Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,978)

Search Parameters:
Keywords = computer fluid dynamics (CFD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4102 KB  
Article
Study on Gas–Solid Particle Dynamics and Optimal Drilling Parameters in Reverse Circulation DTH Drilling Based on CFD and Machine Learning
by Kunkun Li, Jing Zhou, Peizhi Yu, Hao Wu and Tianhao Xu
Appl. Sci. 2026, 16(3), 1253; https://doi.org/10.3390/app16031253 - 26 Jan 2026
Abstract
The reverse circulation pneumatic down-the-hole (DTH) drilling system employs percussive drilling to achieve high efficiency and strong adaptability across diverse rock formations. However, its cutting removal efficiency remains suboptimal. To enhance reverse circulation performance, a comprehensive understanding of airflow and solid particle dynamics [...] Read more.
The reverse circulation pneumatic down-the-hole (DTH) drilling system employs percussive drilling to achieve high efficiency and strong adaptability across diverse rock formations. However, its cutting removal efficiency remains suboptimal. To enhance reverse circulation performance, a comprehensive understanding of airflow and solid particle dynamics at the borehole bottom is essential. This study investigates rock cutting transportation and distribution under varying drilling parameters and evaluates reverse circulation flow ratio using a Computational Fluid Dynamics (CFD) multiphase flow model, coupled with finite volume analysis of the reverse circulation bit. Simulation results reveal that increasing the input gas flow rate (Q), reducing the equivalent particle diameter (D), and minimizing the borehole enlargement ratio (E) significantly improve cutting removal efficiency, with optimal values identified for each parameter. Additionally, solid volume fraction contours at the borehole bottom indicate that the arrangement of spherical teeth influences the flow field. Optimal values for rock cutting density (ρ), rate of penetration (ROP), and rotational speed (N) were also determined to maximize reverse circulation flow ratio. The Genetic Algorithm–Least Squares Support Vector Machine (GA-LSSVM) method was used to train the response surface data and construct a predictive model, which was then further optimized using Particle Swarm Optimization (PSO) to determine accurate parameter settings. These findings provide operational insights into optimizing drilling parameters to advance efficient drilling performance. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

22 pages, 6089 KB  
Article
Influence of Inner Diameter and Pleat Number on Oil Filter Performance
by Xiaomin Zhou, Liangyu Li, Jiayao Wang, Run Zou, Tiexiong Su and Yi Zhang
Processes 2026, 14(3), 426; https://doi.org/10.3390/pr14030426 - 26 Jan 2026
Abstract
To address the limitation of existing research on engine oil filter structural parameters—overemphasizing pressure drop while neglecting internal flow uniformity and filter media utilization—this study establishes a three-dimensional Computational Fluid Dynamics (CFD) model of a pleated oil filter for a certain type. With [...] Read more.
To address the limitation of existing research on engine oil filter structural parameters—overemphasizing pressure drop while neglecting internal flow uniformity and filter media utilization—this study establishes a three-dimensional Computational Fluid Dynamics (CFD) model of a pleated oil filter for a certain type. With other structural and material parameters fixed, nine inner diameter schemes (60–84 mm) and seven pleat number schemes (50–80) were designed to systematically investigate their effects on pressure drop, flow uniformity, and media utilization via numerical simulations and experimental validation. The results show that pressure drop decreases monotonically with increasing inner diameter, with smaller diameters being more sensitive to flow rate variations; flow uniformity improves nonlinearly, with severe jets and large dead zones causing poor uniformity for smaller diameters, while uniformity is significantly enhanced with larger diameters, though marginal benefits diminish after a critical threshold. In contrast, pressure drop increases monotonically with more pleats, and higher pleat numbers are more sensitive to resistance changes; flow uniformity follows a threshold effect—deteriorating gradually without extensive dead zones for fewer pleats (maintaining high utilization) but declining sharply beyond a threshold due to narrowed inter-pleat spacing inducing intense jets and expanded dead zones. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

