Influence of Inner Diameter and Pleat Number on Oil Filter Performance
Abstract
1. Introduction
2. Methods and Experimental Verification
2.1. Governing Equations
- (1)
- Continuity equation.
- (2)
- Momentum conservation equation.
2.2. Boundary Conditions and Computational Model
2.3. Geometric Model and Mesh Generation
2.3.1. Establishment of Geometric Model
2.3.2. Grid Independence Verification
2.4. Experimental Validation
3. Results and Discussion
3.1. Analysis of Factors Influencing Flow Uniformity
3.1.1. Influence of Inner Diameter on Flow Uniformity
3.1.2. Influence of Pleat Number on Flow Uniformity
3.2. Analysis of Influencing Factors of Pressure Drop
3.2.1. Influence of Inner Diameter on Pressure Drop
3.2.2. Influence of Pleat Number on Pressure Drop
4. Conclusions
- (1)
- The geometric constraints of the filter cavity (governed by inner diameter and pleat number) and the resulting flow separation (localized jet flows and stagnant dead zones) are the primary reasons for non-uniform flow and energy loss in the oil filter. The inner diameter determines the radial pleat height and effective flow area, while the pleat number affects inter-pleat spacing and flow channel configuration. Both parameters directly regulate fluid inertia, turbulent diffusion, and momentum transfer, thereby dominating flow uniformity and pressure drop characteristics.
- (2)
- The pressure drop of the filter decreases monotonically with increasing inner diameter, and smaller inner diameters are more sensitive to flow rate variations. Flow uniformity exhibits a nonlinear improvement trend with increasing inner diameter: for smaller inner diameters, severe jet formation and large-area dead zones lead to poor uniformity and low media utilization; as the inner diameter increases, flow uniformity is significantly enhanced, but the marginal benefit of further increasing the inner diameter gradually diminishes due to the optimized flow field.
- (3)
- The pressure drop increases monotonically with increasing pleat number, and higher pleat numbers show greater sensitivity to resistance changes. Flow uniformity follows a distinct threshold effect with the increase of pleat number: when the pleat number is relatively small, the deterioration of uniformity is gradual, and no extensive dead zones are formed, maintaining high media utilization; beyond a certain threshold, narrowed inter-pleat spacing induces intense jet flow and expanded dead zones, leading to a sharp decline in uniformity and wasted filtration area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Description | Unit |
| CFD | Computational Fluid Dynamics | - |
| RANS | Reynolds-Averaged Navier–Stokes | - |
| SIMPLE | Semi-Implicit Method for Pressure-Linked Equations | - |
| k-ε | k-epsilon turbulence model | - |
| GB/T | Guobiao/Tuijian (Chinese National Standard/Recommended) | - |
| FLUENT | FLUENT (commercial CFD software) | - |
| u, v, w | Velocity components in the x-, y-, and z-directions | m/s |
| p | Pressure | Pa |
| σ | Engine oil density | kg/m3 |
| μ | Dynamic viscosity | Pa·s |
| ΔP | Pressure drop | Pa |
| C1 | Viscous resistance coefficient | m−2 |
| C2 | Inertial resistance coefficient | – |
| v | Velocity component perpendicular to the filter medium surface | m/s |
| δ | Filter medium thickness | mm |
| A | Filtration area | m2 |
| N | Number of pleats | – |
| H | Filter element height | mm |
| L | Pleat height | mm |
| α | Inter-pleat angle | ° |
| λ | Flow uniformity index | – |
| Va | Area-weighted average velocity | m/s |
| Vm | Mass-weighted average velocity | m/s |
| D2 | Filter element outer diameter | mm |
| d | Filter element inner diameter | mm |
| D1 | Filter housing outer diameter | mm |
| ε | Porosity | – |
| M | Theoretical dust holding capacity | g |
| ΔPz | Terminal resistance | kPa |
| ΔP0 | Pressure drop increment per unit area due to dust loading | kPa·m2/g |
| Re | Reynolds number | – |
| I | Turbulence intensity | – |
| DH | Hydraulic diameter | mm |
References
- Chen, J.; Xi, D.; Wang, G.; Zhou, M.; Hu, Y.; Xie, X. Numerical Investigation into Particle Migration Characteristics in Hydraulic Oil Filtration. Processes 2025, 13, 1289. [Google Scholar] [CrossRef]
- Hydraulic Filtration Product Guide. Available online: https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/catalogs/Hydraulic/North-America/F112100-ENG/Hydraulic-Filtration-Product-Guide.pdf (accessed on 15 January 2023).
