Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,016)

Search Parameters:
Keywords = compound source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1187 KB  
Review
Vehicle Brake Wear Particles: Formation Mechanisms, Behavior, and Health Impacts with an Emphasis on Ultrafine Particles
by Jozef Salva, Miroslav Dado, Janka Szabová, Michal Sečkár, Marián Schwarz, Juraj Poništ, Miroslav Vanek, Anna Ďuricová and Martina Mordáčová
Atmosphere 2026, 17(1), 57; https://doi.org/10.3390/atmos17010057 (registering DOI) - 31 Dec 2025
Abstract
Brake wear particles (BWPs) represent a major source of non-exhaust particulate matter from road traffic, contributing substantially to human exposure, particularly in urban environments. While traditionally associated with coarse and fine fractions, mounting evidence shows that brake systems emit large quantities of ultrafine [...] Read more.
Brake wear particles (BWPs) represent a major source of non-exhaust particulate matter from road traffic, contributing substantially to human exposure, particularly in urban environments. While traditionally associated with coarse and fine fractions, mounting evidence shows that brake systems emit large quantities of ultrafine particles (UFPs; <100 nm), which dominate number concentrations despite contributing little to mass. This paper synthesizes current knowledge on BWP formation mechanisms, physicochemical characteristics, environmental behavior, and toxicological effects, with a specific emphasis on UFPs. Mechanical friction and high-temperature degradation of pad and disc materials generate nanoscale primary particles that rapidly agglomerate yet retain ultrafine structural features. Reported real-world and laboratory number concentrations commonly range from 103 to over 106 particles/cm3, with diameters between 10 and 100 nm, rising sharply during intensive braking. Toxicological studies consistently demonstrate that UFP-rich and metal-laden BWPs, particularly those containing Fe, Cu, Mn, Cd, and Sb compounds, induce oxidative stress, inflammation, mitochondrial dysfunction, genotoxicity, and epithelial barrier disruption in human lung and immune cells. Ecotoxicological studies further reveal adverse impacts across aquatic organisms, plants, soil invertebrates, and mammals, with evidence of environmental persistence and food-chain transfer. Despite these findings, current regulatory frameworks address only the mass of particulate matter from brakes and omit UFP number-based limits, leaving a major gap in emission control. Full article
27 pages, 1273 KB  
Review
Bioactive Chemicals and Biological Activity of Tropaeolum majus L. and the Importance of Trichoderma spp. in the Cultivation of This Species
by Sylwia Skazińska, Roman Andrzejak, Katarzyna Waszkowiak and Beata Janowska
Agriculture 2026, 16(1), 101; https://doi.org/10.3390/agriculture16010101 - 31 Dec 2025
Abstract
Tropaeolum majus L. is a popular ornamental plant. All parts of T. majus plant (flowers, leaves, and seeds) are edible and are appreciated for their pungent taste, although their chemical composition varies. T. majus is known for its many health benefits. It is [...] Read more.
Tropaeolum majus L. is a popular ornamental plant. All parts of T. majus plant (flowers, leaves, and seeds) are edible and are appreciated for their pungent taste, although their chemical composition varies. T. majus is known for its many health benefits. It is a source of trace elements and bioactive compounds that are easily absorbed by the human body. The flowers of T. majus contain flavonoids from the flavone and flavonol groups, as well as their glycosides, which exhibit antibacterial, antifungal and antiviral activity. They also inhibit the activity of certain enzymes. Among the flavonoids, the flowers and leaves of T. majus contain derivatives of kaempferol and quercetin. Flavonoids also include anthocyanins, which are responsible for the color of T. majus flowers. In red flowers, delphinidin predominates; in orange flowers, pelargonidin; and in yellow flowers, pelargonidin and delphinidin are present in similar amounts. In the flowers of T. majus, seven carotenoids have been identified: violaxanthin, antheraxanthin, lutein, zeaxanthin, α, β and γ-carotene. In the leaves, however, lutein, violaxanthin, β-carotene and neoxanthin were detected. In T. majus, the presence of two glucosinolates has been reported: glucotropaeolin and sinalbin. The flowers and leaves of T. majus also contain both macroelements (N, P, K, Ca, Mg, Na) and microelements (Fe, Mn, Cu, Zn, Mo), and essential oils which have anti-cancer, antibacterial, and antiviral properties. The quality and flowering of T. majus are enhanced by fungi of the Trichoderma genus, which is important both ecologically and in terms of increasing the yield of raw material extracted from the plant. T. aureoviride, T. hamatum, and T. harzianum stimulated the flowering of the T. majus ‘Spitfire’. The plants treated with T. harzianum after being planted in pots flowered the most abundantly. Trichoderma spp. caused the plants to grow more intensively, producing longer and more leafy shoots with a greater number of offshoots. Trichoderma spp. stimulated the uptake of macronutrients, except for P. In the case of Ca and Na, this phenomenon was only observed in plants treated with T. aureoviride and T. hamatum, and for Mg, only when T. hamatum was applied to sown seeds. As for the developed root systems, as far as the micronutrients are concerned, Trichoderma spp. stimulated the uptake of Zn and Mn. Additionally, there was a higher Fe content in the plants treated with T. harzianum on both dates and T. aureoviride after planting the plants in pots. Full article
(This article belongs to the Special Issue The Application of Trichoderma in Crop Production)
23 pages, 3705 KB  
Article
Environmental and Health Risk Assessments of Volatile Organic Compounds (VOCs) Based on Source Apportionment—A Case Study in Harbin, a Megacity in Northeastern China
by Jinpan Jiang, Bo Li, Binyuan Wang, Lu Lu, Fan Meng, Chongguo Tian, Hong Qi and Ai-Ling Lian
Toxics 2026, 14(1), 46; https://doi.org/10.3390/toxics14010046 (registering DOI) - 31 Dec 2025
Abstract
The multiple sources and concomitant negative environmental and health impacts of volatile organic compounds (VOCs) in the atmosphere demonstrate their importance in air pollution control. This study employed environment- and health risk-oriented source apportionment methods to quantitatively estimate VOCs’ contribution to air pollution [...] Read more.
The multiple sources and concomitant negative environmental and health impacts of volatile organic compounds (VOCs) in the atmosphere demonstrate their importance in air pollution control. This study employed environment- and health risk-oriented source apportionment methods to quantitatively estimate VOCs’ contribution to air pollution and health risks, using offline VOC measurements from the Harbin urban region from 2021 to 2022. Total volatile organic compounds (TVOCs) averaged 25.6 ± 8.2 ppb, except for alkanes (34.4%), and aromatics (24.2%) were found to be a major contributor, with the highest LOH (38.0%), ozone formation potential (OFP) (43.0%), and secondary organic aerosol formation potential (SOAFP) (95.0%) and exerting a directly toxic effect (46.0%). Positive matrix factorization (PMF) source apportionment revealed that vehicle exhausts, combustion sources, solvent and coating usage, solvent and fuel evaporation, and petrochemical industry sources were key VOC sources. A health risk assessment showed that there was an integrated carcinogenic risk of 5.8 × 10−4, with respiratory (1.5 × 10−4) and hematologic systems (1.5 × 10−4) representing higher carcinogenic risks. Both benzene and naphthalene exhibited carcinogenic risks of 1.5 × 10−4, implying an excess of higher cancer risk levels (1.0 × 10−4). Significant joint environmental and health benefits could be obtained by reducing benzene and naphthalene concentrations by about 50.0%, along with the abatement of vehicle exhausts (82.6%), combustion sources (40.7%), and solvent and coating usage (50.7%). This study can serve as useful guidance for the quantitative mitigation of hazardous VOCs and their key sources. Full article
Show Figures

