef]
- Moharana, S.; Rout, L.; Sagadevan, S. Carbon Nanotube-Polymer Nanocomposites; Springer: Singapore, 2024; ISBN 9789819763283. [Google Scholar]
- Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S.H. Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. J. Electrochem. Soc. 2020, 167, 037561. [Google Scholar] [CrossRef]
- Bu, F.; Zhou, W.; Xu, Y.; Du, Y.; Guan, C.; Huang, W. Recent Developments of Advanced Micro-Supercapacitors: Design, Fabrication and Applications. npj Flex. Electron. 2020, 4, 31. [Google Scholar] [CrossRef]
- Jeon, G.J.; Yeom, H.I.; Jin, T.; Kim, J.; Yang, J.; Park, S.H.K. A Highly Sensitive, Stable, Scalable Pressure Sensor Based on a Facile Baking-Inspired Foaming Process for a Human-Computer Interface. J. Mater. Chem. C 2020, 8, 4271–4278. [Google Scholar] [CrossRef]
- Hu, X.; Wu, M.; Che, L.; Huang, J.; Li, H.; Liu, Z.; Li, M.; Ye, D.; Yang, Z.; Wang, X.; et al. Nanoengineering Ultrathin Flexible Pressure Sensor with Superior Sensitivity and Perfect Conformability. Small 2023, 19, 2208015. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Jiang, Y.; Tang, J.; Chen, Y.; Zhang, T.; Yu, D.; Wang, W. Durable and Highly Signal-Stable Pressure Sensors Prepared by Sequential Thiol-Acrylate Click Reactions. Chem. Eng. J. 2024, 493, 152749. [Google Scholar] [CrossRef]
- Du, J.; Wang, L.; Shi, Y.; Zhang, F.; Hu, S.; Liu, P.; Li, A.; Chen, J. Optimized Cnt-Pdms Flexible Composite for Attachable Health-Care Device. Sensors 2020, 20, 4523. [Google Scholar] [CrossRef]
- Bus, S.A.; Armstrong, D.G.; Crews, R.T.; Gooday, C.; Jarl, G.; Kirketerp-Moller, K.; Viswanathan, V.; Lazzarini, P.A. Guidelines on Offloading Foot Ulcers in Persons with Diabetes (IWGDF 2023 Update). Diabetes. Metab. Res. Rev. 2024, 40, e3647. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Nguyen, H.C.; Lavery, L.A.; Van Schie, C.H.M.; Boulton, A.J.M.; Harkless, L.B. Off-Loading the Diabetic Foot Wound: A Randomized Clinical Trial. Diabetes Care 2001, 24, 1019–1022. [Google Scholar] [CrossRef]
- Najafi, B.; Ron, E.; Enriquez, A.; Marin, I.; Razjouyan, J.; Armstrong, D.G. Smarter Sole Survival: Will Neuropathic Patients at High Risk for Ulceration Use a Smart Insole-Based Foot Protection System? J. Diabetes Sci. Technol. 2017, 11, 702–713. [Google Scholar] [CrossRef]
- Speight, S.; Reel, S.; Stephenson, J. Can the F-Scan in-Shoe Pressure System Be Combined with the GAITRite ® Temporal and Spatial Parameter-Recording Walkway as a Cost-Effective Alternative in Clinical Gait Analysis? A Validation Study. J. Foot Ankle Res. 2023, 16, 30. [Google Scholar] [CrossRef]
- Lee, S.I.; Park, E.; Huang, A.; Mortazavi, B.; Garst, H.; Jahanforouz, N.; Espinal, M.; Siero, T.; Pollack, S.; Afridi, M.; et al. Objectively quantifying walking ability in degenerative spinal disorder patients using sensor equipped smart shoes. Med. Eng. Phys. 2016, 38, 442–449. [Google Scholar] [CrossRef]
- Parker, D.; Andrews, J.; Price, C. Validity and Reliability of the XSENSOR In-Shoe pressure measurement system. PLoS ONE 2023, 18, e0277971. [Google Scholar] [CrossRef]
- TAP Insole. Innovative, Patented, Advanced Sensor Technology for Healthcare. Available online: https://tapinsole.com/ (accessed on 12 April 2025).
- W. S. P. Guide PressureGuardian Pressure Sensor Tool. Available online: https://www.woundsource.com/product/pressureguardian (accessed on 13 April 2025).
- Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [PubMed]
- Bus, S.A.; Reeves, N.D.; Armstrong, D.G.; Najafi, B. Offloading and Adherence through Technological Advancements: Modern Approaches for Better Foot Care in Diabetes. Diabetes/Metab. Res. Rev. 2024, 40, e3769. [Google Scholar] [CrossRef] [PubMed]
- Dumée, L.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Gray, S. Influence of the Sonication Temperature on the Debundling Kinetics of Carbon Nanotubes in Propan-2-Ol. Nanomaterials 2013, 3, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Khine, M. Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers 2020, 12, 1454. [Google Scholar] [CrossRef]
- Lv, K.; Tian, G.; Yan, Y.; Zhou, H.; Fan, Q.; Liang, L.; Liu, N.; Wang, D.; Song, Z.; Xu, F.; et al. Stretchable Carbon Nanotube/Ecoflex Conductive Elastomer Films toward Multifunctional Wearable Electronics. Chem. Eng. J. 2024, 500, 157534. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Hou, Y.; Nan, S.; Di, Y.; Dai, Y.; Li, F.; Zhang, J. MWCNTs/PDMS Composite Enabled Printed Flexible Omnidirectional Strain Sensors for Wearable Electronics. Compos. Sci. Technol. 2022, 226, 109518. [Google Scholar] [CrossRef]
- Huang, K.; Tong, S.; Shi, X.; Wen, J.; Bi, X.; Li, A.; Zou, R.; Kong, W.; Yin, H.; Hu, W.; et al. The Numerical and Experimental Investigation of Piezoresistive Performance of Carbon Nanotube/Carbon Black/Polyvinylidene Fluoride Composite. Materials 2023, 16, 5581. [Google Scholar] [CrossRef]
- Kotrotsos, A.; Syrmpopoulos, N.; Gavathas, P.; Moica, S.; Kostopoulos, V. Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique. J. Compos. Sci. 2024, 8, 213. [Google Scholar] [CrossRef]
- Shin, U.H.; Jeong, D.W.; Park, S.M.; Kim, S.H.; Lee, H.W.; Kim, J.M. Highly Stretchable Conductors and Piezocapacitive Strain Gauges Based on Simple Contact-Transfer Patterning of Carbon Nanotube Forests. Carbon N. Y. 2014, 80, 396–404. [Google Scholar] [CrossRef]
- ASTM D412-16; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
- Data, T. Sekisui Voltek, 2016; VOLARA TYPE EO, Technical Data Sheet. 2016. Available online: https://bkup.sekisuivoltek.com/wp-content/uploads/2016/03/Volara_ProductSheet_Type_EO.pdf (accessed on 1 March 2016).