- Kang, S.; Lee, H.; Kim, C.; Chen, R.; Pui, Y. Modeling of Fibrous Filter Media for Ultrafine Particle Filtration. Sep. Purif. Technol. 2019, 209, 461–469. [Google Scholar] [CrossRef]
- Liu, X.; Ding, X.; Chen, C.; An, R.; Guo, W.; Zhang, W.; Wang, Y. Investigating the Filtration Behavior of Metal Fiber Felt Using CFD-DEM Simulation. Eng. Appl. Comput. Fluid Mech. 2019, 13, 426–437. [Google Scholar] [CrossRef]
- Cao, B.; Wang, S.; Dong, W.; Zhu, J.; Qian, F.; Lu, J.; Han, Y. Investigation of the Filtration Performance for Fibrous Media: Coupling of a Semi-Analytical Model with CFD on Voronoi-Based Microstructure. Sep. Purif. Technol. 2020, 251, 117364. [Google Scholar] [CrossRef]
- del Pozo, D.F.; Ahmad, A.; Rehman, U.; Verliefde, A.; Nopens, I. A Novel CFD Model to Predict Solids Concentration and Pressure Drop in Deep Bed Granular Filtration. Sep. Purif. Technol. 2022, 295, 121232. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, P. Numerical Investigation of Viscous Flow Fields Around Multifiber Filters. Aerosol Sci. Technol. 1996, 25, 375–391. [Google Scholar] [CrossRef]
- Kelbaliev, I.; Rzaev, G.; Rasulov, R.; Guseinova, V. Simulation of Anomalous Oil Filtration in a Porous Bed. J. Eng. Phys. Thermophys. 2015, 88, 299–304. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.; Gong, Y.; Wang, S. Pore-Scale Simulations of Particles Migration and Deposition in Porous Media Using LBM-DEM Coupling Method. Processes 2021, 9, 465. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Darbandi, M.; Barezban, M.B. Numerical Simulation of Particle Separation in a Two-Phase Flow Passing Through a Vortex-Based Air Classifier Using Eulerian–Lagrangian DDPM Approach. Powder Technol. 2024, 445, 120036. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, L.; Liu, Z.; Chen, M.; Xia, X.; Zhao, Y. A Review of Recent Development for the CFD-DEM Investigations of Non-Spherical Particles. Powder Technol. 2022, 412, 117972. [Google Scholar] [CrossRef]
- Xu, D.; Shen, Y. A Novel CFD-DEM-DPM Modelling of Fluid-Particles-Fines Reacting Flows. Chem. Eng. Sci. 2024, 292, 120014. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Wang, K.; He, Y.; Zheng, C. Simulation of Filtration Process for Multi-Fiber Filter Using the Lattice-Boltzmann Two-Phase Flow Model. J. Aerosol Sci. 2013, 66, 164–178. [Google Scholar] [CrossRef]
- Ansari, V.; Goharrizi, S.; Jafari, S.; Abolpour, B. Numerical Study of Solid Particles Motion and Deposition in a Filter with Regular and Irregular Arrangement of Blocks with Using Lattice Boltzmann Method. Comput. Fluids 2015, 108, 170–178. [Google Scholar] [CrossRef]
- Li, W.; Shen, S.; Li, H. Study and Optimization of the Filtration Performance of Multi–Fiber Filter. Adv. Powder Technol. 2016, 27, 638–645. [Google Scholar] [CrossRef]
- Wang, N.; Chen, W.; Ning, G.; Ma, H. Numerical Investigation of Influence of Structure and Operating Parameters on Performance of Vortex Oil Filter. In Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), Guiyang, China, 19–22 June 2018; pp. 1150–1155. [Google Scholar] [CrossRef]
- Liu, P. Study on Structural Parameters of Pleated Filter Element Based on FLUENT Technology. Filtr. Sep. 2014, 24, 11–16. [Google Scholar] [CrossRef]
- Fu, H.M.; Zhu, J. Simulation and Optimization Design of Cylindrical Pleated Oil Filter. J. Traffic Transp. Eng. 2009, 9, 60–65. [Google Scholar] [CrossRef]
