Novel 3-Methyl-1,6-Diazaphenothiazine as an Anticancer Agent—Synthesis, Structure, and In Vitro Anticancer Evaluation
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry Part
Synthesis and Structure Analysis
2.2. In Vitro Anticancer Activity
2.2.1. Viability Assay
2.2.2. Vitality Assay—GSH Level Assessment
2.2.3. Apoptosis Detection Assay
3. Materials and Methods
3.1. Chemistry Part
- (a)
- 3,10-dimethyl-1,6-diazaphenothiazine (B7) (214 mg, 93%); m.p. 159–161 °C.1H NMR (CDCl3) δ: 2.22 (s, 3H, CH3), 3.44 (s, 3H, N-CH3), 7.02 (d, J = 7.8 Hz, 1H, H9), 7.08 (dd, J = 7.8 Hz, J = 4.2 Hz, 1H, H8), 7.19 (s, 1H, H4), 7.86 (s, 1H, H2), 8.01 (d, J = 4.2 Hz 1H, H7). 13C NMR (CDCl3) δ: 17.28, 33.29, 116.51, 120.64, 122.34, 127.90, 136.10, 139.94, 141.88, 144.08, 144.37, 150.78.HRMS (EI) m/z for [C12H11N3S + H], calc. 230.0752, found: 230.0713.TLC: Rf = 0.62 (Al2O3/CHCl3)
- (b)
- 3-metyhl-10-allyl-1,6-diazaphenothiazine (B8) (200 mg, 78%); an oil:1H NMR (CDCl3) δ: 2.18 (s,3H, CH3), 4.61 (m, 2H, N-CH2), 5.26 (m, 2H, =CH2), 5.98 (m, 1H, CH), 6.98 (m, 2H), 7.09 (s, 1H), 7.79 (s, 1H), 7.92 (m, 1H). 13C NMR 17.21, 29.70, 47.75, 115.41, 117.21, 121.63, 122.08, 128.06, 135.44, 141.02, 143.81, 144.74, 149.74, 152.70.HRMS (EI) m/z for [C14H13N3S + H], calc. 256.0908, found: 256.0853.TLC: Rf = 0.46 (Al2O3/CHCl3)
- (c)
- 3-methyl-10-benzyl-1,6-diazaphenothiazine (B10) (210 mg, 72%); an oil:1H NMR (CDCl3) δ: 2.20 (s, 3H, CH3), 5.27 (s, 2H, CH2), 6.73 (m,1H), 6.83 (m, 1H), 7.15 (s, 1H), 7.39 (m, 5H, C6H5), 7.76 (s, 1H), 7.89 (m, 1H). 13C NMR δ: 17.28, 48.92, 115.19, 122.21, 126.45, 127.19, 127.75, 128.41, 128.83, 135.75, 136.05, 140.20, 143.81, 143.94, 145.02, 149.77.HRMS (EI) m/z for [C18H15N3S + H], calc. 306.1065, found: 306.1091.TLC: Rf = 0.84 (Al2O3/CHCl3)
3.2. In Vitro Assay
3.2.1. Cell Culture and Treatment
3.2.2. Cell Viability Assessment—WST-1 Assay
3.2.3. Analysis of GSH Level and Apoptosis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, S.M. Epidemiology of Cancer. Clin. Chem. 2024, 70, 140–149. [Google Scholar] [CrossRef]
- Dolgin, E. Cancer’s New Normal. Nat. Cancer 2021, 2, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Hausman, D.M. What Is Cancer? Perspect. Biol. Med. 2019, 62, 778–784. [Google Scholar] [CrossRef]
- Thiel, O. Heterocyclic Chemistry in Drug Discovery. Edited by Jie Jack Li. Angew. Chem. Int. Ed. 2013, 52, 13515. [Google Scholar] [CrossRef]
- Kumar, A.; Vigato, C.; Boschi, D.; Lolli, M.L.; Kumar, D. Phenothiazines as Anti-Cancer Agents: SAR Overview and Synthetic Strategies. Eur. J. Med. Chem. 2023, 254, 115337. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, D.; Nycz, J.E.; Karaush-Karmazin, N.; Minaev, B.; Książek, M.; Kusz, J.; Podsiadły, R. Synthesis and Spectroscopic Characterization of Selected Phenothiazines and Phenazines Rationalized Based on DFT Calculation. Molecules 2022, 27, 7519. [Google Scholar] [CrossRef]
- Rineh, A.; Dolla, N.K.; Ball, A.R.; Magana, M.; Bremner, J.B.; Hamblin, M.R.; Tegos, G.P.; Kelso, M.J. Attaching the NorA Efflux Pump Inhibitor INF55 to Methylene Blue Enhances Antimicrobial Photodynamic Inactivation of Methicillin-Resistant Staphylococcus Aureus In Vitro and In Vivo. ACS Infect. Dis. 2017, 3, 756–766. [Google Scholar] [CrossRef]