Graphical abstract

34 pages, 2151 KB  
Review
Fermentation Technologies to Produce and Improve Alternative Protein Sources
by Jonathan Coronel-León, Daniela Maza, Ignacio García-Álvarez de Toledo, Anna Jofré, Belén Martín, Xavier Serra and Sara Bover-Cid
Foods 2026, 15(1), 117; https://doi.org/10.3390/foods15010117 - 31 Dec 2025
Abstract
The growing global population, along with evolving dietary trends and increasing concerns about health and the environment, underscores the urgent need to transform current food systems to minimize their environmental footprint and enhance global food security. This transformation has driven the development and [...] Read more.
The growing global population, along with evolving dietary trends and increasing concerns about health and the environment, underscores the urgent need to transform current food systems to minimize their environmental footprint and enhance global food security. This transformation has driven the development and demand for alternative food sources. In this context, alternative proteins emerge as promising options due to their production from plants, microorganisms, and insects, which potentially reduces the environmental impact of food production while supporting global food security. Nevertheless, the transition toward alternative proteins presents significant challenges related to the presence of antinutritional compounds, poor amino acid composition, lower digestibility, and undesirable organoleptic characteristics. Moreover, these new generations of alternative foods are highly processed, raising concerns about their nutritional adequacy compared to traditional products. In this context, fermentation technologies have emerged as promising tools to overcome these limitations. Traditional fermentation can degrade antinutritional factors, improve digestibility, and release bioactive compounds, allowing the production of new products with health-promoting properties. Beyond traditional fermentation, biomass fermentation to single-cell protein or microbial protein production represents a sustainable alternative, promoting a climate-friendly approach aligned with circular bioeconomy principles by upcycling various agro-industrial streams. Thus, this review discusses how microbial strategies (from traditional fermentation to cutting-edge microbial protein production) can enhance the nutritional properties of alternative protein-based foods. Emphasis is placed on the capacity of traditional fermentation to improve nutritional quality and bioactivity, mitigate undesirable sensory traits, and preserve or enhance micronutrient content. Additionally, integrating biomass fermentation and emerging precision fermentation positions microorganisms as valuable contributors to more nutritious and sustainable food systems. Full article
Show Figures

