Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = conductive scaffolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 (registering DOI) - 31 Jul 2025
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 257
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

16 pages, 3091 KiB  
Article
Fabrication and Evaluation of Screen-Printed Electrodes on Chitosan Films for Cardiac Patch Applications with In Vitro and In Vivo Evaluation
by Yu-Hsin Lin, Yong-Ji Chen, Jen-Tsai Liu, Ching-Shu Yen, Yi-Zhen Lin, Xiu-Wei Zhou, Shu-Ying Chen, Jhe-Lun Hu, Chi-Hsiang Wu, Ching-Jung Chen, Pei-Leun Kang and Shwu-Jen Chang
Polymers 2025, 17(15), 2088; https://doi.org/10.3390/polym17152088 - 30 Jul 2025
Viewed by 179
Abstract
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the [...] Read more.
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the fabrication and evaluation of screen-printed electrodes (SPEs) on chitosan film as a novel platform for cardiac patch applications. Chitosan is a biodegradable and biocompatible natural polymer that provides an ideal substrate for SPEs, providing mechanical stability and promoting cell adhesion. Silver ink was employed to enhance electrochemical performance, and the electrodes exhibited strong adhesion and structural integrity under wet conditions. Mechanical testing and swelling ratio analysis were conducted to assess the patch’s physical robustness and aqueous stability. Silver ink was employed to enhance electrochemical performance, which was evaluated using cyclic voltammetry. In vitro, electrical stimulation through the chitosan–SPE patch significantly increased the expression of cardiac-specific genes (GATA-4, β-MHC, troponin I) in bone marrow mesenchymal stem cells (BMSCs), indicating early cardiogenic differentiation potential. In vivo, the implantation of the chitosan–SPE patch in a rat MI model demonstrated good tissue integration, preserved myocardial structure, and enhanced ventricular wall thickness, indicating that the patch has the potential to serve as a functional cardiac scaffold. These findings support the feasibility of screen-printed electrodes fabricated on chitosan film substrates as a cost-effective and scalable platform for cardiac repair, offering a foundation for future applications in cardiac tissue engineering. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 3465 KiB  
Article
Chromosome-Level Genome Announcement of the Monokaryotic Pleurotus ostreatus Strain PC80
by Jie Wu, Wenhua Sun, Jingkang Zheng, Jinling Liu, Xuedi Liang, Qin Liu and Weili Kong
J. Fungi 2025, 11(8), 563; https://doi.org/10.3390/jof11080563 - 29 Jul 2025
Viewed by 220
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In [...] Read more.
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In this study, we conducted a chromosome-level genome assembly of the monokaryotic basidiospore strain PC80. The assembled genome spanned 40.6 Mb and consisted of 15 scaffolds. Ten of these scaffolds contained complete telomere-to-telomere structures. The scaffold N50 value was 3.6 Mb. Genome annotation revealed 634 carbohydrate-active enzyme (CAZyme) family genes. Through collinearity analysis, we further confirmed that the PC80 genome exhibited higher completeness and greater accuracy compared to the currently published genomes of P. ostreatus. At the matA locus of PC80, three hd1 genes and one hd2 gene were identified. At the matB locus, seven pheromone receptor genes and two pheromone precursor genes were detected. Further phylogenetic analysis indicated that three of these pheromone receptor genes are likely to have mating-specific functions. This complete genome assembly could provide a foundation for future genomic and genetic studies, facilitate the identification of key genes related to growth and developmental regulation, and promote technological innovations in P. ostreatus breeding and efficient utilization. Full article
Show Figures