- Rodrigues, T. Repositioning of Antipsychotic Phenothiazines for Cancer Therapy: Nanotechnological Opportunities to Overcome Obstacles. Curr. Pharm. Des. 2023, 29, 1959–1960. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Bayazeed, A.A. Synthesis and Antiproliferative Activity Studies of New Functionalized Pyridine Linked Thiazole Derivatives. Arab. J. Chem. 2021, 14, 102914. [Google Scholar] [CrossRef]
- Hamada, Y. Role of Pyridines in Medicinal Chemistry and Design of BACE1 Inhibitors Possessing a Pyridine Scaffold. In Pyridine; IntechOpen: London, UK, 2018; pp. 9–26. ISBN 978-1-78923-423-7. [Google Scholar]
- Tahir, T.; Ashfaq, M.; Saleem, M.; Rafiq, M.; Shahzad, M.I.; Kotwica-Mojzych, K.; Mojzych, M. Pyridine Scaffolds, Phenols and Derivatives of Azo Moiety: Current Therapeutic Perspectives. Molecules 2021, 26, 4872. [Google Scholar] [CrossRef]
- Rizk, O.H.; Teleb, M.; Abu-Serie, M.M.; Shaaban, O.G. Dual VEGFR-2/PIM-1 Kinase Inhibition towards Surmounting the Resistance to Antiangiogenic Agents via Hybrid Pyridine and Thienopyridine-Based Scaffolds: Design, Synthesis and Biological Evaluation. Bioorganic Chem. 2019, 92, 103189. [Google Scholar] [CrossRef] [PubMed]
- Zscherp, R.; Baumeister, S.; Schepmann, D.; Wünsch, B. Pyridine Bioisosteres of Potent GluN2B Subunit Containing NMDA Receptor Antagonists with Benzo[7]Annulene Scaffold. Eur. J. Med. Chem. 2018, 157, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Mishra, R.; Mazumder, R.; Mazumder, A. Current Market Potential and Prospects of Copper-Based Pyridine Derivatives: A Review. Curr. Mol. Med. 2024, 24, 1111–1123. [Google Scholar] [CrossRef]
- Villa-Reyna, A.-L.; Perez-Velazquez, M.; González-Félix, M.L.; Gálvez-Ruiz, J.-C.; Gonzalez-Mosquera, D.M.; Valencia, D.; Ballesteros-Monreal, M.G.; Aguilar-Martínez, M.; Leyva-Peralta, M.-A. The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives. Int. J. Mol. Sci. 2024, 25, 7640. [Google Scholar] [CrossRef]
- Tyagi, R.; Yadav, K.; Srivastava, N.; Sagar, R. Applications of Pyrrole and Pyridine-Based Heterocycles in Cancer Diagnosis and Treatment. Curr. Pharm. Des. 2024, 30, 255–277. [Google Scholar] [CrossRef]
- Scharfetter, J.; Fischer, P. QTc Veränderungen bei intravenöser Akutsedierung mit Haloperidol, Prothipendyl und Lorazepam. Neuropsychiatrie 2014, 28, 1–5. [Google Scholar] [CrossRef]
- Kramer, M.; Heese, P.; Banger, M.; Madea, B.; Hess, C. Range of Therapeutic Prothipendyl and Prothipendyl Sulfoxide Concentrations in Clinical Blood Samples. Drug Test Anal. 2018, 10, 1009–1016. [Google Scholar] [CrossRef]
- Kaur, P.; Chu, J.J.H. Chikungunya Virus: An Update on Antiviral Development and Challenges. Drug Discov. Today 2013, 18, 969–983. [Google Scholar] [CrossRef] [PubMed]
- Morak-Młodawska, B.; Jeleń, M.; Pluta, K. Phenothiazines Modified with the Pyridine Ring as Promising Anticancer Agents. Life 2021, 11, 206. [Google Scholar] [CrossRef]
- Skonieczna, M.; Kasprzycka, A.; Jeleń, M.; Morak-Młodawska, B. Tri- and Pentacyclic Azaphenothiazine as Pro-Apoptotic Agents in Lung Carcinoma with a Protective Potential to Healthy Cell Lines. Molecules 2022, 27, 5255. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Pluta, K.; Latocha, M.; Jeleń, M.; Kuśmierz, D. Design, Synthesis, and Structural Characterization of Novel Diazaphenothiazines with 1,2,3-Triazole Substituents as Promising Antiproliferative Agents. Molecules 2019, 24, 4388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ming, C.; Zhang, W.; Nwabueze Okechukwu, P.; Morak-Mlodawska, B.; Pluta, K.; Jeleń, M.; Md. Akim, A.; Ang, K.-P.; Ooi, K.K. 10H-3,6-Diazaphenothiazine Induces G2/M Phase Cell Cycle Arrest and Caspase-Dependent Apoptosis and Inhibits Cell Invasion of A2780 Ovarian Carcinoma Cells through the Regulation of NF-κ B and (BIRC6-XIAP) Complexes. Drug Des. Devel. Ther. 2017, 11, 3045–3063. [Google Scholar]