Graphical abstract

20 pages, 613 KB  
Review
Next-Generation SGLT2 Inhibitors: Innovations and Clinical Perspectives
by Dana Movila, Daniel Duda Seiman and Simona Ruxanda Dragan
Biomedicines 2026, 14(1), 81; https://doi.org/10.3390/biomedicines14010081 (registering DOI) - 30 Dec 2025
Abstract
Sodium–glucose cotransporter 2 (SGLT2) inhibitors have substantially reshaped the management of type 2 diabetes mellitus (T2DM), owing not only to their glucose-lowering properties but also to their consistent cardiovascular and renal protective effects. Beyond their initial metabolic indication, these agents have emerged as [...] Read more.
Sodium–glucose cotransporter 2 (SGLT2) inhibitors have substantially reshaped the management of type 2 diabetes mellitus (T2DM), owing not only to their glucose-lowering properties but also to their consistent cardiovascular and renal protective effects. Beyond their initial metabolic indication, these agents have emerged as disease-modifying therapies across a broad spectrum of cardiometabolic and renal conditions. Building on the clinical success of first-generation SGLT2 inhibitors, such as empagliflozin and dapagliflozin, next-generation SGLT2-based therapies have been developed with the aim of refining pharmacological selectivity, optimizing pharmacokinetic profiles, and expanding therapeutic applicability beyond diabetes. These innovations include dual SGLT1/SGLT2 inhibition, alternative dosing strategies, and molecular designs tailored to specific clinical phenotypes, such as heart failure with preserved ejection fraction (HFpEF) and chronic kidney disease (CKD). This narrative review critically evaluates the evolving landscape of next-generation SGLT2 inhibitors, with a focus on structural and pharmacokinetic innovations, transporter selectivity, glucose-independent mechanisms, and emerging clinical implications. A comprehensive literature search was conducted using PubMed/MEDLINE, Scopus, and Web of Science, encompassing publications from inception to March 2025. Eligible sources included randomized clinical trials, observational studies, meta-analyses, and authoritative reviews published in English. Available evidence indicates that, while conventional SGLT2 inhibitors confer robust and reproducible cardiorenal benefits, newer agents may further extend therapeutic potential through incretin-related effects, modulation of extra-renal pathways, and disease-specific cardiac and renal mechanisms. Nevertheless, evidence supporting incremental clinical benefit beyond established SGLT2 inhibitors remains limited and heterogeneous, particularly for recently developed compounds. Overall safety profiles appear broadly consistent within the class, although long-term data for next-generation agents are still evolving. Key limitations of the current evidence base include reliance on emerging or indirect mechanistic data, heterogeneity in study populations and clinical endpoints, and the relative scarcity of large, outcome-driven trials for newer SGLT2-based therapies. Future research should prioritize mechanism-driven clinical trials, precision-oriented patient stratification, and head-to-head comparative studies to more clearly define the role of next-generation SGLT2 inhibitors in cardiovascular, renal, and metabolic disease management. Full article
Show Figures

