Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = compressed solid wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7569 KiB  
Article
Ancient Ship Structures: Ultimate Strength Analysis of Wooden Joints
by Albert Zamarin, Smiljko Rudan, Davor Bolf, Alice Lucchini and Irena Radić Rossi
J. Mar. Sci. Eng. 2025, 13(8), 1392; https://doi.org/10.3390/jmse13081392 - 22 Jul 2025
Viewed by 157
Abstract
This paper presents an analysis of the ultimate strength of wooden joints of the structures of ancient wooden ships. The aim is to contribute to the discussion about how joining technology and types of joints contributed to the transition from ‘shell-first’ to ‘frame-first’ [...] Read more.
This paper presents an analysis of the ultimate strength of wooden joints of the structures of ancient wooden ships. The aim is to contribute to the discussion about how joining technology and types of joints contributed to the transition from ‘shell-first’ to ‘frame-first’ construction, of which the latter is still traditional Mediterranean wooden shipbuilding technology. Historically, ship construction has consisted of two main structural types of elements: planking and stiffening. Therefore, two characteristic carvel planking joints and two longitudinal keel joints were selected for analysis. For planking, the joint details of the ship Uluburun (14th c. BC) and the ship Kyrenia (4th c. BC) were chosen, while two different types of scarf joints belonging to the ship Jules-Verne 9 (6th c. BC) and the ship Toulon 2 (1st c. AD) were selected. The capacity, i.e., the ultimate strength of the joint, is compared to the strength of the structure as if there was no joint. The analysis simulates the independent joint loading of each of the six numerical models in bending, tension, and compression until collapse. The results are presented as load-end-shortening curves, and the calculation was performed as a nonlinear FE analysis on solid elements using the LSDYNA explicit solver. Since wood is an anisotropic material, a large number of parameters are needed to describe the wood’s behaviour as realistically as possible. To determine all the necessary mechanical properties of two types of wood structural material, pine and oak, a physical experiment was used where results were compared with numerical calculations. This way, the material models were calibrated and used on the presented joints’ ultimate strength analysis. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 2861 KiB  
Article
Strength Properties and Numerical Modeling of Cellular Panels with a Thermoplastic Shaped Core
by Piotr Borysiuk, Izabela Burawska, Karol Szymanowski and Radosław Auriga
Forests 2025, 16(6), 1002; https://doi.org/10.3390/f16061002 - 13 Jun 2025
Viewed by 265
Abstract
Lightweight, layered wood-based panels are gaining attention due to favorable mechanical and physical properties. This study examined numerical modeling as a method to predict the strength of innovative three-layer sandwich panels with thermoplastic cores containing wood particles as the filler. Two core geometries [...] Read more.
Lightweight, layered wood-based panels are gaining attention due to favorable mechanical and physical properties. This study examined numerical modeling as a method to predict the strength of innovative three-layer sandwich panels with thermoplastic cores containing wood particles as the filler. Two core geometries (F and S) and two material formulations (60% HDPE + 40% sawdust, and 40% HDPE + 60% sawdust) were tested. The panels were produced without additional adhesives; bonding with high-density fiberboard (HDF) facings was achieved through the thermoplastic properties of the core. Mechanical properties such as bending strength (MOR), modulus of elasticity (MOE), and compressive strength perpendicular to the surface were measured. Results showed that both core geometry and material composition significantly influenced structural performance. Panels with the F profile showed better bending strength and stiffness (MOR—13.2 N/mm2, MOE—2017 N/mm2), while the S profile had higher compressive strength (0.62 N/mm2). Numerical simulations using SolidWorks Simulation confirmed the experimental data, with stress and displacement distributions matching laboratory results. These findings demonstrate the potential of thermoplastically formed cores for creating lightweight, recyclable wood-based composites with tailored mechanical properties. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties: 2nd Edition)
Show Figures