- Ba, P.; Fang, Y.C.; Ou, Z.H.; Zhang, P.F. Optimization and Numerical Simulation of Filter Element Structural Parameters. Mach. Tool Hydraul. 2012, 40, 73–76. [Google Scholar] [CrossRef]
- Deng, B. Study on the Influence of Outlet Mode of Cartridge Dust Collector on Internal Flow Field and Its Structural Optimization. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2017. Available online: https://kns.cnki.net/kcms2/article/abstract?v=CeTIW1Ci4b2xCRugpp4wFjQP0NFAQrpwsPV5eNBaY2fWMOk5Kds3SRqseqNZm_ubpyLkjquQLNCw-uGs6L_3ds034wCxZANdy1HbFYG-b2fsI9fQemmGxGePcUKTRQo82F-m0EcfL_IhHFpmAFY3NCErRWJAzyrNXrX5pe6tc1dJhuzFkznJhA==&uniplatform=NZKPT&language=CHS (accessed on 15 February 2018).
- Korkmaz, Y.S.; Kibar, A.; Yigit, K.S. Experimental and Numerical Investigation of Fluid Flow in Hydraulic Filters. J. Appl. Fluid Mech. 2022, 15, 363–371. [Google Scholar] [CrossRef]
- Saleh, A.M.; Tafreshi, H.V.; Pourdeyhimib, B. Modeling Service Life of Pleated Filters Exposed to Poly-Dispersed Aerosols. Powder Technol. 2014, 266, 79–89. [Google Scholar] [CrossRef]
- Rukshan, K.D.L.; Faraji, F.; Hamad, F.A. Geometrical Optimization of Closed-End Cylindrical Air Filter Using CFD Simulation. J. Korean Soc. Environ. Eng. 2024, 46, 357–369. [Google Scholar] [CrossRef]
- Mastai, L. Modeling and CFD Analysis of an Oil Filter for Automotive Applications. Master’s Thesis, Politecnico di Torino, Torino, Italy, 2021. Available online: https://webthesis.biblio.polito.it/20201/1/tesi.pdf (accessed on 1 October 2021).
- Xu, H.B.; Li, J.C.; Su, F.; Dong, Y. Structural Improvement and Flow Performance Analysis of Air Purifier. J. Xi’an Polytech. Univ. 2018, 32, 216–221+236. [Google Scholar] [CrossRef]
- Yeom, G.; Han, D.; Yoon, J.; Ha, N.; Baek, Y. Optimization Study for Improving Flow Uniformity of Diesel Particulate Filter through CFD Analysis. Int. J. Innov. Eng. Technol. 2018, 11, 14–21. [Google Scholar] [CrossRef]
- Hu, X.B.; Peng, Z.Y.; Chen, D.; Ma, Z.H.; Liu, W.; Zhao, B. Optimization of an Oil–Gas Separator of Gas Storage Compressor with Consideration of Velocity Uniformity in Filter Inlets. Energies 2023, 16, 8015. [Google Scholar] [CrossRef]
- Xiu, W.R.; Kang, C.F.; E, J.Q.; Feng, C.L.; Tan, Y. Effect Analysis on the Flow Uniformity and Pressure Drop Characteristics of the Rotary Diesel Particulate Filter for Heavy-Duty Truck. Energy 2024, 288, 129820. [Google Scholar] [CrossRef]
- Gong, J.K.; Tian, C.; Wang, S.H.; Chen, T.; Zuo, Q.; Guan, Q.; Liu, H. Grey relational analysis on influencing factors of muffling characteristic in a radial rotatable diesel particulate filter. J. Environ. Eng. 2013, 7, 643–648. [Google Scholar]
- Zeng, H.T.; Fu, J.; Guo, X.; Shi, K.; Xiao, Z.H. Numerical Simulation and Structural Improvement of a Certain Type of Air Filter Based on CFD. J. Wuhan Univ. (Eng. Ed.) 2018, 51, 1105–1113. [Google Scholar] [CrossRef]
- Hu, L.J.; Wang, Y.J.; He, W.D.; Lin, X.L. Influence of Pleat Height and Pleat Number on Filtration Air Velocity Distribution of Pleated Filter Bag. Metal Mine 2024, 10, 249–256. [Google Scholar] [CrossRef]
- Ansys Inc. Ansys Fluent 2022 R1 Theory Guide: Finite Volume Method for Spatial Discretization; Ansys Inc.: Canonsburg, PA, USA, 2022; Available online: https://ansyshelp.ansys.com/public/account/secured?returnurl=////Views/Secured/corp/v242/en/flu_th/flu_th.html (accessed on 1 January 2022).