Graphical abstract

36 pages, 6955 KB  
Article
Natural Fatty Acids as Dual ACE2-Inflammatory Modulators: Integrated Computational Framework for Pandemic Preparedness
by William D. Lituma-González, Santiago Ballaz, Tanishque Verma, J. M. Sasikumar and Shanmugamurthy Lakshmanan
Int. J. Mol. Sci. 2026, 27(1), 402; https://doi.org/10.3390/ijms27010402 (registering DOI) - 30 Dec 2025
Abstract
The COVID-19 pandemic exposed critical vulnerabilities in single-target antiviral strategies, highlighting the urgent need for multi-mechanism therapeutic approaches against emerging viral threats. Here, we present an integrated computational framework systematically evaluating natural fatty acids as potential dual ACE2 (Angiotension Converting Enzyme 2)-inflammatory modulators; [...] Read more.
The COVID-19 pandemic exposed critical vulnerabilities in single-target antiviral strategies, highlighting the urgent need for multi-mechanism therapeutic approaches against emerging viral threats. Here, we present an integrated computational framework systematically evaluating natural fatty acids as potential dual ACE2 (Angiotension Converting Enzyme 2)-inflammatory modulators; compounds simultaneously disrupting SARS-CoV-2 viral entry through allosteric ACE2 binding while suppressing host inflammatory cascades; through allosteric binding mechanisms rather than conventional competitive inhibition. Using molecular docking across eight ACE2 regions, 100 ns molecular dynamics simulations, MM/PBSA free energy calculations, and multivariate statistical analysis (PCA/LDA), we computationally assessed nine naturally occurring fatty acids representing saturated, monounsaturated, and polyunsaturated classes. Hierarchical dynamics analysis identified three distinct binding regimes spanning fast (τ < 50 ns) to slow (τ > 150 ns) timescales, with unsaturated fatty acids demonstrating superior binding affinities (ΔG = −6.85 ± 0.27 kcal/mol vs. −6.65 ± 0.25 kcal/mol for saturated analogs, p = 0.002). Arachidonic acid achieved optimal SwissDock affinity (−7.28 kcal/mol), while oleic acid exhibited top-ranked predicted binding affinity within the computational hierarchy (ΔGbind = −24.12 ± 7.42 kcal/mol), establishing relative prioritization for experimental validation rather than absolute affinity quantification. Energetic decomposition identified van der Waals interactions as primary binding drivers (65–80% contribution), complemented by hydrogen bonds as transient directional anchors. Comprehensive ADMET profiling predicted favorable safety profiles compared to synthetic antivirals, with ω-3 fatty acids showing minimal nephrotoxicity risks while maintaining excellent intestinal absorption (>91%). Multi-platform bioactivity analysis identified convergent anti-inflammatory mechanisms through eicosanoid pathway modulation and kinase inhibition. This computational investigation positions natural fatty acids as promising candidates for experimental validation in next-generation pandemic preparedness strategies, integrating potential therapeutic efficacy with sustainable sourcing. The framework is generalizable to fatty acids from diverse biological origins. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

11 pages, 812 KB  
Communication
Exploring the Anti-Inflammatory Potential of Nannochloropsis sp. Extract
by Hanbi Moon and Jaoon Young Hwan Kim
Phycology 2026, 6(1), 3; https://doi.org/10.3390/phycology6010003 - 30 Dec 2025
Abstract
Microalgae have garnered increasing attention as promising sources of diverse natural anti-inflammatory compounds, including carotenoids, phenolics, and unsaturated fatty acids. In this study, we aimed to examine the anti-inflammatory properties of the methanol extract of Nannochloropsis sp. G1-5 (NG15), a strain of marine [...] Read more.
Microalgae have garnered increasing attention as promising sources of diverse natural anti-inflammatory compounds, including carotenoids, phenolics, and unsaturated fatty acids. In this study, we aimed to examine the anti-inflammatory properties of the methanol extract of Nannochloropsis sp. G1-5 (NG15), a strain of marine microalgae isolated from the southern West Sea of the Republic of Korea. Pigment and metabolite analyses revealed that the extract contained various carotenoids and polyunsaturated fatty acids alongside significant quantities of phenolic and flavonoid compounds, which are known to have anti-inflammatory activities. Cytotoxicity assays confirmed that the extract was non-toxic to RAW 264.7 macrophage cells at concentrations up to 1 mg/mL. Upon lipopolysaccharide (LPS) stimulation of the macrophage cells, the NG15 extract significantly inhibited nitric oxide (NO) production in a dose-dependent manner up to 81%. In addition, the NG15 extract reduced the expression of iNOS, COX-2, TNF-α, and IL-6 in the LPS-stimulated cells. These findings suggest that NG15 methanol extract exerts anti-inflammatory effects primarily through the suppression of NO generation without inducing cytotoxicity. Overall, these results underscore NG15 as a promising natural resource for the development of non-toxic and effective anti-inflammatory agents with potential applications in the biomedical and cosmeceutical industries. Full article
Show Figures