Figure 1

18 pages, 4018 KiB  
Article
Assessing the Efficiency of Open-System Densification on Chemically Treated Dendrocalamus asper Bamboo
by André Luiz Pereira de Godoy Junior, Marzieh Kadivar, Leo Maia do Amaral, Adriano Galvão de Souza Azevedo, Juan Camilo Adrada Molano, Esmaeil Biazar and Holmer Savastano Junior
Materials 2025, 18(12), 2719; https://doi.org/10.3390/ma18122719 - 10 Jun 2025
Viewed by 449
Abstract
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and [...] Read more.
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and chemical properties of solid wood. In this study, a two-step process of delignification and densification was carried out on Dendrocalamus asper bamboo specimens. The objective was to assess whether the optimized parameters of densification for natural bamboo on an open pressing system can be transferred for delignified bamboo. Delignification was achieved using an alkali solution (NaOH and Na2SO3) with two different temperature settings (25 °C or 100 °C). The pre-treated samples were dried in one of the two different conditions, either at 100 °C for 24 h or 25 °C for 30 days, resulting in four different groups with an average moisture content ranging from 7 to 10%. The samples were densified to 50% of their original thickness through an open thermo-mechanical press system at 160 °C with a compression rate of 6.7 mm/min and compared to densified bamboo without delignification (reference). The compression stress required to achieve a 50% degree of densification was evaluated, with untreated samples exhibiting an average value close to 17 MPa. Following treatment, the compression stress ranged from 7 to 13.4 MPa, indicating that the exposure to a high pH solution facilitates the densification process. However, a reduction in flexural properties (MOR, LOP, and MOE) was observed on the alkali-treated samples after a three-point bending test. Physical properties (water absorption and thickness swelling) were not altered after delignification. These findings demonstrate that the direct application of a densification process optimized for natural bamboo is not fully effective for chemically modified bamboo, highlighting the need for adjustments. Delignified bamboo showed an increase in free space after chemical treatment, which should be further densified under higher degrees. Full article
Show Figures

Figure 1

15 pages, 3438 KiB  
Article
One-Part Alkali-Activated Wood Biomass Binders for Cemented Paste Backfill
by Kunlei Zhu, Haijun Wang, Lu Dong, Xulin Zhao, Junchao Jin, Yang Liu, Jianbo Liu and Dingchao Lv
Minerals 2025, 15(3), 273; https://doi.org/10.3390/min15030273 - 7 Mar 2025
Viewed by 934
Abstract
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA [...] Read more.
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA ratios on hydration behavior, microstructure, and mechanical properties were systematically revealed. Results demonstrate that high slag proportions significantly enhance slurry rheology and mechanical strength, primarily through slag hydration generating dense gel networks of hydration products and promoting particle aggregation via reduced zeta potential. Although inert components in WBFA inhibit early hydration, the long-term reactivity of slag effectively counteracts these negative effects, achieving comparable 28-day compressive strength between slag/WBFA-based CPB (4.11 MPa) and cement-based CPB (4.16 MPa). Microstructural analyses indicate that the disordered gels in AAS systems exhibit silicon–oxygen bond polymerization degrees (950 cm−1) comparable to cement, while WBFA regulates Ca/Si ratios to induce bridging site formation (900 cm−1), significantly reducing porosity and enhancing structural compactness. This research provides theoretical support and process optimization strategies for developing low-cost, high-performance mine filling materials using industrial solid wastes, advancing sustainable green mining practices. Full article
Show Figures

