Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = compressed natural gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 6488 KiB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 (registering DOI) - 6 Aug 2025
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1,030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
17 pages, 5451 KiB  
Article
Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at High Loads with TAC-HCCI Combustion
by Min Zhang, Wenyu Gu, Zhi Jia and Wanhua Su
Energies 2025, 18(15), 4121; https://doi.org/10.3390/en18154121 - 3 Aug 2025
Viewed by 224
Abstract
This study proposes an innovative Thermodynamic Activity Controlled Homogeneous Charge Compression Ignition (TAC-HCCI) strategy for diesel–natural gas dual-fuel engines, aiming to achieve high thermal efficiency while maintaining low emissions. By employing numerical simulation methods, the effects of the intake pressure, intake temperature, EGR [...] Read more.
This study proposes an innovative Thermodynamic Activity Controlled Homogeneous Charge Compression Ignition (TAC-HCCI) strategy for diesel–natural gas dual-fuel engines, aiming to achieve high thermal efficiency while maintaining low emissions. By employing numerical simulation methods, the effects of the intake pressure, intake temperature, EGR rate, intake valve closing timing, diesel injection timing, diesel injection pressure, and diesel injection quantity on engine combustion, energy distribution, and emission characteristics were systematically investigated. Through a comprehensive analysis of optimized operating conditions, a high-efficiency and low-emission TAC-HCCI combustion technology for dual-fuel engines was developed. The core mechanism of TAC-HCCI combustion control was elucidated through an analysis of the equivalence ratio and temperature distribution of the in-cylinder mixture. The results indicate that under the constraints of PCP ≤ 30 ± 1 MPa and RI ≤ 5 ± 0.5 MW/m2, the TAC-HCCI technology achieves a gross indicated mean effective pressure (IMEPg) of 24.0 bar, a gross indicated thermal efficiency (ITEg) of up to 52.0%, and indicated specific NOx emissions (ISNOx) as low as 1.0 g/kW∙h. To achieve low combustion loss, reduced heat transfer loss, and high thermal efficiency, it is essential to ensure the complete combustion of the mixture while maintaining low combustion temperatures. Moreover, a reduced diesel injection quantity combined with a high injection pressure can effectively suppress NOx emissions. Full article
Show Figures

Figure 1

22 pages, 14333 KiB  
Article
A Transient Combustion Study in a Brick Kiln Using Natural Gas as Fuel by Means of CFD
by Sergio Alonso-Romero, Jorge Arturo Alfaro-Ayala, José Eduardo Frias-Chimal, Oscar A. López-Núñez, José de Jesús Ramírez-Minguela and Roberto Zitzumbo-Guzmán
Processes 2025, 13(8), 2437; https://doi.org/10.3390/pr13082437 - 1 Aug 2025
Viewed by 223
Abstract
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model [...] Read more.
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model based on computational fluid dynamics (CFD) was used to simulate the combustion of natural gas in the brick kiln as a hypothetical case, with the aim of investigating the potential benefits of fuel switching. The theoretical stoichiometric combustion of both pine wood and natural gas was employed to compare the mole fractions and the adiabatic flame temperature. Also, the transient hot gas temperature obtained from the experimental wood-fired kiln were compared with those from the simulated natural gas-fired kiln. Furthermore, numerical simulations were carried out to obtain the transient hot gas temperature and NOx emissions under stoichiometric, fuel-rich, and excess air conditions. The results of CO2 mole fractions from stoichiometric combustion demonstrate that natural gas may represent a cleaner alternative for use in brick kilns, due to a 44.08% reduction in emissions. Contour plots of transient hot gases temperature, velocity, and CO2 emission inside the kiln are presented. Moreover, the time-dependent emissions of CO2, H2O, and CO at the kiln outlet are shown. It can be concluded that the presence of CO mole fractions at the kiln outlet suggests that the transient combustion process could be further improved. The low firing efficiency of bricks and the thermal efficiency obtained are attributed to uneven temperatures distributions inside the kiln. Moreover, hot gas temperature and NOx emissions were found to be higher under stoichiometric conditions than under fuel-rich or excess of air conditions. Therefore, this work could be useful for improving the thermal–hydraulic and emissions performance of brick kilns, as well as for future kiln design improvements. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 263
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 304
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Viewed by 316
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