Figure 1

14 pages, 2169 KB  
Article
Identification and Characterization of a Proteinaceous Antibacterial Factor from Pseudomonas extremorientalis PEY1 Active Against Edwardsiella tarda
by Hyun-Sol Jo, Youl-Lae Jo and Sun-Mee Hong
Microbiol. Res. 2026, 17(1), 6; https://doi.org/10.3390/microbiolres17010006 (registering DOI) - 30 Dec 2025
Abstract
Pseudomonas extremorientalis PEY1, isolated from the intestinal contents of marine fish, was evaluated for the production and properties of antibacterial proteins active against Edwardsiella tarda, a major pathogen in aquaculture. Antibacterial production was maximized in a minimal medium supplemented with 1% yeast [...] Read more.
Pseudomonas extremorientalis PEY1, isolated from the intestinal contents of marine fish, was evaluated for the production and properties of antibacterial proteins active against Edwardsiella tarda, a major pathogen in aquaculture. Antibacterial production was maximized in a minimal medium supplemented with 1% yeast extract and 1% galactose under stationary cultivation at 25 °C and pH 7.0. Growth and bioactivity assays were conducted under varying carbon and nitrogen sources, temperatures, and pH levels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed a distinct ~37 kDa protein band corresponding to antibacterial activity, exhibiting an inhibition zone of 2.4 ± 0.1 cm against E. tarda. The activity was completely abolished by papain digestion but remained detectable after exposure to 55 °C and pH 8, indicating that the active compound is a moderately heat-stable, proteinaceous antibacterial molecule. LC–MS/MS analysis identified the protein as a putative disulfide reductase with ~40% sequence coverage. The antibacterial factor exhibited strong physicochemical stability, retaining activity in the presence of surfactants and metal ions. Collectively, these findings demonstrate that P. extremorientalis PEY1 produces a thermostable, papain-sensitive antibacterial protein with selective activity against E. tarda, highlighting its potential as a promising natural biocontrol or postbiotic candidate for sustainable aquaculture. Full article
Show Figures

Figure 1

27 pages, 1455 KB  
Article
The Health-Promoting Potential of Wafers Enriched with Almond Peel
by Urszula Szymanowska, Monika Karaś, Ivo Oliveira, Sílvia Afonso, Barbara Chilczuk and Katarzyna Lisiecka
Molecules 2026, 31(1), 129; https://doi.org/10.3390/molecules31010129 - 30 Dec 2025
Abstract
This study aimed to evaluate the health-promoting potential of wafers enriched with almond peel as a natural source of bioactive compounds. Wafers were prepared with different concentrations of almond peel (1%, 2%, 5%, and 10%) and analyzed to determine their phenolic content, antioxidant [...] Read more.
This study aimed to evaluate the health-promoting potential of wafers enriched with almond peel as a natural source of bioactive compounds. Wafers were prepared with different concentrations of almond peel (1%, 2%, 5%, and 10%) and analyzed to determine their phenolic content, antioxidant capacity, enzyme inhibition, anticancer properties, and sensory properties. Three types of samples were examined: buffer extracts (PBS), ethanol extracts (EtOH), and samples obtained after in vitro digestion (TRW). Antioxidant properties were assessed using ABTS+• and DPPH assays, as well as Fe2+ chelation and reducing power tests. Enzyme inhibitory activities against LOX, COX, ACE, and lipase, and antiproliferative potential of hydrolysates toward AGS and HT-29 cell lines were also determined. The highest levels of total phenolic, flavonoids, and phenolic acids were found in digested samples of wafers with 10% almond peel addition (W10), reaching 2.243 mg/g, 6.153 µg/g, and 0.554 mg/g, respectively, while PBS extracts of control wafers (WK) showed the lowest values (0.159 mg/g, 0.146 µg/g, and 0.316 mg/g, respectively). The digested W10 samples showed the strongest antioxidant and enzyme inhibitory activities. The wafer hydrolysates caused only a modest reduction in HT-29 cell viability, and this effect was observed exclusively at the higher concentrations tested. The results confirm that almond peel enhances the health-promoting properties of wafers. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