34 pages, 7114 KB  
Article
CFD Analysis of Equivalence Ratio Effects on Combustion and Emissions in a Methanol–Diesel Dual-Fuel Marine Engine
by Van Chien Pham, Van Vang Le, Jae-Hyuk Choi and Won-Ju Lee
Energies 2026, 19(3), 626; https://doi.org/10.3390/en19030626 - 25 Jan 2026
Abstract
Methanol is a promising alternative marine fuel due to its favorable combustion characteristics and potential to reduce exhaust emissions under increasingly stringent International Maritime Organization (IMO) regulations. This study presents a three-dimensional computational fluid dynamics (CFD) analysis of a four-stroke, medium-speed marine engine [...] Read more.
Methanol is a promising alternative marine fuel due to its favorable combustion characteristics and potential to reduce exhaust emissions under increasingly stringent International Maritime Organization (IMO) regulations. This study presents a three-dimensional computational fluid dynamics (CFD) analysis of a four-stroke, medium-speed marine engine operating in methanol–diesel dual-fuel (DF) mode. Simulations were performed using AVL FIRE for a MAN B&W 6H35DF engine, covering the in-cylinder process from intake valve closing to exhaust valve opening. Nine operating cases were investigated, including seven methanol–diesel DF cases with equivalence ratios (Φ) from 0.18 to 0.30, one methane–diesel DF case (Φ = 0.22), and one pure diesel baseline. A power-matched condition (IMEP ≈ 20 bar) enabled consistent comparison among fueling strategies. The results show that methanol–diesel DF operation reduces peak in-cylinder pressure, heat-release rate, turbulent kinetic energy, and wall heat losses compared with diesel operation. At low to moderate Φ, methanol DF combustion significantly suppresses nitric oxide (NO), soot, and carbon monoxide (CO emissions), while carbon dioxide (CO2) emissions increase with Φ and approach diesel levels under power-matched conditions. These results highlight methanol’s potential as a viable low-carbon fuel for marine engines. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

25 pages, 1917 KB  
Article
A Study on Paste Flow and Pipe Wear in Cemented Paste Backfill Pipelines
by Xiangyu Xie, Scott Cheevers, Y. X. Zhang, Kejun Dong, Zhongpu (Leo) Zhang, Dean Harty, Andrew Stonier-Gibson and Richard (Chunhui) Yang
Appl. Sci. 2026, 16(3), 1217; https://doi.org/10.3390/app16031217 - 24 Jan 2026
Viewed by 47
Abstract
Cemented paste backfill (CPB) is widely used in mining operations to enhance underground stope stability, production, and safety. Accurately predicting paste flow behaviours in backfill reticulation circuits is crucial for efficient delivery control and asset longevity. However, the predictions remain challenging due to [...] Read more.
Cemented paste backfill (CPB) is widely used in mining operations to enhance underground stope stability, production, and safety. Accurately predicting paste flow behaviours in backfill reticulation circuits is crucial for efficient delivery control and asset longevity. However, the predictions remain challenging due to complex rheology and flow-induced particle heterogeneities of CPB. This study develops a computational fluid dynamics (CFD)-based analysis framework to investigate flow dynamics of the CPB and the wear conditions of the pipes, considering slip layer and shear-induced particle migration. Experimental loop tests are conducted to measure pressure drops of CPB at different velocities, providing data for validating the developed CFD model. Simulation results are in good agreement with the measured pressure drops and wear rates of the internal pipeline wall. Furthermore, comparisons with existing models indicate that the developed model provides more accurate predictions. Microscopical analyses reveal that shear-induced particle migration leads to the formation of a distinct plug flow region, with particles accumulating near the unyielded boundary. Meanwhile, a low particle concentration near the pipe wall reduces local viscosity and pressure drop. Parametric studies reveal that increased flow velocity and reduced pipe diameter significantly elevate both pressure drop and wear rate, while higher solid concentrations induce nonlinear rheological effects. Full article
22 pages, 6646 KB  
Article
Optimal Design of Horizontal-Axis Tidal Turbine Rotor Based on the Orthogonal Test Method
by Xiaojun Zhang, Yan Liu, Cui Wang, Wankun Wang and Honggang Fan
Energies 2026, 19(3), 613; https://doi.org/10.3390/en19030613 - 24 Jan 2026
Viewed by 105
Abstract
The horizontal-axis tidal turbine is a representative device for harnessing ocean tidal energy, and the structural optimization of its blades is crucial for enhancing the power capture efficiency. In this work, the twist and chord distributions of the blade are determined using an [...] Read more.
The horizontal-axis tidal turbine is a representative device for harnessing ocean tidal energy, and the structural optimization of its blades is crucial for enhancing the power capture efficiency. In this work, the twist and chord distributions of the blade are determined using an improved Blade Element Momentum (BEM) approach, in which tip and hub loss factors are employed to enhance the modeling accuracy, and these results are employed to construct a parametric model of the original rotor. Due to its simplified assumptions and inability to capture three-dimensional flow effects, computational fluid dynamics (CFD) simulations were carried out to evaluate the hydrodynamic performance and flow analysis of the designed rotor. Further, the orthogonal test method was used to optimize the hydraulic performance of the rotor. Three optimization parameters, namely hub diameter, airfoil type, and maximum airfoil thickness, were set with three levels. Based on the orthogonal design scheme, nine rotor configurations were generated, and their energy capture characteristics and flow fields were subsequently evaluated through numerical simulations. The analysis indicates that the choice of airfoil exerts the strongest impact on the rotor’s energy capture efficiency, while the influences of maximum airfoil thickness and hub diameter follow in descending order. Consequently, the optimized rotor adopts a NACA63-415 airfoil with a reduced maximum thickness of 0.9 T0 and an intermediate hub diameter of 15%R, achieving a power coefficient of 0.445 at the design tip-speed ratio of 4, corresponding to a 3.08% improvement compared with the original design. Flow field analysis demonstrates that the optimized geometry promotes a more uniform spanwise pressure distribution and effectively suppresses flow separation, thereby enhancing the overall hydrodynamic efficiency. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