35 pages, 4030 KiB  
Article
An Exergy-Enhanced Improved IGDT-Based Optimal Scheduling Model for Electricity–Hydrogen Urban Integrated Energy Systems
by Min Xie, Lei Qing, Jia-Nan Ye and Yan-Xuan Lu
Entropy 2025, 27(7), 748; https://doi.org/10.3390/e27070748 - 13 Jul 2025
Viewed by 229
Abstract
Urban integrated energy systems (UIESs) play a critical role in facilitating low-carbon and high-efficiency energy transitions. However, existing scheduling strategies predominantly focus on energy quantity and cost, often neglecting the heterogeneity of energy quality across electricity, heat, gas, and hydrogen. This paper presents [...] Read more.
Urban integrated energy systems (UIESs) play a critical role in facilitating low-carbon and high-efficiency energy transitions. However, existing scheduling strategies predominantly focus on energy quantity and cost, often neglecting the heterogeneity of energy quality across electricity, heat, gas, and hydrogen. This paper presents an exergy-enhanced stochastic optimization framework for the optimal scheduling of electricity–hydrogen urban integrated energy systems (EHUIESs) under multiple uncertainties. By incorporating exergy efficiency evaluation into a Stochastic Optimization–Improved Information Gap Decision Theory (SOI-IGDT) framework, the model dynamically balances economic cost with thermodynamic performance. A penalty-based iterative mechanism is introduced to track exergy deviations and guide the system toward higher energy quality. The proposed approach accounts for uncertainties in renewable output, load variation, and Hydrogen-enriched compressed natural gas (HCNG) combustion. Case studies based on a 186-bus UIES coupled with a 20-node HCNG network show that the method improves exergy efficiency by up to 2.18% while maintaining cost robustness across varying confidence levels. These results underscore the significance of integrating exergy into real-time robust optimization for resilient and high-quality energy scheduling. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

26 pages, 1934 KiB  
Article
Multi-Objective Optimization of Gas Storage Compressor Units Based on NSGA-II
by Lianbin Zhao, Lilin Fan, Jun Lu, Mingmin He, Su Qian, Qingsong Wei, Guijiu Wang, Haoze Bai, Hu Zhou, Yongshuai Liu and Cheng Chang
Energies 2025, 18(13), 3377; https://doi.org/10.3390/en18133377 - 27 Jun 2025
Viewed by 341
Abstract
This study addresses the parallel operation of multiple compressor units in the gas injection process of gas storage facilities. A multi-objective optimization model based on the NSGA-II algorithm is proposed to maximize gas injection volume while minimizing energy consumption. Thermodynamic models of compressors [...] Read more.
This study addresses the parallel operation of multiple compressor units in the gas injection process of gas storage facilities. A multi-objective optimization model based on the NSGA-II algorithm is proposed to maximize gas injection volume while minimizing energy consumption. Thermodynamic models of compressors and flow–heat transfer models of air coolers are established. The influence of key factors, including inlet and outlet pressures, temperatures, and natural gas composition, on compressor performance is analyzed using the control variable method. The results indicate that the first-stage inlet pressure has the most significant impact on gas throughput, and higher compression ratios lead to increased specific energy consumption. The NSGA-II algorithm is applied to optimize compressor start–stop strategies and air cooler speed matching under high, medium, and low compression ratio conditions. This study reveals that reducing the compression ratio significantly enhances the energy-saving potential. Under the investigated conditions, adjusting air cooler speed can achieve approximately 2% energy savings at high compression ratios, whereas at low compression ratios, the energy-saving potential reaches up to 8%. This research provides theoretical guidance and technical support for the efficient operation of gas storage compressor units. Full article
Show Figures