- Morak-Młodawska, B.; Pluta, K.; Latocha, M.; Jeleń, M.; Kuśmierz, D.; Suwińska, K.; Shkurenko, A.; Czuba, Z.; Jurzak, M. 10H-1,9-Diazaphenothiazine and Its 10-Derivatives: Synthesis, Characterisation and Biological Evaluation as Potential Anticancer Agents. J. Enzyme Inhib. Med. Chem. 2019, 34, 1298–1306. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Pluta, K.; Latocha, M.; Jeleń, M.; Kuśmierz, D. Synthesis, Anticancer Activity, and Apoptosis Induction of Novel 3,6-Diazaphenothiazines. Molecules 2019, 24, 267. [Google Scholar] [CrossRef] [PubMed]
- Rodig, O.R.; Collier, R.E.; Schlatzer, R.K. Pyridine Chemistry. II. Further Studies on the Smiles Rearrangement of the 3-Amino-2,2’-Dipyridyl Sulfide System. The Synthesis of Some 1,6-Diazaphenothiazines1. J. Med. Chem. 1966, 9, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Pluta, K.; Jeleń, M.; Morak-Młodawska, B. The Smiles rearrangement in the syntheses of azaphenothiazines. Part I. J. Mol. Struct. 2020, 1204, 1–17. [Google Scholar] [CrossRef]
- Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Synthesis and Properties of Diaza-, Triaza-, and Tetraazaphenothiazines. J. Heterocycl. Chem. 2009, 46, 355–391. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2014; ISBN 978-0-470-61637-6. [Google Scholar]
- Respondek, M.; Beberok, A.; Rzepka, Z.; Rok, J.; Wrześniok, D. MIM1 induces COLO829 melanoma cell death through mitochondrial membrane breakdown, GSH depletion and DNA damage. Fundam. Clin. Pharmacol. 2020, 34, 20–31. [Google Scholar] [CrossRef]
- Respondek, M.; Beberok, A.; Rzepka, Z.; Rok, J.; Wrześniok, D. Mcl-1 inhibitor induces cel death in BRAF-mutant amelanotic melanoma through GSH depletion, DNA damage and cell cycle changes. Pathol. Oncol. Res. 2020, 26, 1465–1474. [Google Scholar] [CrossRef]
- Jeleń, M.; Otto-Ślusarczyk, D.; Morak-Młodawska, B.; Struga, M. Novel Tetracyclic Azaphenothiazines with the Quinoline Ring as New Anticancer and Antibacterial Derivatives of Chlorpromazine. Int. J. Mol. Sci. 2024, 25, 4148. [Google Scholar] [CrossRef]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of Glutathione Depletion in Cancer Therapy: Enhanced ROS-Based Therapy, Ferroptosis, and Chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular Mechanisms and Health Implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening Horizons: The Role of Ferroptosis in Cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296. [Google Scholar] [CrossRef]
- Beberok, A.; Rzepka, Z.; Rok, J.; Banach, K.; Wrześniok, D. UVA radiation enhances lomefloxacin-mediated cytotoxic, growth-inhibitory and pro-apoptotic effect in human melanoma cells through excessive reactive oxygen species generation. Int. J. Mol. Sci. 2020, 21, 8937. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Alshiraihi, I.; A Kato, T. Apoptosis Detection Assays. Methods Mol. Biol. 2023, 2519, 53–63. [Google Scholar]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochim. Biophys. Acta BBA Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Landes, T.; Martinou, J.-C. Mitochondrial Outer Membrane Permeabilization during Apoptosis: The Role of Mitochondrial Fission. Biochim. Biophys. Acta BBA Mol. Cell Res. 2011, 1813, 540–545. [Google Scholar] [CrossRef]