40 pages, 4616 KB  
Article
Model Predictive Control for Dynamic Positioning of a Fireboat Considering Non-Linear Environmental Disturbances and Water Cannon Reaction Forces Based on Numerical Modeling
by Dabin Lee and Sewon Kim
Mathematics 2026, 14(3), 401; https://doi.org/10.3390/math14030401 - 23 Jan 2026
Viewed by 61
Abstract
Dynamic positioning (DP) systems play a critical role in maintaining vessel position and heading under environmental disturbances such as wind, waves, and currents. This study presents a model predictive control (MPC)-based DP system for a fireboat equipped with a rudder–propeller configuration, explicitly accounting [...] Read more.
Dynamic positioning (DP) systems play a critical role in maintaining vessel position and heading under environmental disturbances such as wind, waves, and currents. This study presents a model predictive control (MPC)-based DP system for a fireboat equipped with a rudder–propeller configuration, explicitly accounting for both environmental loads and the reaction force generated during water cannon operation. Unlike conventional DP architectures in which DP control and thrust allocation are treated as separate modules, the proposed framework integrates both functions within a unified MPC formulation, enabling real-time optimization under actuator constraints. Environmental loads are modeled by incorporating nonlinear second-order wave drift effects, while nonlinear rudder–propeller interaction forces are derived through computational fluid dynamics (CFD) analysis and embedded in a control-oriented dynamic model. This modeling approach allows operational constraints, including rudder angle limits and propeller thrust saturation, to be explicitly considered in the control formulation. Simulation results demonstrate that the proposed MPC-based DP system achieves improved station-keeping accuracy, enhanced stability, and increased robustness against combined environmental disturbances and water cannon reaction forces, compared to a conventional PID controller. Full article
(This article belongs to the Special Issue High-Order Numerical Methods and Computational Fluid Dynamics)
22 pages, 3978 KB  
Article
A Computational Framework for FFR Estimation in Right Coronary Arteries: From CFD Simulation to Clinical Validation
by Francisco P. Oliveira, Maria Fernandes, Nuno Dias Ferreira, Diogo Santos-Ferreira, Saima Mushtaq, Gianluca Pontone, Ricardo Ladeiras-Lopes, Nuno Bettencourt, Luísa C. Sousa and Sónia I. S. Pinto
Mathematics 2026, 14(3), 395; https://doi.org/10.3390/math14030395 - 23 Jan 2026
Viewed by 51
Abstract
Coronary artery disease (CAD) remains the leading cause of cardiovascular mortality worldwide. Accurate and non-invasive quantification of coronary hemodynamics, namely in the right coronary artery (RCA), is essential for clinical decision-making but remains challenging due to the complex interaction among vessel geometry, pulsatile [...] Read more.
Coronary artery disease (CAD) remains the leading cause of cardiovascular mortality worldwide. Accurate and non-invasive quantification of coronary hemodynamics, namely in the right coronary artery (RCA), is essential for clinical decision-making but remains challenging due to the complex interaction among vessel geometry, pulsatile flow, and blood rheology. This study presents and validates a transparent computational framework for non-invasive fractional flow reserve (FFR) estimation using patient-specific RCA geometries reconstructed from coronary computed tomography angiography (CCTA) using SimVascular 27-03-2023. The proposed workflow integrates realistic boundary conditions through a Womersley velocity profile and a three-element Windkessel outlet model, coupled with a viscoelastic blood rheology formulation (sPTT) implemented via user-defined functions (UDFs). This work integrates all clinically relevant conditions of invasive FFR assessment into a single patient-specific computational framework, while delivering results within a time frame compatible with clinical practice, representing a meaningful methodological advance. The methodology was applied to seven patient-specific cases, and the resulting non-invasive FFR values were compared with both invasive wire-based measurements and commercial HeartFlow® outputs (Mountain View, CA, USA). Under hyperemic conditions, the computed FFR values showed strong agreement with invasive references, with a mean relative error of 8.4% ± 6.3%, showing diagnostic consistency similar to that of HeartFlow® (8.3% ± 8.1%) for the selected dataset. These findings demonstrate the ability of the proposed CFD-based pipeline to accurately replicate physiological coronary behavior under hyperemia. This novel workflow provides a fully on-site, open-source, reproducible, and cost-effective framework. Ultimately, this study advances the clinical applicability of non-invasive CFD tools for the functional assessment of CAD, particularly in the RCA. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