- Paper, C.W.; Miller, J.J.; Miller, J.J. Clinical White Paper # 2. beagleorthopaedic 2021. Available online: https://beagleorthopaedic.com/wp-content/uploads/2021/09/Orthomerica-OWLS-White-Paper-2-SL000253a.pdf (accessed on 1 September 2021).
- Oh, J.; Kim, D.Y.; Kim, H.; Hur, O.N.; Park, S.H. Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. Materials 2022, 15, 7637. [Google Scholar] [CrossRef]
- Gang, Y.; Pellessier, J.; Du, Z.; Fang, S.; Fang, L.; Pan, F.; Suarez, M.; Hambleton, K.; Chen, F.; Zhou, H.C.; et al. Facile and Scalable Synthesis of Metal- and Nitrogen-Doped Carbon Nanotubes for Efficient Electrochemical CO2 Reduction. ACS Sustain. Chem. Eng. 2023, 11, 7231–7243. [Google Scholar] [CrossRef] [PubMed]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical Properties of Carbon Nanotube/Polymer Composites. Sci. Rep. 2014, 4, 6479. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, Q.; Ding, L.; Shi, C.; Wang, Q.; Niu, Y.; Xu, C. Carbon Black/Multi-Walled Carbon Nanotube-Based, Highly Sensitive, Flexible Pressure Sensor. ACS Omega 2022, 7, 44428–44437. [Google Scholar] [CrossRef]
- Park, D.; Gupta, A.; Bashar, S.; Girerd, C.; Bharadia, D.; Morimoto, T.K. Design and Evaluation of a Miniaturized Force Sensor Based on Wave Backscattering. IEEE Robot. Autom. Lett. 2022, 7, 7550–7557. [Google Scholar] [CrossRef]
- Ariati, R.; Sales, F.; Souza, A.; Lima, R.A.; Ribeiro, J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers 2021, 13, 4258. [Google Scholar] [CrossRef] [PubMed]
- Herren, B.; Saha, M.C.; Altan, M.C.; Liu, Y. Development of Ultrastretchable and Skin Attachable Nanocomposites for Human Motion Monitoring via Embedded 3D Printing. Compos. Part B Eng. 2020, 200, 108224. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Qian, D.; Liu, W.K. Mechanical Properties of Carbon Nanotubes: Theoretical Predictions and Experimental Measurements. Comptes Rendus Phys. 2003, 4, 993–1008. [Google Scholar] [CrossRef]
- Mi, D.; Zhao, Z.; Bai, H. Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Polymers 2023, 15, 2370. [Google Scholar] [CrossRef]
- Anne, S.; Skov, L.; Skov, A.L. Mapping the Mechanical and Electrical Properties of Commercial Silicone Elastomer Formulations for Stretchable Transducers. J. Mater. Chem. C 2020, 8, 1273–1279. [Google Scholar] [CrossRef]
- del Bosque, A.; Fernández Sánchez-Romate, X.X.; De La Llana Calvo, Á.; Fernández, P.R.; Borromeo, S.; Sánchez, M.; Ureña, A. Highly Flexible Strain Sensors Based on CNT-Reinforced Ecoflex Silicone Rubber for Wireless Facemask Breathing Monitoring via Bluetooth. ACS Appl. Polym. Mater. 2023, 5, 8589–8599. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elumalai, M.; Childs, A.; Williams, S.; Arguello, G.; Martinez, E.; Easterling, A.; Luis, D.S.; Rajaraman, S.; Didier, C.M. Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics. Micromachines 2025, 16, 804. https://doi.org/10.3390/mi16070804
Elumalai M, Childs A, Williams S, Arguello G, Martinez E, Easterling A, Luis DS, Rajaraman S, Didier CM. Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics. Micromachines. 2025; 16(7):804. https://doi.org/10.3390/mi16070804
Chicago/Turabian StyleElumalai, Monisha, Andre Childs, Samantha Williams, Gabriel Arguello, Emily Martinez, Alaina Easterling, Dawn San Luis, Swaminathan Rajaraman, and Charles M. Didier. 2025. "Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics" Micromachines 16, no. 7: 804. https://doi.org/10.3390/mi16070804
APA StyleElumalai, M., Childs, A., Williams, S., Arguello, G., Martinez, E., Easterling, A., Luis, D. S., Rajaraman, S., & Didier, C. M. (2025). Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics. Micromachines, 16(7), 804. https://doi.org/10.3390/mi16070804