Figure 1

16 pages, 5151 KiB  
Article
Design and Characterization of Curcumin-Modified Polyurethane Material with Good Mechanical, Shape-Memory, pH-Responsive, and Biocompatible Properties
by Man Wang, Hongying Liu, Wei Zhao, Huafen Wang, Yuwei Zhuang, Jie Yang, Zhaohui Liu, Jing Zhu, Sichong Chen and Jinghui Cheng
Biomolecules 2025, 15(8), 1070; https://doi.org/10.3390/biom15081070 - 24 Jul 2025
Viewed by 208
Abstract
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft [...] Read more.
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.3% and that the intensities of the diffraction peaks at 2θ = 21.36°, 21.97°, and 23.72° in the XRD pattern gradually diminish. Concomitantly, tensile strength decreased from 35.5 MPa to 19.3 MPa, and Shore A hardness declined from 88 HA to 65 HA. These observations indicate that the sterically hindered benzene ring structure of Cur imposes restrictions on HO-PCL-OH crystallization, leading to lower crystallinity and retarded crystallization kinetics in Cur-PU. As a consequence, the material’s tensile strength and hardness are diminished. Except for the Cur-PU-3 sample, all other variants exhibited exceptional shape-memory functionality, with Rf and Rr exceeding 95%, as determined by three-point bending method. Analogous to pure curcumin solutions, Cur-PU solutions demonstrated pH-responsive chromatic transitions: upon addition of hydroxide ion (OH) solutions at increasing concentrations, the solutions shifted from yellow-green to dark green and finally to orange-yellow, enabling sensitive pH detection across alkaline gradients. Hydrolytic degradation studies conducted over 15 weeks in air, UPW, and pH 6.0/8.0 phosphate buffer solutions revealed mass loss <2% for Cur-PU films. Surface morphological analysis showed progressive etching with the formation of micro-to-nano-scale pores, indicative of a surface-erosion degradation mechanism consistent with pure PCL. Biocompatibility assessments via L929 mouse fibroblast co-culture experiments demonstrated ≥90% cell viability after 72 h, while relative red blood cell hemolysis rates remained below 5%. Collectively, these findings establish Cur-PU as a biocompatible material with tunable mechanical properties, and pH responsiveness, underscoring its translational potential for biomedical applications such as drug delivery systems and tissue engineering scaffolds. Full article
Show Figures

Figure 1

24 pages, 7124 KiB  
Article
In Silico Discovery of a Novel Potential Allosteric PI3Kα Inhibitor Incorporating 3-(2-Chloro-5-fluorophenyl)isoindolin-1-one to Target Head and Neck Squamous Cell Carcinoma
by Wenqing Jia and Xianchao Cheng
Biology 2025, 14(7), 896; https://doi.org/10.3390/biology14070896 - 21 Jul 2025
Viewed by 266
Abstract
Phosphatidylinositol 3-kinase alpha (PI3Kα) is frequently mutated in head and neck squamous cell carcinoma (HNSCC), leading to the constitutive activation of the PI3K/Akt pathway, which promotes tumor cell proliferation, survival, and metastasis. PI3Kα allosteric inhibitors demonstrate therapeutic potential as both monotherapy and combination [...] Read more.
Phosphatidylinositol 3-kinase alpha (PI3Kα) is frequently mutated in head and neck squamous cell carcinoma (HNSCC), leading to the constitutive activation of the PI3K/Akt pathway, which promotes tumor cell proliferation, survival, and metastasis. PI3Kα allosteric inhibitors demonstrate therapeutic potential as both monotherapy and combination therapy, particularly in patients with PIK3CA mutations or resistance to immunotherapy, through the precise targeting of mutant PI3Kα. Compared to ATP-competitive PI3Kα inhibitors such as Alpelisib, the allosteric inhibitor RLY-2608 exhibits enhanced selectivity for mutant PI3Kα while minimizing the inhibition of wild-type PI3Kα, thereby reducing side effects such as hyperglycemia. To date, no allosteric PI3Kα inhibitors have been approved for clinical use. To develop novel PI3Kα inhibitors with improved safety and efficacy, we employed a scaffold hopping approach to structurally modify RLY-2608 and constructed a compound library. Based on the structural information of the PI3Kα allosteric site, we conducted the systematic virtual screening of 11,550 molecules from databases to identify lead compounds. Through integrated approaches, including molecular docking studies, target validation, druggability evaluation, molecular dynamics simulations, and metabolic pathway and metabolite analyses, we successfully identified a promising novel allosteric PI3Kα inhibitor, H-18 (3-(2-chloro-5-fluorophenyl)isoindolin-1-one). H-18 has not been previously reported as a PI3Kα inhibitor, and provides an excellent foundation for subsequent lead optimization, offering a significant starting point for the development of more potent PI3Kα allosteric inhibitors. Full article
(This article belongs to the Special Issue Protein Kinases: Key Players in Carcinogenesis)
Show Figures

Figure 1

42 pages, 4253 KiB  
Review
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
by Rashid Dallaev
Polymers 2025, 17(14), 1976; https://doi.org/10.3390/polym17141976 - 18 Jul 2025
Viewed by 293
Abstract
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled [...] Read more.
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers—augmented by nanotechnology and additive manufacturing—enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 311
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