24 pages, 5025 KB  
Article
Erosive Wear Mitigation Using 3D-Printed Twisted Tape Insert Under Liquid–Solid Flow
by Hammad Subhani, Rehan Khan and Darko Damjanović
Materials 2026, 19(3), 453; https://doi.org/10.3390/ma19030453 - 23 Jan 2026
Viewed by 195
Abstract
This study examines whether twisted tape inserts in a pipe system can reduce pipe erosion under a liquid–solid flow regime. Three different twisted tape configurations were designed using 3D printing technology: tapes with one twist, four twists, and four twists with perforations. Experiments [...] Read more.
This study examines whether twisted tape inserts in a pipe system can reduce pipe erosion under a liquid–solid flow regime. Three different twisted tape configurations were designed using 3D printing technology: tapes with one twist, four twists, and four twists with perforations. Experiments were performed using a PVC pipe with a carbon steel plate as the material under investigation. Slurries of water and silica sand were prepared with varying sand concentrations—1%, 3%, and 5%—to induce different erosion rates. The experimental results were backed by Computational Fluid Dynamics (CFD) using the discrete phase model (DPM) to predict particle flow and erosion attributes. Erosion trends were also tested through mass loss and paint loss tests. The analysis outcomes demonstrated that the one-twist, four-twist, and perforated four-twist tapes reduced the erosion rate by 18%, 39%, and 45%, respectively. Among the different configurations, the four-twist tape with holes reduced erosion the most. These results suggest that twisted tape inserts can control erosion, thereby increasing the service life of pipes that handle abrasive flows. Full article
(This article belongs to the Special Issue Friction, Wear and Surface Engineering of Materials)
Show Figures