24 pages, 4080 KB  
Article
Invasive Goldenrod (Solidago gigantea Aiton) as a Source of Natural Bioactive Antimicrobial, Insecticidal, and Allelopathic Compounds
by Elżbieta Gębarowska, Jacek Łyczko, Anna Kmieć, Paulina Bączek, Kamila Twardowska and Bogdan Stępień
Molecules 2026, 31(1), 126; https://doi.org/10.3390/molecules31010126 - 29 Dec 2025
Abstract
Goldenrod (Solidago gigantea Aiton) is a highly invasive species in Europe (e.g., Poland, Germany, and the Czech Republic) whose secondary metabolites can serve as potential sources of bioactive compounds. This study evaluated the phytochemical profile of S. gigantea extracts and evaluated their [...] Read more.
Goldenrod (Solidago gigantea Aiton) is a highly invasive species in Europe (e.g., Poland, Germany, and the Czech Republic) whose secondary metabolites can serve as potential sources of bioactive compounds. This study evaluated the phytochemical profile of S. gigantea extracts and evaluated their antibacterial, insecticidal, and phytotoxic activities. The extracts were found to be rich in flavonoids (TFC = 101 mg QE/g) and phenolics (TPC = 175 mg GAE/g), with chlorogenic acid and rutin as dominant constituents. Strong antibacterial activity was observed against Gram-positive bacteria, particularly Staphylococcus spp. (MIC90 = 2.3 mg/mL; MBC = 5 mg/mL), while Gram-negative bacteria were less sensitive, with moderate susceptibility in Rhizobium radiobacter and Pseudomonas syringae. The extract exhibited fungistatic activity against all tested filamentous fungi, with Fusarium species being the most sensitive (49–56% growth inhibition at 10 mg/mL). Insecticidal assays demonstrated significant mortality of Tribolium confusum adults at 2.5–7.0 mg/mL and feeding inhibition at concentrations as low as 0.5 mg/mL. Seedling growth tests showed dose-dependent effects—from mild suppression to moderate stimulation, varying by plant species. Foliar application revealed both stimulatory and inhibitory effects, with the strongest biomass reduction in cress at 10 mg/mL (−45%). These findings indicate that S. gigantea extracts possess potent antibacterial, antifungal, insecticidal, and allelopathic activities. Their concentration-dependent effects on pathogens and plants highlight potential applications in sustainable agriculture, including natural crop protection and integrated pest management. Full article
Show Figures

Figure 1

21 pages, 2597 KB  
Article
Dietary Starch–Extract Complexes from Cerrado Fruits Modulate Oxidative Stress in Mononuclear Cells from Normoglycemic and Diabetic Individuals
by Paula Becker Pertuzatti, Karielly Pereira Montel, Priscila Delalibera, Yasmin Aparecida Konda-Barros, Viviane Francelina Luz, Adenilda Cristina Honório-França, Eduardo Luzia França, Ricardo Stefani and Danilo Hiroshi Konda
Antioxidants 2026, 15(1), 44; https://doi.org/10.3390/antiox15010044 (registering DOI) - 29 Dec 2025
Viewed by 7
Abstract
Cerrado fruits are rich sources of bioactive compounds with antioxidant and immunomodulatory properties. However, it remains unclear whether the complexes of non-conventional starch with extracts from these fruits can modulate oxidative stress in human cells, under diabetic conditions. This study evaluated the effects [...] Read more.
Cerrado fruits are rich sources of bioactive compounds with antioxidant and immunomodulatory properties. However, it remains unclear whether the complexes of non-conventional starch with extracts from these fruits can modulate oxidative stress in human cells, under diabetic conditions. This study evaluated the effects of lobeira (Solanum lycocarpum) starch complexed with hydrophilic and lipophilic extracts of mirindiba (Buchenavia tomentosa) on redox parameters in mononuclear cells from normoglycemic and diabetic individuals. The extracts showed high phenolic (1362.70 mg gallic acid equivalent (GAE)/100 g) and carotenoid content (7.07 mg β-carotene/100 g) and strong antioxidant capacity (58.42–140.19 μmol Trolox/g by FRAP and DPPH). Structural analyses (Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM)) confirmed complexation via hydrogen bonding and inclusion-type interactions, which partially modified the crystalline order of starch. The complexes exhibited high biocompatibility (>97% cell viability) and adaptively modulated oxidative and antioxidant responses under different metabolic and infectious conditions. Normoglycemic cells showed enhanced redox balance, with moderate superoxide generation and higher SOD activity, while cells from diabetic individuals displayed elevated oxidative stress and reduced SOD induction upon treatment. Under the E. coli challenge, the complexes modulated redox equilibrium through compensatory antioxidant responses. These findings position lobeira starch–mirindiba extract complexes as promising dietary immunomodulators against oxidative stress in metabolic and infectious contexts. Full article
(This article belongs to the Special Issue Natural Antioxidants and Metabolic Diseases, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 6041 KB  
Article
Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies
by Ke Wu, Xuezhong Wang, Dandan Zhang, Hong Li, Fang Bi, Zhenhai Wu, Fanxiu Li, Wanghui Chu and Cong An
Toxics 2026, 14(1), 37; https://doi.org/10.3390/toxics14010037 (registering DOI) - 29 Dec 2025
Viewed by 19
Abstract
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, [...] Read more.
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, and RO2) radical cycling driven by photochemical processes in Bozhou, located at the junction of Jiangsu–Anhui–Shandong–Henan (JASH), a region heavily affected by O3 pollution, by applying a zero-dimensional box model (Framework for 0-Dimensional Atmospheric Modeling, F0AM) coupled with the Master Chemical Mechanism (MCM v3.3.1) and Positive Matrix Factorization (PMF 5.0) to characterize O3 pollution, identify volatile organic compound (VOC) sources, and quantify radical budgets during pollution episodes. The results show that O3 episodes in Bozhou mainly occurred in June under conditions of high temperature and low wind speed. Oxygenated volatile organic compounds (OVOCs), alkanes, and halocarbons were the dominant VOCs groups. The CH3O2 + NO reaction accounted for 24.3% of O3 production, while photolysis contributed 68.7% of its removal. Elevated VOCs concentrations in Bozhou were largely maintained by anthropogenic sources such as vehicle exhaust, solvent utilization, and gasoline evaporation, which collectively enhanced O3 production. The findings indicate that O3 formation in the region is primarily regulated by NOx availability. Therefore, emission reductions targeting NOx, along with selective control of OVOCs and alkenes, would be the most effective strategies for lowering O3 levels. Model simulations further highlight Bozhou’s strong atmospheric oxidation capacity, with OVOC photolysis identified as the dominant contributor to ROx generation, accounting for 33% of the total. Diurnal patterns were evident: NOx-related reactions dominated radical sinks in the morning, while HO2 + RO2 reactions accounted for 28.5% in the afternoon. By clarifying the mechanisms of O3 formation in Bozhou, this study provides a scientific basis for designing ozone control strategies across the JASH junction region. In addition, ethanol was not directly measured in this study; given its potential to generate acetaldehyde and affect local O3 formation, its possible contribution introduces additional uncertainty that warrants further investigation. Full article
Show Figures