Figure 1

15 pages, 2449 KiB  
Article
Improvement of Malagasy Traditional Earth Bricks by Using a Derivative of CNSL as a Binding Agent
by Volana Mifelana Holiarinala, Fenia Diane Ramiharimanana, Hermann Rafanoela, Stephanoel Randriatsarazaka, Raymond Razafimahatratra, Estelle Metay, Voahangy Vestalys Ramanandraibe and Marc Lemaire
ChemEngineering 2025, 9(2), 22; https://doi.org/10.3390/chemengineering9020022 - 21 Feb 2025
Viewed by 815
Abstract
Traditional bricks are still the most widely used building material in Madagascar. Bricks are made from clay that is fired for weeks in open-air kilns (600–750 °C) by using rice husks, peat, charcoal, coal, and wood as fuels. This process contributes significantly to [...] Read more.
Traditional bricks are still the most widely used building material in Madagascar. Bricks are made from clay that is fired for weeks in open-air kilns (600–750 °C) by using rice husks, peat, charcoal, coal, and wood as fuels. This process contributes significantly to environmental pollution by emitting CO2 and particles. In addition, the intensive use of wood and charcoal is partly responsible for the deforestation that still taking place on the “Red Island”. The development of sustainable building materials is therefore of global interest. This research provided a solution by implementing the oxyacetic acid derivative of cashew nut shell liquid (CNSL) as a binder to reduce energy consumption in the preparation of earthen materials. This product was obtained from cashew nut waste and was used in a proportion of 5 to 15% with the red soil of Madagascar. The materials were formulated at a much lower temperature (60 °C) compared to the traditional process for 24 to 48 hours in a custom-designed mold. The material with 10% oxyacetic binder from CNSL was a compact, hard solid with higher mechanical properties, including a twice higher compressive strength (5.6 MPa compared to 2.2 MPa) and a higher tensile strength (2.2 MPa compared to 1.6 MPa). This material also had better water resistance after 2 months of immersion; traditional clay bricks absorbed 36.65% of the water, and the material with binder only absorbed 12.62%. This research demonstrates that the utilization of local agricultural waste as a binder is a viable strategy for reducing the carbon footprint of traditional building materials while significantly improving their physico-mechanical properties. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

18 pages, 5829 KiB  
Article
Mechanical Properties of Full-Scale Wooden Beams Strengthened with Carbon-Fibre-Reinforced Polymer Sheets
by Michał Marcin Bakalarz
Materials 2024, 17(19), 4917; https://doi.org/10.3390/ma17194917 - 8 Oct 2024
Cited by 3 | Viewed by 1242
Abstract
The strengthening, rehabilitation and repair of wooden beams and beams made of wood-based materials are still important scientific and technical issues. This is reflected, among other things, in the number of scientific articles appearing and the involvement of research centres around the world. [...] Read more.
The strengthening, rehabilitation and repair of wooden beams and beams made of wood-based materials are still important scientific and technical issues. This is reflected, among other things, in the number of scientific articles appearing and the involvement of research centres around the world. This is also related to society’s growing belief in the importance of ecological and sustainable development. This article presents an overview of the latest work in this field and the results of our own research on strengthening solid wooden beams with carbon-fibre-reinforced polymer (CFRP) sheets. The tests were carried out on full-size solid beams with nominal dimensions of 70 × 170 × 3300 mm. A 0.333 mm thick CFRP sheet was used for reinforcement. The research analysed various reinforcement configurations and different reinforcement ratios. For the most effective solution, a 46% increase in load capacity, 35% stiffness and 249% ductility were achieved with a reinforcement ratio of 1.7%. Generally, the higher the reinforcement ratio and coverage of the surface of the wood, the higher the strengthening effectiveness. The brittle fracture of wood in the tensile zone for unreinforced beams and the ductile crushing of wood in the compressive zone for reinforced beams were obtained. The most important achievement of this work is the description of the static work of beams in previously unanalysed configurations of strengthening and the confirmation of their effectiveness. The described solutions should extend the life of existing wooden buildings and structures and increase the competitiveness of wooden-based structures. The results indicate that, from the point of view of optimizing the cost of reinforcement, it is crucial to develop cheaper ways of combining wood and composite than to verify different types of fibres. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 6031 KiB  
Article
FDADNet: Detection of Surface Defects in Wood-Based Panels Based on Frequency Domain Transformation and Adaptive Dynamic Downsampling
by Hongli Li, Zhiqi Yi, Zhibin Wang, Ying Wang, Liang Ge, Wei Cao, Liye Mei, Wei Yang and Qin Sun
Processes 2024, 12(10), 2134; https://doi.org/10.3390/pr12102134 - 30 Sep 2024
Viewed by 1080
Abstract
The detection of surface defects on wood-based panels plays a crucial role in product quality control. However, due to the complex background and low contrast of defects in wood-based panel images, features extracted by traditional deep learning methods based on spatial domain processing [...] Read more.
The detection of surface defects on wood-based panels plays a crucial role in product quality control. However, due to the complex background and low contrast of defects in wood-based panel images, features extracted by traditional deep learning methods based on spatial domain processing often contain noise and blurred boundaries, which severely affects detection performance. To address these issues, we have proposed a wood-based panel surface defect detection method based on frequency domain transformation and adaptive dynamic downsampling (FDADNet). Specifically, we designed a Multi-axis Frequency Domain Weighted Information Representation Module (MFDW), which effectively decoupled the indistinguishable low-contrast defects from the background in the transform domain. Gaussian filtering was then employed to eliminate noise and blur between the defects and the background. Additionally, to tackle the issue of scale differences in defects that led to difficulties in accurate capture, we designed an Adaptive Dynamic Convolution (ADConv) module for downsampling. This method flexibly compressed and enhanced features, effectively improving the differentiation of the features of objects of varying scales in the transform space, and ultimately achieved effective defect detection. To compensate for the lack of data, we constructed a dataset of wood-based panel surface defects, WBP-DET. The experimental results showed that the proposed FDADNet effectively improved the detection performance of wood-based panel surface defects in complex scenarios, achieving a solid balance between efficiency and accuracy. Full article
(This article belongs to the Special Issue Research on Intelligent Fault Diagnosis Based on Neural Network)
Show Figures