Graphical abstract

47 pages, 2601 KB  
Review
A Review of AI-Driven Engineering Modelling and Optimization: Methodologies, Applications and Future Directions
by Jian-Ping Li, Nereida Polovina and Savas Konur
Algorithms 2026, 19(2), 93; https://doi.org/10.3390/a19020093 (registering DOI) - 23 Jan 2026
Viewed by 63
Abstract
Engineering is suffering a significant change driven by the integration of artificial intelligence (AI) into engineering optimization in design, analysis, and operational efficiency across numerous disciplines. This review synthesizes the current landscape of AI-driven optimization methodologies and their impacts on engineering applications. In [...] Read more.
Engineering is suffering a significant change driven by the integration of artificial intelligence (AI) into engineering optimization in design, analysis, and operational efficiency across numerous disciplines. This review synthesizes the current landscape of AI-driven optimization methodologies and their impacts on engineering applications. In the literature, several frameworks for AI-based engineering optimization have been identified: (1) machine learning models are trained as objective and constraint functions for optimization problems; (2) machine learning techniques are used to improve the efficiency of optimization algorithms; (3) neural networks approximate complex simulation models such as finite element analysis (FEA) and computational fluid dynamics (CFD) and this makes it possible to optimize complex engineering systems; and (4) machine learning predicts design parameters/initial solutions that are subsequently optimized. Fundamental AI technologies, such as artificial neural networks and deep learning, are examined in this paper, along with commonly used AI-assisted optimization strategies. Representative applications of AI-driven engineering optimization have been surveyed in this paper across multiple fields, including mechanical and aerospace engineering, civil engineering, electrical and computer engineering, chemical and materials engineering, energy and management. These studies demonstrate how AI enables significant improvements in computational modelling, predictive analytics, and generative design while effectively handling complex multi-objective constraints. Despite these advancements, challenges remain in areas such as data quality, model interpretability, and computational cost, particularly in real-time environments. Through a systematic analysis of recent case studies and emerging trends, this paper provides a critical assessment of the state of the art and identifies promising research directions, including physics-informed neural networks, digital twins, and human–AI collaborative optimization frameworks. The findings highlight AI’s potential to redefine engineering optimization paradigms, while emphasizing the need for robust, scalable, and ethically aligned implementations. Full article
(This article belongs to the Special Issue AI-Driven Engineering Optimization)
21 pages, 2949 KB  
Article
Numerical Simulations and Experimental Tests for Tailored Tidal Turbine Design
by Pietro Scandura, Stefano Mauro, Michele Messina and Sebastian Brusca
J. Mar. Sci. Eng. 2026, 14(3), 236; https://doi.org/10.3390/jmse14030236 - 23 Jan 2026
Viewed by 82
Abstract
This paper outlines the design and testing of a horizontal-axis tidal turbine (HATT) at a scale of 1:20, employing numerical simulations and experimental validation. The design employed an in-house code based on the Blade Element Momentum (BEM) theory. As reliable lift and drag [...] Read more.
This paper outlines the design and testing of a horizontal-axis tidal turbine (HATT) at a scale of 1:20, employing numerical simulations and experimental validation. The design employed an in-house code based on the Blade Element Momentum (BEM) theory. As reliable lift and drag coefficients for this scale are not present in the literature due to the low Reynolds number of the airfoil, Computational Fluid Dynamics (CFD) simulations were conducted to generate accurate polar diagrams for the NACA 4412 airfoil. The turbine was then 3D-printed and the rotor tested in a subsonic wind tunnel at various fixed rotational speeds to determine the power coefficient. Fluid dynamic similarity was achieved by matching the Reynolds number and tip-speed ratio in air to their values in water. Three-dimensional CFD simulations were also performed, yielding turbine efficiency results that agreed fairly well with the experimental data. However, both the experimental and numerical simulation results indicated a higher power coefficient than that predicted by BEM theory. The CFD results revealed the presence of radial velocity components and vortex structures that could reduce flow separation. The BEM model does not capture these phenomena, which explains why the power coefficient detected by experiments and numerical simulations is larger than that predicted by the BEM theory. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

20 pages, 3644 KB  
Article
Influence of CFD Modelling Parameters on Air Injection Behaviour in Ship Air Lubrication Systems
by Gyeongseo Min, Haechan Yun, Younguk Do, Kangmin Kim, Keounghyun Jung, Saishuai Dai, Mehmet Atlar, Daejeong Kim, Seungnam Kim, Sanghyun Kim and Soonseok Song
J. Mar. Sci. Eng. 2026, 14(2), 234; https://doi.org/10.3390/jmse14020234 - 22 Jan 2026
Viewed by 40
Abstract
In response to the International Maritime Organization’s strengthened regulations on carbon emissions, the introduction of novel eco-friendly technologies for ship operators has become necessary. In this context, various energy saving devices such as wind-assisted propulsion systems (e.g., wing/rotor sails), propeller-rudder efficiency enhancers (e.g., [...] Read more.
In response to the International Maritime Organization’s strengthened regulations on carbon emissions, the introduction of novel eco-friendly technologies for ship operators has become necessary. In this context, various energy saving devices such as wind-assisted propulsion systems (e.g., wing/rotor sails), propeller-rudder efficiency enhancers (e.g., pre-swirl stators or ducted propellers), and the gate rudder system have been proposed. Among various energy-saving technologies, the air lubrication system has been widely investigated as an effective means of reducing hull frictional resistance through air injection beneath the hull. The performance of air lubrication systems can be evaluated through experimental testing or computational fluid dynamics (CFD) simulations. However, accurately simulating air lubrication systems in CFD remains challenging. Therefore, this study aims to quantitatively evaluate the influence of numerical parameters on the CFD implementation of air lubrication systems. To evaluate these influences, CFD simulations employing the unsteady Reynolds-averaged Navier–Stokes (URANS) method were conducted to investigate air layer formation and sweep angle on a flat plate. The numerical predictions were systematically compared with experimental results by varying key numerical parameters. These quantitative estimations of the effects of numerical variables are expected to serve as a useful benchmark for CFD simulations of air lubrication systems. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