Graphical abstract

16 pages, 1370 KB  
Article
Optimization of Ultrasonic Enzyme-Assisted Extraction for the Recovery of Phenolic Compounds and Soluble Solids from Apple Pomace
by Violeta Nour
Foods 2026, 15(1), 98; https://doi.org/10.3390/foods15010098 (registering DOI) - 29 Dec 2025
Viewed by 17
Abstract
Apple pomace is a significant by-product of the juice processing industry and a rich source of bioactive compounds; however, its potential as a valuable resource is currently largely untapped. In this work, the ultrasound–enzyme-assisted extraction (UEAE) was evaluated as an alternative method for [...] Read more.
Apple pomace is a significant by-product of the juice processing industry and a rich source of bioactive compounds; however, its potential as a valuable resource is currently largely untapped. In this work, the ultrasound–enzyme-assisted extraction (UEAE) was evaluated as an alternative method for the extraction of phenolic compounds and soluble solids from apple pomace. For this purpose, an optimization study was carried out using a Box–Behnken factorial design combined with the response surface methodology to assess the influence of enzyme/substrate ratio (0–10% v/w), extraction time (1–5 h) and temperature (25–55 °C) on three response variables: total phenolic content, DPPH radical scavenging activity and soluble solids content of the extracts. In addition, the phenolic profile of the extracts was also investigated. According to the model, DPPH radical scavenging activity will record the maximum value (0.69 mmol Trolox/L) for a 10% enzyme/substrate ratio, at 42 °C and 1 h extraction time. Extraction with an enzyme/substrate ratio of 8.5% at 41 °C for 1 h gave the highest retrieval of soluble solids content (4.1%) in the extracts. Based on HPLC results, chlorogenic acid, caffeic acid, rutin, and epicatechin were the predominant polyphenols in the extracts. The results confirmed the great potential of apple pomace as an economical source of bioactive compounds, and UEAE enhanced the recovery of phenolic compounds and soluble solids from this underutilized by-product. Full article
Show Figures