- Bell, C.E.; Taber, D.F.; Clark, A.K. Organic Chemistry Laboratory: Standard and Microscale Experiments- Hardcover, 3rd ed.; Cengage Learning: Boston, MA, USA, 2001; ISBN 978-0-03-029272-9. [Google Scholar]
- Cranwell, P.B.; Harwood, L.M.; Moody, C.J. Experimental Organic Chemistry, 3rd ed.; Wiley: Hoboken, NJ, USA, 2017; ISBN 978-1-119-95238-1. [Google Scholar]
- Hermann, C.K.F.; Morrill, T.C.; Shriner, R.L.; Fuson, R.C. The Systematic Identification of Organic Compounds, 9th ed.; Wiley: Hoboken, NJ, USA, 2023; ISBN 978-1-119-79968-9. [Google Scholar]
- Holzl, G.; Dormann, P. Thin-Layer Chromatography. In Plant Lipids; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2021; pp. 29–41. [Google Scholar]
A | |||||
---|---|---|---|---|---|
Sample | IC50 Values (µM) | ||||
A375 | C32 | G361 | COLO829 | HDF | |
B6 | 225.6 | 94.31 | 134.1 | 262.2 | 83.13 |
B7 | 235.3 | 91.38 | 194.1 | 291.9 | 55.44 |
B8 | 392.6 | 129.1 | 168.3 | 220.3 | N/D |
B9 | 697.8 | 120.2 | 116.4 | 135.6 | 57.43 |
B10 | 511.1 | 95.8 | 131.7 | 177.6 | 1930.0 |
B | |||||
Sample | A375 | C32 | G361 | COLO829 | HDF |
B6 | 97.85 | 76.1 | 56.25 | 59.04 | 40.05 |
B7 | 99.55 | 89.65 | 75.37 | 64.81 | 31.73 |
B8 | 165.9 | 105.3 | 79.94 | 64.09 | 142.3 |
B9 | 171.2 | 167.2 | 97.01 | 61.45 | 22.24 |
B10 | 109.3 | 87.01 | 100.2 | 75.5 | 931.9 |
C | |||||
Sample | A375 | C32 | G361 | COLO829 | HDF |
B6 | 39.95 | 18.14 | 22.85 | 30.15 | 31.95 |
B7 | 17.64 | 22.23 | 41.58 | 35.46 | 30.5 |
B8 | 91.19 | 59.61 | 24.57 | 31.44 | 125.2 |
B9 | 137.5 | 66.41 | 56.97 | 49.52 | 11.31 |
B10 | 60.39 | 42.68 | 43.02 | 36.96 | 656.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morak-Młodawska, B.; Martula, E.; Jeleń, M.; Beberok, A.; Rzepka, Z.; Musiał, S.; Małek, S.; Karkoszka-Stanowska, M.; Wrześniok, D. Novel 3-Methyl-1,6-Diazaphenothiazine as an Anticancer Agent—Synthesis, Structure, and In Vitro Anticancer Evaluation. Molecules 2025, 30, 2779. https://doi.org/10.3390/molecules30132779
Morak-Młodawska B, Martula E, Jeleń M, Beberok A, Rzepka Z, Musiał S, Małek S, Karkoszka-Stanowska M, Wrześniok D. Novel 3-Methyl-1,6-Diazaphenothiazine as an Anticancer Agent—Synthesis, Structure, and In Vitro Anticancer Evaluation. Molecules. 2025; 30(13):2779. https://doi.org/10.3390/molecules30132779
Chicago/Turabian StyleMorak-Młodawska, Beata, Emilia Martula, Małgorzata Jeleń, Artur Beberok, Zuzanna Rzepka, Sebastian Musiał, Szymon Małek, Marta Karkoszka-Stanowska, and Dorota Wrześniok. 2025. "Novel 3-Methyl-1,6-Diazaphenothiazine as an Anticancer Agent—Synthesis, Structure, and In Vitro Anticancer Evaluation" Molecules 30, no. 13: 2779. https://doi.org/10.3390/molecules30132779
APA StyleMorak-Młodawska, B., Martula, E., Jeleń, M., Beberok, A., Rzepka, Z., Musiał, S., Małek, S., Karkoszka-Stanowska, M., & Wrześniok, D. (2025). Novel 3-Methyl-1,6-Diazaphenothiazine as an Anticancer Agent—Synthesis, Structure, and In Vitro Anticancer Evaluation. Molecules, 30(13), 2779. https://doi.org/10.3390/molecules30132779