Figure 1

17 pages, 3824 KiB  
Article
Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants
by Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs and Janis Vetra
J. Funct. Biomater. 2024, 15(10), 287; https://doi.org/10.3390/jfb15100287 - 28 Sep 2024
Cited by 2 | Viewed by 1310
Abstract
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of [...] Read more.
The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol–water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material’s shape stability, water resistance, and reduced swelling. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

12 pages, 1598 KiB  
Article
An Analysis of the Physicochemical and Energy Parameters of Briquettes Manufactured from Sewage Sludge Mixtures and Selected Organic Additives
by Sebastian Kujawiak, Małgorzata Makowska, Damian Janczak, Wojciech Czekała, Włodzimierz Krzesiński, Ariel Antonowicz and Karol Kupryaniuk
Energies 2024, 17(18), 4573; https://doi.org/10.3390/en17184573 - 12 Sep 2024
Cited by 3 | Viewed by 1307
Abstract
As a by-product of wastewater treatment, sewage sludge can be used for natural, agricultural, or energy purposes. One method of preparing sludge for management and use is solar drying. To intensify the drying process, natural additives can be used to alter the structure [...] Read more.
As a by-product of wastewater treatment, sewage sludge can be used for natural, agricultural, or energy purposes. One method of preparing sludge for management and use is solar drying. To intensify the drying process, natural additives can be used to alter the structure of the sludge and accelerate the evaporation of water. This research aimed to evaluate the influences of different organic additives in sewage sludge mixtures on the physicochemical and energy parameters of briquettes. This research was carried out without thermal boosting in a 4 × 2.5 × 2 m plastic tunnel. The tunnel was equipped with three drying stations and control and measuring equipment. In two test series, sludge additives in the form of straw and lignocellulosic materials, sawdust, bark, woodchips, and walnut shells, were used. Briquettes were made from the resulting mixtures and then subjected to physical and chemical analyses. This research showed high variability in the contents of trace elements, nitrogen, and sulphur in relation to an increase in the amount of sludge in the briquettes, which, for the briquettes made from sewage sludge, was nearly twice as high as for the briquettes made from the mixtures. The results of the flue gas analysis for the briquettes with sawdust and wood chip additives were very similar. The briquettes made from sewage sludge with lignocellulosic materials (bark and wood chips) had fuel properties similar to woody biomass, with a calorific value and heat of combustion of 15–16 MJ/kg. Fibrous additives (straw) significantly increased the strength parameters of the briquettes, by more than 50% of the value. The compositions and properties of the mixtures affected the following briquetting parameters: temperature and compressive force. The briquettes made from sewage sludge and additives can be classified according to ISO 21640 as SRFs (solid recovered fuels). In most of the results, the net calorific value (NCV) was 3 to 4; the chlorine content (CL) was 2 to 1; and the mercury content (Hg) was 1. The sewage sludge mixtures facilitated the agricultural and energy use of the briquettes. Full article
(This article belongs to the Special Issue Biofuel Production and Bio-Waste Management)
Show Figures