Figure 1

23 pages, 2248 KB  
Article
Aloysia citrodora Polyphenolic Extract: From Anti-Glycative Activity to In Vitro Bioaccessibility and In Silico Studies
by Giulia Moretto, Raffaella Colombo, Stefano Negri, Stefano Alcaro, Francesca Alessandra Ambrosio, Giosuè Costa and Adele Papetti
Nutrients 2026, 18(1), 115; https://doi.org/10.3390/nu18010115 - 29 Dec 2025
Viewed by 13
Abstract
Background: The in vivo accumulation of Advanced Glycation End products (AGEs) is associated with the development of several chronic aging-related and degenerative diseases, as they alter protein structures and activate oxidative and inflammatory processes through interactions with the receptor for AGEs (RAGE). Plant [...] Read more.
Background: The in vivo accumulation of Advanced Glycation End products (AGEs) is associated with the development of several chronic aging-related and degenerative diseases, as they alter protein structures and activate oxidative and inflammatory processes through interactions with the receptor for AGEs (RAGE). Plant secondary metabolites play a key role in counteracting the glycation process through various mechanisms of action. Therefore, Aloysia citrodora leaf polyphenolic extract could represent a source of anti-glycative compounds. Methods: The methanolic extract was characterized by RP-HPLC-DAD-MSn, and its anti-glycative properties were investigated using several in vitro assays mimicking the different steps of the glycation reaction. In parallel, molecular docking studies were carried out to evaluate potential interactions between the identified metabolites and RAGE. Furthermore, A. citrodora metabolites’ stability under simulated in vitro digestion was assessed, and the anti-glycative activity of the bioaccessible fraction was investigated. Results:A. citrodora extract, rich in iridoid glycosides, phenylethanoid glycosides, and flavones, strongly inhibited AGE formation (from 10% to 100%) in both the middle and end step of the reaction and had high methylglyoxal and glyoxal trapping capacity. However, the digestion process affected extract stability, particularly under intestinal conditions, yielding an overall bioaccessibility of about 40% and leading to a subsequent reduction in anti-glycative properties. Finally, molecular modeling analysis highlighted the ability of the studied metabolites to bind RAGE. Conclusions:A. citrodora represents a promising source of natural anti-glycative agents with potential applications as food ingredients. However, it is essential to improve the extract bioaccessibility and to preserve its anti-glycative properties by developing a suitable formulation. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health—2nd Edition)
Show Figures

Graphical abstract

18 pages, 2850 KB  
Article
Valorization of Native Potato and Carrot Discards in the Elaboration of Edible Films: Study of Physical and Chemical Properties
by David Choque-Quispe, Sandra Diaz Orosco, Carlos A. Ligarda-Samanez, Fidelia Tapia Tadeo, Sofía Pastor-Mina, Miriam Calla-Florez, Antonieta Mojo-Quisani, Lucero Quispe Chambilla, Rosa Huaraca Aparco, Hilka Mariela Carrión Sánchez, Jorge W. Elias-Silupu and Luis H. Tolentino-Geldres
Resources 2026, 15(1), 6; https://doi.org/10.3390/resources15010006 (registering DOI) - 29 Dec 2025
Viewed by 44
Abstract
Growing concern about the environmental impact of traditional packaging has driven the development of biodegradable edible films made from natural and functional biopolymers. Various by-products generated during harvesting can be subjected to valorization. Potato, a tuber with high starch content, and carrot, rich [...] Read more.
Growing concern about the environmental impact of traditional packaging has driven the development of biodegradable edible films made from natural and functional biopolymers. Various by-products generated during harvesting can be subjected to valorization. Potato, a tuber with high starch content, and carrot, rich in β-carotene, represent important sources of polymeric matrix and bioactive compounds, respectively. Similarly, the use of biodegradable plasticizers such as pectin and polysaccharides derived from nopal mucilage is a viable alternative. This study assessed the physical and chemical properties of edible films composed of potato starch (PS), cactus mucilage (NM), carrot extract (CJ), citrus pectin (P), and glycerin (G). The films were produced by means of casting, with three mixtures prepared that had different proportions of CJ, P, and PS. The experiments were adjusted to a simple mixture design, and the data were analyzed in triplicate, using Pareto and Tukey diagrams at 5% significance. Results showed that adding CJ (between 5 to 6%), P (between 42 to 44%) and PS (between 43 to 45%) significantly affects all of the evaluated physical and chemical properties, resulting in films with luminosity values greater than 88.65, opacity ranging from 0.20 to 0.54 abs/mm, β-carotene content up to 26.11 μg/100 g, acidity between 0.22 and 0.31% and high solubility with a significant difference between treatments (p-value < 0.05) and low water activity (around of 0.47) (p-value > 0.05). These characteristics provide tensile strength up to 5.7 MPa and a suitable permeability of 1.6 × 10−2 g·mm/h·m2·Pa (p-value < 0.05), which ensures low diffusivity through the film. Similarly, increasing the CJ addition enables the functional groups of the other components to interact. Using carrot extract and potato starch is a promising approach for producing edible films with good functional qualities but with high permeability. Full article
Show Figures

Figure 1

Back to TopTop