18 pages, 1575 KiB  
Article
Novel 3,19-(N-Phenyl-3-(4-fluorophenyl)-pyrazole) Acetal of Andrographolide Promotes Cell Cycle Arrest and Apoptosis in MDA-MB-231 Breast Cancer Cells
by Siva Kumar Rokkam, Shahjalal Chowdhury, Yashwanth Inabathina, Lakshminath Sripada, Srinivas Nanduri, Balasubramanyam Karanam and Nageswara Rao Golakoti
Pharmaceuticals 2025, 18(7), 1026; https://doi.org/10.3390/ph18071026 - 10 Jul 2025
Viewed by 354
Abstract
Background: Natural products play a crucial role in cancer treatment due to their ability to selectively target cancer cells. Andrographolide, a major constituent of Andrographis paniculata, exhibits potential anticancer properties. Considering the pharmacological importance of nitrogen-based heteroaromatic scaffolds, particularly pyrazole motifs, this [...] Read more.
Background: Natural products play a crucial role in cancer treatment due to their ability to selectively target cancer cells. Andrographolide, a major constituent of Andrographis paniculata, exhibits potential anticancer properties. Considering the pharmacological importance of nitrogen-based heteroaromatic scaffolds, particularly pyrazole motifs, this study aimed to integrate the pyrazole pharmacophore with the andrographolide scaffold to develop novel therapeutic candidates. Methods: Twenty novel 3,19-(N-phenyl-3-aryl-pyrazole) acetals of andrographolide and isoandrographolide were synthesized and characterized using UV-Vis, FT-IR, NMR, and HRMS. Initial anticancer screening was conducted by the National Cancer Institute (NCI), USA, against 60 human cancer cell lines. The most promising compound, 1f (R = 4-F), was selected for further biological evaluation in the MDA-MB-231 breast cancer cell line. Results: The MTT assay results demonstrated that compound 1f exhibited strong, dose-dependent anti-proliferative effects. The apoptosis analysis of 1f revealed a time-dependent increase in apoptotic cells, and cell cycle studies indicated S phase arrest in MDA-MB-231 cells. Antioxidant activity via the DPPH assay identified compounds 1b (R = 3-NO2) and 2b (R = 3-NO2) as the most effective radical scavengers. The most active compounds were also evaluated for drug-likeness using in silico Lipinski’s rule assessments. Conclusions: The synthesized 3,19-(N-phenyl-3-aryl-pyrazole) acetals of andrographolide and isoandrographolide exhibited promising anticancer and antioxidant properties. Among them, compound 1f showed the most significant activity, supporting its potential as a lead candidate for further anticancer drug development. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Graphical abstract

20 pages, 1958 KiB  
Article
Comparison and Analysis of the Genomes of Three Strains of Botrytis cinerea Isolated from Pomegranate
by Alberto Patricio-Hernández, Miguel Angel Anducho-Reyes, Alejandro Téllez-Jurado, Rocío Ramírez-Vargas, Andrés Quezada-Salinas and Yuridia Mercado-Flores
Microorganisms 2025, 13(7), 1605; https://doi.org/10.3390/microorganisms13071605 - 8 Jul 2025
Viewed by 379
Abstract
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, [...] Read more.
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, collected at two geographic locations in Mexico. Our goal was to identify possible differences among these strains. The development of the three strains in distinct culture media, the production of extracellular enzymes, and their effect on the progression of infection in pomegranate fruits were evaluated. The genomes were sequenced using the Illumina platform and analyzed with various bioinformatics tools. All strains possess genetic determinants for virulence and cell wall polymer degradation, but MIC exhibited the highest pectinolytic activity in vitro. This strain also produced sclerotia in a shorter time (7 days) in PDA medium. BcPgls-3 demonstrated the highest conidia production across all the culture media used. Both BcPgls-3 and MIC damaged all the pomegranate fruits 8 days after inoculation, while the BcPgls-1 required up to 9 days. Sequencing of the three strains yielded high-quality sequences, resulting in a total of 17 scaffolds and genomes that exceed 41 million bp, with a GC content of approximately 42%. Phylogenomic analysis indicated that the MIC strain is situated in a group separate from BcPgIs-1 and BcPgIs-3. BcPgIs-3 possesses more coding sequences, but MIC has more genes for CAZymes and peptidases. The three strains share 10,174 genes, while BcPgIs-3 and MIC share 851. These findings highlight the differences among the strains studied, which may reflect their adaptive capacities to their environment. Results contribute to our understanding of the biology of gray mold in pomegranates and could assist in developing more effective control strategies. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Figure 1