Figure 1

20 pages, 8623 KiB  
Article
Injection 3D Printing of Doubly Curved Ceramic Shells in Non-Synthetic Particle Suspensions
by Vesela Tabakova, Christina Klug and Thomas H. Schmitz
Materials 2024, 17(16), 3955; https://doi.org/10.3390/ma17163955 - 9 Aug 2024
Cited by 2 | Viewed by 1314
Abstract
This paper examines the application of non-synthetic particle suspensions as a support medium for the additive manufacturing of complex doubly curved ceramic shells with overhangs between 0° and 90° using clay paste. In this method, the build-up material is injected within a constant [...] Read more.
This paper examines the application of non-synthetic particle suspensions as a support medium for the additive manufacturing of complex doubly curved ceramic shells with overhangs between 0° and 90° using clay paste. In this method, the build-up material is injected within a constant volume of air-permeable particle suspension. As the used clay paste does not solidify right after injection, the suspension operates like a support medium and enables various print path strategies. Different non-synthetic suspension mixtures, including solid and flexible components such as quartz sand, refractory clay, various types of wood shavings, and cotton flocks, were evaluated for their ability to securely hold the injected material while allowing drying of the water-based clay body and its shrinkage. The balance between grain composition, added water, and the compressibility of the mixture during printing and drying played a pivotal role in the particle suspension design and assessment. Furthermore, the moisture absorption of the particle suspension and the structural integrity of the layer bond of the fired ceramics were also assessed. The examined additive manufacturing process not only enables the production of meso-scale doubly curved ceramic shells with average overhang of 56° but also introduces a new practice for designing specialized surfaces and constructions. Full article
(This article belongs to the Special Issue Additive Manufacturing of Ceramics and Composites)
Show Figures

Figure 1

12 pages, 1752 KiB  
Article
Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine
by Przemysław Mania, Carlo Kupfernagel and Simon Curling
Forests 2024, 15(6), 892; https://doi.org/10.3390/f15060892 - 21 May 2024
Cited by 7 | Viewed by 2328
Abstract
The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With [...] Read more.
The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With delignification prior to densification, one achieves higher compression ratios and better mechanical properties compared to densification without pre-treatment. The reactivity of syringyl (dominant in hardwoods) and guaiacyl (dominant in softwoods) lignin towards delignification is different. The influences of this difference on the delignification and densification of softwoods and hardwoods need to be investigated. This study aimed to densify wood after delignification and investigate how variations in chemical composition between coniferous and deciduous species affect the densification process. Scots pine and Eurasian aspen specimens with a similar initial density were investigated to study the influence of the different lignin chemistry in softwoods and hardwoods on the densification process. Both timbers were delignified with sodium sulphite and sodium hydroxide and subsequently densified. While the delignification was twice as efficient in aspen than in pine, the compression ratios were almost identical in both species. The Brinell hardness and compressive strength showed a more significant increase in aspen than in Scots pine; however, one exception was the compressive strength in a radial direction, which increased more effectively in Scots pine. Scanning electron microscopy (SEM) revealed the microstructure of densified aspen and Scots pine, showing the crushing and collapse of the cells. Full article
Show Figures