22 pages, 5497 KB  
Article
Numerical Study of Combustion in a Methane–Hydrogen Co-Fired W-Shaped Radiant Tube Burner
by Daun Jeong, Seongbong Ha, Jeongwon Seo, Jinyeol Ahn, Dongkyu Lee, Byeongyun Bae, Jongseo Kwon and Gwang G. Lee
Energies 2026, 19(2), 557; https://doi.org/10.3390/en19020557 - 22 Jan 2026
Viewed by 46
Abstract
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess [...] Read more.
Three-dimensional computational fluid dynamics (CFD) simulation was performed using the eddy-dissipation concept coupled with detailed hydrogen oxidation kinetics and a reduced two-step methane mechanism for a newly proposed W-shaped radiant tube burner (RTB). The effects of the hydrogen volume fraction (0–100%) and excess air ratio (0%, 10%, 20%) on the flame morphology, temperature distribution, and NOX emissions are systematically analyzed. The results deliver three main points. First, a flame-shape transformation was identified in which the near-injector flame changes from a triangular attached mode to a splitting mode as the mixture reactivity increases with the transition occurring at a characteristic laminar flame speed window of about 0.33 to 0.36 m/s. Second, NOX shows non-monotonic behavior with dilution, and 10% excess air can produce higher NOX than 0% or 20% because OH radical enhancement locally promotes thermal NO pathways despite partial cooling. Third, a multi-parameter coupling strategy was established showing that hydrogen enrichment raises the maximum gas temperature by roughly 100 to 200 K from 0% to 100% H2, while higher excess air improves axial temperature uniformity and can suppress NOX if over-dilution is avoided. These findings provide a quantitative operating map for balancing stability, uniform heating, and NOX–CO trade-offs in hydrogen-enriched industrial RTBs. Full article
Show Figures

Figure 1

30 pages, 6495 KB  
Article
Wind and Snow Protection Design and Optimization for Tunnel Portals in Central Asian Alpine Mountains
by Bin Zhi, Changwei Li, Xiaojing Xu, Zhanping Song and Ang Jiao
Buildings 2026, 16(2), 454; https://doi.org/10.3390/buildings16020454 - 21 Jan 2026
Viewed by 65
Abstract
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core [...] Read more.
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core control parameters of wind deflectors, namely horizontal distance from the tunnel portal (L), plate inclination angle (β), and top installation height (h), were selected as the research objects. Single-factor numerical simulation scenarios were designed for each parameter, and an L9(33) orthogonal test was further adopted to formulate 9 groups of multi-parameter combination scenarios, with the snow phase volume fraction at 35 m on the leeward side of the tunnel portal set as the core evaluation index. A computational fluid dynamics (CFD) model was established to systematically investigate the influence laws of each parameter on the wind field structure and snow drift deposition characteristics at tunnel portals and clarify the flow field response rules under different parameter configurations. Single-factor simulation results show that the wind deflector exerts distinct regulatory effects on the wind-snow flow field with different parameter settings: when L = 6 m, the disturbance zone of the wind deflector precisely covers the main wind flow development area in front of the tunnel portal, which effectively lifts the main incoming flow path, compresses the recirculation zone (length reduced from 45.8 m to 22.3 m), and reduces the settlement of snow particles, achieving the optimal comprehensive prevention effect; when β = 60°, the leeward wind speed at the tunnel portal is significantly increased to 10–12 m/s (from below 10 m/s), which effectively promotes the transport of snow particles and mitigates the accumulation risk, being the optimal inclination angle; when h = 2 m, the wind speed on both the windward and leeward sides of the tunnel portal is significantly improved, and the snow accumulation risk at the portal reaches the minimum. Orthogonal test results further quantify the influence degree of each parameter on the snow prevention effect, revealing that the horizontal distance from the tunnel portal is the most significant influencing factor. The optimal parameter combination of the wind deflector is determined as L = 6 m, β = 60°, and h = 2 m. Under this optimal combination, the snow phase volume fraction at 35 m on the leeward side of the tunnel portal is 0.0505, a 12.3% reduction compared with the non-deflector condition; the high-concentration snow accumulation zone is shifted 25 m leeward, and the high-value snow phase volume fraction area (>0.06) disappears completely, which can effectively alleviate the adverse impact of wind-blown snow disasters on the normal operation of tunnel portals. The research results reveal the regulation mechanism of wind deflector parameters on the wind-snow flow field at alpine tunnel portals and determine the optimal protective parameter combination, which can provide important theoretical reference and technical support for the prevention and control of wind-blown snow disasters at tunnel portals in similar alpine mountainous areas. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