Figure 1

25 pages, 5063 KiB  
Review
Recycled Aggregates for Sustainable Construction: Strengthening Strategies and Emerging Frontiers
by Ying Peng, Shenruowen Cai, Yutao Huang and Xue-Fei Chen
Materials 2025, 18(13), 3013; https://doi.org/10.3390/ma18133013 - 25 Jun 2025
Viewed by 443
Abstract
The transformative trajectory of urban development in the contemporary era has engendered a substantial escalation in construction waste generation, particularly in China, where it constitutes approximately 40% of the total solid waste stream. Traditional landfill disposal methodologies pose formidable ecological challenges, encompassing soil [...] Read more.
The transformative trajectory of urban development in the contemporary era has engendered a substantial escalation in construction waste generation, particularly in China, where it constitutes approximately 40% of the total solid waste stream. Traditional landfill disposal methodologies pose formidable ecological challenges, encompassing soil contamination, groundwater pollution, and significant greenhouse gas emissions. Furthermore, the unsustainable exploitation of natural sandstone resources undermines energy security and disrupts ecological balance. In response to these pressing issues, an array of scholars and researchers have embarked on an exploratory endeavor to devise innovative strategies for the valorization of construction waste. Among these strategies, the conversion of waste into recycled aggregates has emerged as a particularly promising pathway. However, the practical deployment of recycled aggregates within the construction industry is impeded by their inherent physico-mechanical properties, such as heightened water absorption capacity and diminished compressive strength. To surmount these obstacles, a multitude of enhancement techniques, spanning physical, chemical, and thermal treatments, have been devised and refined. This paper undertakes a comprehensive examination of the historical evolution, recycling methodologies, and enhancement strategies pertinent to recycled aggregates. It critically evaluates the efficacy, cost–benefit analyses, and environmental ramifications of these techniques, while elucidating the microstructural and physicochemical disparities between recycled and natural aggregates. Furthermore, it identifies pivotal research gaps and prospective avenues for future inquiry, underscoring the imperative for collaborative endeavors aimed at developing cost-effective and environmentally benign enhancement techniques that adhere to the stringent standards of contemporary construction practices, thereby addressing the intertwined challenges of waste management and resource scarcity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 4465 KiB  
Article
Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods
by Mohammad Sajjadi and Hussameldin Ibrahim
Energies 2025, 18(13), 3272; https://doi.org/10.3390/en18133272 - 23 Jun 2025
Viewed by 592
Abstract
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR [...] Read more.
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR technologies. Unlike previous studies that focus mainly on production units, this research includes all process and utility systems such as H2 and CO2 compression, air separation, refrigeration, co-generation, and gas dehydration. Aspen HYSYS simulations revealed ATR’s energy demand is 10% lower than that of SMR. The hydrogen production cost was USD 3.28/kg for ATR and USD 3.33/kg for SMR, while a separate study estimated a USD 2.2/kg cost for design without utilities, highlighting the impact of indirect costs. Environmental analysis showed ATR’s lower Global Warming Potential (GWP) compared to SMR, reducing its carbon footprint. The results signified the role of utility integration, site conditions, and process selection in optimizing energy efficiency, costs, and sustainability. Full article
Show Figures