Figure 1

11 pages, 1484 KiB  
Article
Study on Phenol–Formaldehyde Resin–Montmorillonite Impregnation and Compression Modification of Chinese Fir
by Lei He, Qian Zhang, Bengang Zhang, Hongyun Qiu, Jie Guo, Fengwen Sun, Zengfu Jiang and Weidong Zhou
Polymers 2024, 16(10), 1385; https://doi.org/10.3390/polym16101385 - 12 May 2024
Viewed by 1802
Abstract
In this study, a phenol–formaldehyde resin–montmorillonite intercalation composite solution was used as a modifier to treat Chinese fir via impregnation and compression. The basic characteristics and wettability of the PF (phenol–formaldehyde)–montmorillonite impregnation solution were analyzed. The effects of the solid content of PF, [...] Read more.
In this study, a phenol–formaldehyde resin–montmorillonite intercalation composite solution was used as a modifier to treat Chinese fir via impregnation and compression. The basic characteristics and wettability of the PF (phenol–formaldehyde)–montmorillonite impregnation solution were analyzed. The effects of the solid content of PF, the quantity of montmorillonite, and the impregnation time on the impregnation weight gain of Chinese fir were studied through orthogonal experiments. The results showed that when the amount of montmorillonite was 1%, the wettability of the PF–montmorillonite impregnation solution performed the best, the curing time was short, and the curing strength was high. The optimal impregnation process consists of a PF solid content of 25%, an impregnation time of 120 min, and a montmorillonite ratio of 1%. Under these conditions, the modified Chinese fir was prepared via hot pressing. The effects of the addition of montmorillonite and different levels of compressibility on the physical and mechanical properties of modified wood were studied. The physical and mechanical properties were found to be better when the compression ratio was 33%: the density increased from 0.33 g/cm3 to 0.58 g/cm3; the surface hardness increased from 33.6 HD to 70.9 HD; the static bending strength increased from 60.4 MPa to 98.7 MPa; and the elastic modulus increased from 6 390 MPa to 11 498 MPa. After 30 days of release, the compression rebound rate was 3.97%. Meanwhile, the micromorphology and heat resistance of the impregnated compressed Chinese fir showed that the PF–montmorillonite impregnation solution entered into the cell cavity and intercellular space of the Chinese fir and formed a good composite, thus improving the water resistance, heat resistance, and physical and mechanical properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

22 pages, 7121 KiB  
Article
Impact of Thinning on the Yield and Quality of Eucalyptus grandis Wood at Harvest Time in Uruguay
by Fernando Resquin, Karen Baez, Sofia de Freitas, Diego Passarella, Ana Paula Coelho-Duarte and Cecilia Rachid-Casnati
Forests 2024, 15(5), 810; https://doi.org/10.3390/f15050810 - 4 May 2024
Cited by 1 | Viewed by 1892
Abstract
Understanding how thinning strategies impact wood quality and quantity for different purposes is of interest, given that plantation management is often based on parameters that require validation under varying growth conditions. Planted forests for solid purposes in the northern region of Urugay, western [...] Read more.
Understanding how thinning strategies impact wood quality and quantity for different purposes is of interest, given that plantation management is often based on parameters that require validation under varying growth conditions. Planted forests for solid purposes in the northern region of Urugay, western Argentina and South of Brazil are usually managed in initial stockings ranging from 800 to 1200 trees·ha−1 depending on the use of clones or seeds. Subsequent thinnings are applied (at plantation ages varying from 3 to 11 years) up to final stockings of around 200 trees·ha−1. This study evaluated contrasting thinning regimes applied early in the crop cycle, with an initial tree density of 840 trees·ha−1. Two thinning treatments were applied at 1.5 and 7.3 years, reducing tree densities to 700–400 and 400–100 trees·ha−1, respectively. Growth analyses were conducted from 1.5 to 20.8 years, considering total height, diameter at breast height, individual volume, total and commercial volume per hectare, mean annual increase, and current annual increase. At the final harvest, contrasting tree densities of 100, 250, and 400 trees·ha−1 were sampled to assess wood density and mechanical properties (bending and compression on small-scale clear samples). Individual growth and wood properties were related to a Stand Density Index to understand the effect of competition on these values. The results identified thinning regimes that resulted in the most significant individual and per-hectare growth (both in thinning and clear felling) and the optimal harvest time under specific growth conditions. We assessed the proportions of commercial logs for sawmill and pulp uses, providing valuable inputs for subsequent economic analyses of thinning regimes aiming for the most convenient combination of wood products. Wood’s physical and mechanical properties were relatively little affected by contrasting levels of competition between trees; therefore, the choice of silvicultural system will depend on production and economic criteria. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