15 pages, 937 KiB  
Article
Sleep Deprivation in Rats Causes Dissociation of the Synaptic NMDA Receptor/D1 Dopamine Receptor Heterocomplex
by Natalia Kiknadze, Nana Narmania, Maia Sepashvili, Tamar Barbakadze, Elene Zhuravliova, Tamar Shetekauri, Nino Tkemaladze, Nikoloz Oniani and David Mikeladze
NeuroSci 2025, 6(3), 61; https://doi.org/10.3390/neurosci6030061 - 5 Jul 2025
Viewed by 396
Abstract
Glutamate and dopamine receptors play a crucial role in regulating synaptic plasticity throughout the sleep–wake cycle. These receptors form various heterocomplexes in synaptic areas; however, the role of this protein interactome in sleep–wake cycles remains unclear. Co-immunoprecipitation experiments were conducted to observe the [...] Read more.
Glutamate and dopamine receptors play a crucial role in regulating synaptic plasticity throughout the sleep–wake cycle. These receptors form various heterocomplexes in synaptic areas; however, the role of this protein interactome in sleep–wake cycles remains unclear. Co-immunoprecipitation experiments were conducted to observe the complexation of the NMDA glutamate receptor (NMDAR) subunits GluN2A and GluN2B, metabotropic glutamate receptors mGluR1/5, and dopamine receptors (D1R and D2R) with the scaffold protein Homer in the synaptic membranes of the hippocampus after six hours of sleep deprivation (SD) in rats. Our findings indicate that the level of Homer in the GluN2A/mGluR1/D1R interactome decreased during SD, while the content of Homer remained unchanged in the GluN2B/mGluR1/D2R heterocomplex. Moreover, Homer immunoprecipitated a reduced amount of inositol trisphosphate receptor (IP3R) in the microsomal and synaptic fractions, confirming the dissociation of the ternary supercomplex Homer/mGluR1/IP3R during SD. Additionally, our findings indicate that SD increases the synaptic content of the AMPA receptor (AMPAR) subunit GluA1. Unlike AMPAR, NMDAR subunits in synaptic membranes do not undergo significant changes. Furthermore, the G-to-F actin ratio decreases during SD. Changes in the assembly of actin filaments occur due to the dephosphorylation of cofilin. These results suggest that SD causes the dissociation of the GluN2A/mGluR1/D1R/Homer/IP3R heterocomplex in synaptic and endoplasmic membranes. Full article
Show Figures

Figure 1

24 pages, 7542 KiB  
Article
Supporting Oral Language Development in Preschool Children Through Instructional Scaffolding During Drawing Activity: A Qualitative Case Study
by Mengyun Xiao, Fadzilah Amzah, Noor Azlina Mohamed Khalid, Weihan Rong and Xiaolong Zhou
Behav. Sci. 2025, 15(7), 908; https://doi.org/10.3390/bs15070908 - 4 Jul 2025
Viewed by 548
Abstract
The research on teaching scaffolding for preschool children’s oral language development (OLD) has become an important topic in the academic world. However, there remains a lack of evidence-based research on the integration of scaffolding strategies integrated into creative art contexts to support children’s [...] Read more.
The research on teaching scaffolding for preschool children’s oral language development (OLD) has become an important topic in the academic world. However, there remains a lack of evidence-based research on the integration of scaffolding strategies integrated into creative art contexts to support children’s creative expression and language production. In this study, a qualitative case study was conducted to analyze the non-participatory observation and artwork analysis of five-year-old children’s drawing activities in a kindergarten in China based on socio-cultural and scaffolding theories. Three types of core scaffolding strategies were summarized. The findings reveal that the three strategies work together dynamically within the children’s Zone of Proximal Development (ZPD): (1) the visual prompt strategy enriches the vocabulary diversity of metaphors, adjectives, and ordinal words; (2) dialogic narrative co-construction effectively improves narrative coherence across exposition, rising action, climax, and resolution; and (3) emotional engagement strategies foster a safe expressive environment, promoting the integration of affective vocabulary with intrinsic motivation. Accordingly, a three-dimensional integrated “visual-linguistic-emotional” scaffolding model was constructed, emphasizing the practical guidelines of simultaneous scaffolding and gradual scaffolding withdrawal during the warm-up, creation, and sharing sessions of the drawing activity. This study expands the application of scaffolding theory in unstructured art contexts, and provides a systematic practical framework for the design of cross-contextual language support strategies and teacher training in preschool education. Full article
(This article belongs to the Topic Educational and Health Development of Children and Youths)
Show Figures