Figure 1

14 pages, 3860 KiB  
Article
Large Eddy Simulations on the Diffusion Features of the Cold-Vented Natural Gas Containing Sulfur
by Xu Sun, Meijiao Song, Sen Dong, Dongying Wang, Yibao Guo, Jinpei Wang and Jingjing Yu
Processes 2025, 13(6), 1940; https://doi.org/10.3390/pr13061940 - 19 Jun 2025
Viewed by 334
Abstract
For cold venting processes frequently employed in oil and gas fields, precisely predicting the instantaneous diffusion process of the vented explosive and/or toxic gases is of great importance, which cannot be captured by the Reynolds-averaged Navier–Stokes (RANS) method. In this paper, the large [...] Read more.
For cold venting processes frequently employed in oil and gas fields, precisely predicting the instantaneous diffusion process of the vented explosive and/or toxic gases is of great importance, which cannot be captured by the Reynolds-averaged Navier–Stokes (RANS) method. In this paper, the large eddy simulation (LES) method is introduced for gas diffusion in an open space, and the diffusion characteristics of the sulfur-containing natural gas in the cold venting process is analyzed numerically. Firstly, a LES solution procedure of compressible gas diffusion is proposed based on the ANSYS Fluent 2022, and the numerical solution is verified using benchmark experiments. Subsequently, a computational model of the sulfur-containing natural gas diffusion process under the influence of a wind field is established, and the effects of wind speed, sulfur content, the venting rate and a downstream obstacle on the natural gas diffusion process are analyzed in detail. The results show that the proposed LES with the DSM sub-grid model is able to capture the transient diffusion process of heavy and light gases released in turbulent wind flow; the ratio between the venting rate and wind speed has a decisive influence on the gas diffusion process: a large venting rate increases the vertical diffusion distance and makes the gas cloud fluctuate more, while a large wind speed decreases the vertical width and stabilizes the gas cloud; for an obstacle located closely downstream, the venting pipe makes the vented gas gather on the windward side and move toward the ground, increasing the risk of ignition and poisoning near the ground. The LES solution procedure provides a more powerful tool for simulating the cold venting process of natural gas, and the results obtained could provide a theoretical basis for the safety evaluation and process optimization of sulfur-containing natural gas venting. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
Weight-Based Numerical Study of Shale Brittleness Evaluation
by Yu Suo, Fenfen Li, Qiang Liang, Liuke Huang, Liangping Yi and Xu Dong
Symmetry 2025, 17(6), 927; https://doi.org/10.3390/sym17060927 - 11 Jun 2025
Viewed by 267
Abstract
The implementation of lean drilling and completion design techniques is a pivotal strategy for the petroleum and natural gas industry to achieve green, low-carbon, and intelligent transformation and innovation. These techniques significantly enhance oil and gas recovery rates. In shale gas development, the [...] Read more.
The implementation of lean drilling and completion design techniques is a pivotal strategy for the petroleum and natural gas industry to achieve green, low-carbon, and intelligent transformation and innovation. These techniques significantly enhance oil and gas recovery rates. In shale gas development, the shale brittleness index plays a crucial role in evaluating fracturing ability during hydraulic fracturing. Indoor experiments on Gulong shale oil were conducted under a confining pressure of 30 MPa. Based on Rickman’s brittleness evaluation method, this study performed numerical simulations of triaxial compression tests on shale using the finite discrete element method. The fractal dimensions of the fractures formed during shale fragmentation were calculated using the box-counting method. Utilizing the obtained data, a multiple linear regression equation was established with elastic modulus and Poisson’s ratio as the primary variables, and the coefficients were normalized to propose a new brittleness evaluation method. The research findings indicate that the finite discrete element method can effectively simulate the rock fragmentation process, and the established multiple linear regression equation demonstrates high reliability. The weights reassigned for brittleness evaluation based on Rickman’s method are as follows: the coefficient for elastic modulus is 0.43, and the coefficient for Poisson’s ratio is 0.57. Furthermore, the new brittleness evaluation method exhibits a stronger correlation with the brittleness mineral index. The fractal characteristics of crack networks and the relationship between symmetry response and mechanical parameters offer a new theoretical foundation for brittle weight distribution. Additionally, the scale symmetry characteristics inherent in fractal dimensions can serve as a significant indicator for assessing complex crack morphology. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 3855 KiB  
Article
Assessment of the Efficiency of Mechanical Grinding and Calcination Processes for Construction and Demolition Waste as Binder Replacement in Cement Pastes: Mechanical Properties Evaluation
by Sandra Cunha, Kubilay Kaptan, Erwan Hardy and José Aguiar
Sustainability 2025, 17(12), 5248; https://doi.org/10.3390/su17125248 - 6 Jun 2025
Viewed by 458
Abstract
Reducing carbon dioxide emissions is a key priority in the European Union, which aims to achieve carbon neutrality by 2050. Construction has a key role to play in this effort, as it is responsible for a significant proportion of greenhouse gas emissions, especially [...] Read more.
Reducing carbon dioxide emissions is a key priority in the European Union, which aims to achieve carbon neutrality by 2050. Construction has a key role to play in this effort, as it is responsible for a significant proportion of greenhouse gas emissions, especially due to cement production. At the same time, waste reuse emerges as a key strategy within the circular economy, another pillar of European policies. By valuing byproducts and waste, such as construction and demolition waste (CDW), it is possible to reduce the extraction of natural resources, amount of waste sent to landfills, and emissions associated with the production of new materials. This study, with the main objective of evaluating the possibility of using CDW as supplementary cementitious materials, emerges as a possible solution to reduce these problems. Two CDW treatment methods were used: (i) mechanical grinding and (ii) calcination. The mechanical grinding method, even with the use of laboratory equipment, has shown that it is possible to obtain CDW particles with characteristics suitable for replacing cement. For the calcination process, temperatures between 600 °C and 800 °C were the most suitable. The results proved that the replacement of cement by CDW in pastes resulted in suitable behavior for the construction industry, having revealed an incorporation content of up to 25% CDW, a compressive strength and strength activity index higher than that found for pastes developed with fly ash. Regarding the calcination process, this revealed an improvement in the compressive strength of the developed pastes, resulting in an increase in strength activity index of between 7 and 10%. Full article
Show Figures