- Tian, T.; Chen, J.; Zhu, J.X.; Tian, T.; Chen, J.; Zhu, J.X. Numerical Investigation of Particle Transfer in an Hydraulic Oil Filter. Chin. Hydraul. Pneum. 2024, 48, 86–92. [Google Scholar] [CrossRef]
- Li, W.; Wang, K. Study on Filter Material Simulation Parameters Based on CFD. Auto Parts 2011, 10, 85–87. [Google Scholar] [CrossRef]
- Fu, J.; Tang, Y.; Li, J.; Ma, Y.; Chen, W.; Li, H. Four Kinds of the Two-Equation Turbulence Model’s Research on Flow Field Simulation Performance of DPF’s Porous Media and Swirl-Type Regeneration Burner. Appl. Therm. Eng. 2016, 93, 397–404. [Google Scholar] [CrossRef]
- Tang, G.P.; Sun, G.Q.; Zhang, J.T.; Qi, J. A Numerical Simulation Method for Pressure Drop and Normal Air Velocity of Pleated Filters During Dust Loading. PLoS ONE 2023, 18, e0282026. [Google Scholar] [CrossRef] [PubMed]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Kazemian, M. Transient Turbulence Models: URANS or DDES? Dlubal Knowledge Base, 2024. Available online: https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001886?srsltid=AfmBOopFAGVzfixeKi9fIqkOXT10eU_EodLd3G9YNznMzCbz5c0gqCfZ (accessed on 29 July 2024).
- GB/T 8243.1-2003; Methods of Test for Full-Flow Lubricating Oil Filters for Internal Combustion Engines—Part 1: Differential Pressure/Flow Characteristics. National Technical Committee of Internal Combustion Engine Standardization. China Standards Press: Beijing, China, 2003. Available online: https://kns.cnki.net/kcms2/article/abstract?v=VYuoLtjwl8Na-QLSBuTcsI3JICa1pfPpEGiWYOi-vrPkqNBBYfzCWSTGS7-CsHvPZUdoi5hdLh_RIapqOHGKUZwgVr_s20oS_spQEaRwAqC25OJ6IyvlixGj0l3Or5UBmUQ56IGLLT9cEtCqt8C6FbzEsWLsMy2h&uniplatform=NZKPT (accessed on 15 April 2003).