Figure 1

23 pages, 3743 KiB  
Article
Playful Computational Thinking Learning in and Beyond Early Childhood Classrooms: Insights from Collaborative Action Research of Two Teacher-Researchers
by Grace Yaxin Xing, Alice Grace Cady and X. Christine Wang
Educ. Sci. 2025, 15(7), 840; https://doi.org/10.3390/educsci15070840 - 2 Jul 2025
Viewed by 1282
Abstract
Blending child-led exploration with purposeful teacher guidance and clearly defined learning goals, playful learning has been promoted as a promising approach for introducing computational thinking (CT) in early childhood education (ECE). However, there is a lack of practical guidance for teachers on how [...] Read more.
Blending child-led exploration with purposeful teacher guidance and clearly defined learning goals, playful learning has been promoted as a promising approach for introducing computational thinking (CT) in early childhood education (ECE). However, there is a lack of practical guidance for teachers on how to design and implement playful CT learning effectively. To address this gap, we conducted a collaborative action research project and asked these two questions: (1) How can teachers effectively prepare and design a playful learning CT program using tangible CT toys? (2) How do teachers facilitate playful learning in the CT program? Through iterative cycles of planning, acting, observing, and reflecting, the first and second authors (teacher-researchers) designed and implemented their CT programs in a preschool classroom and an afterschool program respectively, and collected data including video recordings of sessions, participant-generated artifacts, program documentation, and anecdotal reflection notes. Based on our thematic analysis of the data, we identified practical principles for selecting CT toys, three key themes for CT program design and preparation—interest, ownership, and application, and two forms of teacher scaffolding during implementation: embodied approach and storytelling as scaffolding and assessment. The findings highlight practical ways that teachers can enhance children’s engagement, problem-solving skills, and conceptual understanding of CT, while also promoting autonomy and creativity through coding and storytelling. Full article
Show Figures

Figure 1

17 pages, 4848 KiB  
Article
Novel 3-Methyl-1,6-Diazaphenothiazine as an Anticancer Agent—Synthesis, Structure, and In Vitro Anticancer Evaluation
by Beata Morak-Młodawska, Emilia Martula, Małgorzata Jeleń, Artur Beberok, Zuzanna Rzepka, Sebastian Musiał, Szymon Małek, Marta Karkoszka-Stanowska and Dorota Wrześniok
Molecules 2025, 30(13), 2779; https://doi.org/10.3390/molecules30132779 - 27 Jun 2025
Viewed by 339
Abstract
Pyridine derivatives are widely distributed in nature and have valuable pharmacological properties. The pyridine core can be found in drugs such as sorafenib, zapiclone or prothipendyl. Dipyridothiazines are derivatives of phenothiazines that exhibit valuable anticancer, antioxidant and immunomodulatory activities. In this study, we [...] Read more.
Pyridine derivatives are widely distributed in nature and have valuable pharmacological properties. The pyridine core can be found in drugs such as sorafenib, zapiclone or prothipendyl. Dipyridothiazines are derivatives of phenothiazines that exhibit valuable anticancer, antioxidant and immunomodulatory activities. In this study, we present the synthesis and preliminary in vitro analysis of anticancer activity towards melanotic (COLO829, G361) and amelanotic (A375, C32) melanoma cells and normal human fibroblasts (HDF) of a series of new tricyclic diazaphenothiazines containing a pyridine scaffold in their structure. The structures of these new molecules was confirmed using spectral techniques, including 1H NMR, 13C NMR, 2D NMR and HRMS. An in vitro panel of experiments was assessed using the WST-1 assay and cytometric techniques. The two most promising compounds were analyzed for their effect on intracellular GSH levels, mitochondrial membrane potential and their ability to initiate DNA fragmentation to determine the potential mechanism of both cytotoxic and proapoptotic activity. The conducted studies confirmed the ability of the new 3-methyl-1,6-diazaphenothiazines to induce apoptosis in cancer cells, especially in terms of inducing initial as well as late-phase apoptosis. Moreover, the studied compounds were found to induce redox imbalance (evidenced by GSH depletion) in the analyzed melanoma cells, which may be an important factor that directs melanoma cells towards cell death signaling pathways. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 607
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

Back to TopTop