Figure 1

20 pages, 6506 KiB  
Article
A Study on the Hydrodynamic Excitation Characteristics of Pump and Pipeline Systems Considering the Weakly Compressible Fluid During the Pump Start-Up Condition
by Yonggang Lu, Mengjiao Min, Wei Song, Yun Zhao and Zhengwei Wang
Energies 2025, 18(11), 2911; https://doi.org/10.3390/en18112911 - 2 Jun 2025
Viewed by 442
Abstract
With increasing global energy transition and environmental awareness, liquefied natural gas (LNG) is rapidly developing as an efficient and clean energy source. LNG pumps are widely used in industrial applications. This study focuses on the LNG pump and pipeline system, and it innovatively [...] Read more.
With increasing global energy transition and environmental awareness, liquefied natural gas (LNG) is rapidly developing as an efficient and clean energy source. LNG pumps are widely used in industrial applications. This study focuses on the LNG pump and pipeline system, and it innovatively establishes a computational model based on weak compressible fluid in order to better reflect the characteristics of pressure pulsation and the flow situation. Through numerical simulations, the flow characteristics of the pump were analyzed. In addition, the flow conditions at the pipe tee were analyzed, and the attenuation patterns of pressure waves at different frequencies within the pipe were also investigated. The internal flow field of the pump was analyzed at three specific time points. The results indicate that, during the initial start-up phase, the internal flow state of the pump is complex, with significant vortices and pressure fluctuations. As the flow rate and rotational speed increase, the flow gradually stabilizes. Moreover, the pressure pulsation coefficient within the pipeline varies significantly with position. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 5837 KiB  
Article
Spark Ignition (SI) Engine Energy and Ecological Performance Using Natural Gas and Late Intake Valve Close (LIVC)
by Tadas Vipartas, Alfredas Rimkus, Saulius Stravinskas, Aurelijus Pitrėnas and Audrius Matulis
Appl. Sci. 2025, 15(11), 6185; https://doi.org/10.3390/app15116185 - 30 May 2025
Viewed by 568
Abstract
Natural gas stands out as a promising alternative fuel, and utilizing late intake valve close (LIVC) can further enhance its potential by improving internal combustion engine performance. The present study investigated the effect of LIVC on the performance of a Nissan Qashqai J10 [...] Read more.
Natural gas stands out as a promising alternative fuel, and utilizing late intake valve close (LIVC) can further enhance its potential by improving internal combustion engine performance. The present study investigated the effect of LIVC on the performance of a Nissan Qashqai J10 four-cylinder internal combustion ignition engine (ICE) operating on gasoline (G) and natural gas (NG), with a focus on both energy and ecological aspects at stoichiometric points. Experimental tests were performed under the usual engine operating conditions, with engine speeds of 2000 and 3000 rpm and brake mean effective pressures (BMEPs) of 0.31, 0.55, and 0.79 MPa, while the intake valve closing moment was delayed at 24°, 31°, 38°, 45°, 52°, and 59° after bottom dead center (aBDC). The software AVL BOOST™ (version R2021.2) and its utility BURN were used to calculate the rate of heat release (ROHR), mass fraction burned (MFB), in-cylinder temperature, and the rate of temperature rise. The substitution of natural gas for gasoline substantially decreases CO2 and NOx emissions while enhancing the engine’s energy efficiency. Implementing a LIVC strategy can further boost brake thermal efficiency and reduce CO2, though it negatively impacts CO, HC, and NOx emissions. Optimal performance necessitates balancing efficiency improvements and CO2 reduction against the control of other pollutants, potentially through combining LIVC with alternative engine control methodologies. Full article
(This article belongs to the Special Issue Modern Internal Combustion Engines: Design, Testing, and Application)
Show Figures

Figure 1

Back to TopTop