- Weltens, H.; Bressler, H.; Terres, F.; Neumaier, H.; Rammoser, D. Optimisation of Catalytic Converter Gas Flow Distribution by CFD Prediction. SAE Tech. Pap. 1993, 930780. [Google Scholar] [CrossRef]
- Tao, H.G.; Chen, H.X.; Xie, J.L.; Shu, Z.H.; Hu, Y.P.; Lu, H.L. Flow uniformity index based on area-weighted and mass-weighted average velocity. CIESC J. 2010, 61, 116–120. [Google Scholar]
- Li, T.; Jin, S.P.; Huang, S.Y.; Liu, W. Comparison and Application Study of Evaluation Indexes for Flow Field Velocity Distribution Uniformity. Therm. Power Gener. 2013, 42, 60–63+92. [Google Scholar] [CrossRef]
- Tan, Y.N. Simulation Analysis and Experimental Study of Air Filter. Master’s Thesis, Zhejiang University, Hangzhou, China, 2010. Available online: https://kns.cnki.net/kcms2/article/abstract?v=CeTIW1Ci4b34NdTwLrB_q2jFyTc7FmdrYwoksc5VrAWQ5SiiuqRdA-Tq-1-83bHiGh6J8gdLZJiEYYdcpH-ropOuHWw3gP6jFLqdYRHkFpvi3RD7_snSP4tD4YYp7zcvc2T1a8yv9jcX8MR3jGBPhJ3_jYh8IkGWUVbzv0syCkgxHALL5Xeztg==&uniplatform=NZKPT&language=CHS (accessed on 1 May 2010).


















| Turbulent Model | Characteristic |
|---|---|
| standard k-ε model | High-Reynolds-number assumption; Low computational cost & good convergence; Relies on wall functions |
| realizable k-ε | Improved turbulence viscosity formula; More reasonable physical constraints; Slightly better separation flow prediction |
| k-ω SST | k-ω (near-wall) + k-ε (far-field) hybrid; No wall functions needed; Accurately captures separation/jet flows |
| Alpha*_inf | Alpha_inf | Beta*_inf | A1 | Beta_i (Inner) | Beta_i (Outer) |
|---|---|---|---|---|---|
| 1 | 0.52 | 0.09 | 0.35 | 0.05 | 0.0828 |
| Parameter | Value | Unit |
|---|---|---|
| Filter element height H | 120 | mm |
| Filter element outer diameter D2 | 125 | mm |
| Filter element outer diameter d | 60 | mm |
| Filter housing outer diameter D1 | 133 | mm |
| Porosity ε | 0.8538 | — |
| Filter element pleat number N | 80 | — |
| Inter-Pleat angle α | 3.9 | ° |
| Filter paper thickness δ | 1 | mm |
| Number | Name | Number | Name |
|---|---|---|---|
| 1 | Oil tank | 13 | Check valve |
| 2 | Particle dispersion device | 14 | Regulating valve |
| 3 | Liquid level sensor | 15 | Test sample |
| 4 | Temperature sensor | 16 | Flow meter |
| 5 | Variable-frequency pump set | 17 | Differential pressure sensor |
| 6 | Ball valve | 18 | Metering pump |
| 7 | Pressure sensor | 19 | Stirrer |
| 8 | Heater | 20 | Ash adding tank |
| 9 | Radiator | 21 | Fixed-frequency pump |
| 10 | Sampling valve | 22 | Collection oil tank |
| 11 | Three-way ball valve | 23 | Heating belt |
| 12 | Filter | 24 | Relief valve |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, X.; Li, L.; Wang, J.; Zou, R.; Su, T.; Zhang, Y. Influence of Inner Diameter and Pleat Number on Oil Filter Performance. Processes 2026, 14, 426. https://doi.org/10.3390/pr14030426
Zhou X, Li L, Wang J, Zou R, Su T, Zhang Y. Influence of Inner Diameter and Pleat Number on Oil Filter Performance. Processes. 2026; 14(3):426. https://doi.org/10.3390/pr14030426
Chicago/Turabian StyleZhou, Xiaomin, Liangyu Li, Jiayao Wang, Run Zou, Tiexiong Su, and Yi Zhang. 2026. "Influence of Inner Diameter and Pleat Number on Oil Filter Performance" Processes 14, no. 3: 426. https://doi.org/10.3390/pr14030426
APA StyleZhou, X., Li, L., Wang, J., Zou, R., Su, T., & Zhang, Y. (2026). Influence of Inner Diameter and Pleat Number on Oil Filter Performance. Processes, 14(3), 426. https://doi.org/10.3390/pr14030426