11 pages, 3395 KiB  
Article
Defect Detection in Solid Timber Panels Using Air-Coupled Ultrasonic Imaging Techniques
by Xiaochuan Jiang, Jun Wang, Ying Zhang and Shenxue Jiang
Appl. Sci. 2024, 14(1), 434; https://doi.org/10.3390/app14010434 - 3 Jan 2024
Cited by 6 | Viewed by 1746
Abstract
This paper reports on investigations of the air-coupled ultrasonic (ACU) method to detect common defects in solid timber panels made of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). The ACU technology is a non-contact method for nondestructive timber testing with quicker scanning rates [...] Read more.
This paper reports on investigations of the air-coupled ultrasonic (ACU) method to detect common defects in solid timber panels made of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). The ACU technology is a non-contact method for nondestructive timber testing with quicker scanning rates compared to contact methods. A testbed was set up consisting of commercially available piezo-ceramic ACU transducers and in-house manufactured signal processing circuits. To demonstrate the suitability of the ACU technique, through-transmission measurement results are presented for samples with defects such as knots, wormholes, and cracks. Pulse compression methods (Barker-coded method) were used to improve the power of received signals based on cross-correction algorithms. Results showed defects of timber panels made of Chinese fir can be detected with a thickness of less than 40 mm. Defects larger than 3 mm in diameter could be detected with high precision. Applying the pulse compression method showed better results than using common sine signals as excitation signals since it increased the signal-to-noise ratio, which is especially important for air-coupled measurement of high-attenuation materials like timber materials. The measurement results on reference samples demonstrated that ACU technology is a promising method for timber defect detection, especially for the quality assessment of engineered wood products. Full article
Show Figures

Figure 1

16 pages, 3673 KiB  
Review
Properties, Applications and Recent Developments of Cellular Solid Materials: A Review
by Girolamo Costanza, Dinesh Solaiyappan and Maria Elisa Tata
Materials 2023, 16(22), 7076; https://doi.org/10.3390/ma16227076 - 8 Nov 2023
Cited by 20 | Viewed by 3575
Abstract
Cellular solids are materials made up of cells with solid edges or faces that are piled together to fit a certain space. These materials are already present in nature and have already been utilized in the past. Some examples are wood, cork, sponge [...] Read more.
Cellular solids are materials made up of cells with solid edges or faces that are piled together to fit a certain space. These materials are already present in nature and have already been utilized in the past. Some examples are wood, cork, sponge and coral. New cellular solids replicating natural ones have been manufactured, such as honeycomb materials and foams, which have a variety of applications because of their special characteristics such as being lightweight, insulation, cushioning and energy absorption derived from the cellular structure. Cellular solids have interesting thermal, physical and mechanical properties in comparison with bulk solids: density, thermal conductivity, Young’s modulus and compressive strength. This huge extension of properties allows for applications that cannot easily be extended to fully dense solids and offers enormous potential for engineering creativity. Their Low densities allow lightweight and rigid components to be designed, such as sandwich panels and large portable and floating structures of all types. Their low thermal conductivity enables cheap and reliable thermal insulation, which can only be improved by expensive vacuum-based methods. Their low stiffness makes the foams ideal for a wide range of applications, such as shock absorbers. Low strengths and large compressive strains make the foams attractive for energy-absorbing applications. In this work, their main properties, applications (real and potential) and recent developments are presented, summarized and discussed. Full article
(This article belongs to the Special Issue Thermal and Mechanical Properties of Porous Materials and Composites)
Show Figures

Figure 1

Back to TopTop