33 pages, 8288 KB  
Article
Automatic Structured Mesh Generation Method for Airfoil Configuration Based on Parametric Multi-Block Topology
by Meng Jiang, Zibin Zhao, Jianqiang Chen, Meiliang Mao and Yan Sun
Appl. Sci. 2026, 16(2), 1116; https://doi.org/10.3390/app16021116 - 21 Jan 2026
Viewed by 59
Abstract
This paper reports on a fully automatic structured Computational Fluid Dynamics (CFD) mesh generation method based on a parametric multi-block topology for airfoil configurations. The method parameterizes the control vertices and the control edges, which construct the multi-block topology, and then assembles blocks [...] Read more.
This paper reports on a fully automatic structured Computational Fluid Dynamics (CFD) mesh generation method based on a parametric multi-block topology for airfoil configurations. The method parameterizes the control vertices and the control edges, which construct the multi-block topology, and then assembles blocks with the control edges. Once the airfoil shape is determined, the topology is immediately updated based on the parameterization, and the CFD mesh of the airfoil is generated using transfinite interpolation. The present method is tested on airfoils with different topologies, shapes, and mesh sizes to check its robustness, efficiency, and quality. The test results show that the mesh of an airfoil of any shape can be generated automatically with high quality. In addition, an airfoil CFD mesh with about 50 million nodes can be automatically generated in less than ten seconds on a laptop, and the Jacobi of over 97% of the mesh cells is larger than 0.9. The flow simulation results for the NACA0012 airfoil agree well with the wind-tunnel test data, demonstrating the method’s applicability to CFD. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

21 pages, 4135 KB  
Article
Numerical Modeling of Wind-Induced Deformation in Eastern Red Cedar Tree Forms Using Fluid–Structure Interaction Analysis
by Ahmet Ayaz and Mahdi Tabatabaei Malazi
Symmetry 2026, 18(1), 203; https://doi.org/10.3390/sym18010203 - 21 Jan 2026
Viewed by 82
Abstract
This research aims to investigate wind-induced effects numerically in full-scale Eastern Red Cedar tree (ERCT) forms under various wind speeds. A total of 72 model cases were carefully analyzed for variations in crown lengths (CLs), canopy diameters (CDs), bole lengths (BLs), and trunk [...] Read more.
This research aims to investigate wind-induced effects numerically in full-scale Eastern Red Cedar tree (ERCT) forms under various wind speeds. A total of 72 model cases were carefully analyzed for variations in crown lengths (CLs), canopy diameters (CDs), bole lengths (BLs), and trunk diameters (TDs) at wind speeds ranging from 15 m/s to 30 m/s. The realizable k–ε turbulence model is employed to resolve the flow region and obtain drag force (FD), velocity, and pressure distributions within the computational fluid domain. The resulting aerodynamic loads are then transferred to ERCT models using a one-way fluid–structure interaction (one-way FSI) approach to predict deformation, stress, and strain in the solid zone. The accuracy of these findings was validated by comparing drag coefficient (CD) results with those from previously conducted studies. Research results reveal that wind speed and the geometric dimensions of the tree notably influence the FD, deformation, strain, and stress experienced by the tree. When wind speed rises from 15 to 30 m/s, the amount of FD, deformation, strain, and stress increases on the ERCT. The present research helps improve the understanding of tree patterns impacted by wind, which is essential for urban design and planning. It provides guidance on how to choose and arrange necessary real trees for efficient windbreaks and comfortable surroundings in life. Full article
(This article belongs to the Special Issue Symmetry in Computational Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop