Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,334)

Search Parameters:
Keywords = communication robots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 7462 KB  
Article
An Integrated Cyber-Physical Digital Twin Architecture with Quantitative Feedback Theory Robust Control for NIS2-Aligned Industrial Robotics
by Vesela Karlova-Sergieva, Boris Grasiani and Nina Nikolova
Sensors 2026, 26(2), 613; https://doi.org/10.3390/s26020613 - 16 Jan 2026
Abstract
This article presents an integrated framework for robust control and cybersecurity of an industrial robot, combining Quantitative Feedback Theory (QFT), digital twin (DT) technology, and a programmable logic controller–based architecture aligned with the requirements of the NIS2 Directive. The study considers a five-axis [...] Read more.
This article presents an integrated framework for robust control and cybersecurity of an industrial robot, combining Quantitative Feedback Theory (QFT), digital twin (DT) technology, and a programmable logic controller–based architecture aligned with the requirements of the NIS2 Directive. The study considers a five-axis industrial manipulator modeled as a set of decoupled linear single-input single-output systems subject to parametric uncertainty and external disturbances. For position control of each axis, closed-loop robust systems with QFT-based controllers and prefilters are designed, and the dynamic behavior of the system is evaluated using predefined key performance indicators (KPIs), including tracking errors in joint space and tool space, maximum error, root-mean-square error, and three-dimensional positional deviation. The proposed architecture executes robust control algorithms in the MATLAB/Simulink environment, while a programmable logic controller provides deterministic communication, time synchronization, and secure data exchange. The synchronized digital twin, implemented in the FANUC ROBOGUIDE environment, reproduces the robot’s kinematics and dynamics in real time, enabling realistic hardware-in-the-loop validation with a real programmable logic controller. This work represents one of the first architectures that simultaneously integrates robust control, real programmable logic controller-based execution, a synchronized digital twin, and NIS2-oriented mechanisms for observability and traceability. The conducted simulation and digital twin-based experimental studies under nominal and worst-case dynamic models, as well as scenarios with externally applied single-axis disturbances, demonstrate that the system maintains robustness and tracking accuracy within the prescribed performance criteria. In addition, the study analyzes how the proposed architecture supports the implementation of key NIS2 principles, including command traceability, disturbance resilience, access control, and capabilities for incident analysis and event traceability in robotic manufacturing systems. Full article
(This article belongs to the Section Sensors and Robotics)
27 pages, 4229 KB  
Article
The “New” Materiality of Reconstruction: On-Site Automated Recycling of Rubble Aggregates for Rebuilding Earthquake-Stricken Villages
by Roberto Ruggiero, Pio Lorenzo Cocco and Roberto Cognoli
Sustainability 2026, 18(2), 850; https://doi.org/10.3390/su18020850 - 14 Jan 2026
Viewed by 85
Abstract
Post-disaster reconstruction remains largely excluded from circular-economy approaches. This gap is particularly evident in earthquake-affected inner territories, where reconstruction is constrained by severe logistical challenges—especially in relation to rubble management—and where debris is often composed of materials closely tied to local building cultures [...] Read more.
Post-disaster reconstruction remains largely excluded from circular-economy approaches. This gap is particularly evident in earthquake-affected inner territories, where reconstruction is constrained by severe logistical challenges—especially in relation to rubble management—and where debris is often composed of materials closely tied to local building cultures and community identities. In these contexts, rebuilding still predominantly follows linear, emergency-driven models that treat rubble primarily as waste. This study introduces Rubble as a Material Bank (RMB), a digital–material framework that reconceptualises earthquake rubble as a traceable and programmable resource for circular reconstruction. RMB defines a rubble-to-component chain that integrates material characterisation, data-driven management, robotic fabrication, and reversible architectural design. Selected downstream segments of this chain are experimentally validated through the TRAP project, developed within the European TARGET-X programme. The experimentation focuses on extrusion-based fabrication of dry-assembled wall components using rubble-derived aggregates. The results indicate that digitally governed workflows can enable material reuse, while also revealing technical and regulatory constraints that currently limit large-scale implementation. Full article
Show Figures

Figure 1

30 pages, 6245 KB  
Article
Learning to Engineer: Integrating Robotics-Centred Project-Based Learning in Early Undergraduate Education
by Pg Emeroylariffion Abas
Educ. Sci. 2026, 16(1), 105; https://doi.org/10.3390/educsci16010105 - 10 Jan 2026
Viewed by 220
Abstract
Engineering programmes have been giving more weight to experiential learning, largely because many students still find it difficult to see how classroom theory connects to the work that engineers handle on the ground. With this in mind, a robotics-centred Project-based Learning (PBL) module [...] Read more.
Engineering programmes have been giving more weight to experiential learning, largely because many students still find it difficult to see how classroom theory connects to the work that engineers handle on the ground. With this in mind, a robotics-centred Project-based Learning (PBL) module was introduced to first-year general engineering students as part of the faculty’s engineering spine. The module asks students to design, build, and program small autonomous robots capable of navigating and competing in a set arena. Even a simple task of this kind draws together multiple strands of engineering. Students shift between sketching mechanical layouts, wiring basic circuits, writing code, testing prototypes, and negotiating the usual challenges that arise when several people share responsibility for the same piece of hardware. To explore how students learned through the module, a mixed-methods evaluation was carried out using survey responses alongside reflective pieces written by the students themselves. Certain patterns appeared repeatedly. Many students felt that their technical skills had grown, particularly in breaking down a messy problem into smaller, more workable components. Teamwork also surfaced as a prominent theme. Groups often had to sort out issues such as a robot veering off course due to a misaligned sensor or a block of code producing unpredictable behaviour. These issues were undoubtedly challenging for the students, but they also had a certain pedagogical flavour, with many students describing them as a source of frustration as well as a learning opportunity. Later iterations of the module may benefit from more targeted support at key stages. Despite the many challenges, robotics has been shown to be an attractive way for students to step into engineering practice. The project helped them build technical capability, but it also encouraged habits that matter just as much in real work, such as planning, communicating clearly, and returning to a problem until it behaves as expected. Taken together, the experience offers useful guidance for curriculum designers seeking to create early learning environments that feel authentic and manageable and for motivating students who are just beginning their engineering journey. Full article
(This article belongs to the Special Issue Engineering Education: Innovation Through Integration)
Show Figures

Figure 1

29 pages, 4853 KB  
Article
ROS 2-Based Architecture for Autonomous Driving Systems: Design and Implementation
by Andrea Bonci, Federico Brunella, Matteo Colletta, Alessandro Di Biase, Aldo Franco Dragoni and Angjelo Libofsha
Sensors 2026, 26(2), 463; https://doi.org/10.3390/s26020463 - 10 Jan 2026
Viewed by 290
Abstract
Interest in the adoption of autonomous vehicles (AVs) continues to grow. It is essential to design new software architectures that meet stringent real-time, safety, and scalability requirements while integrating heterogeneous hardware and software solutions from different vendors and developers. This paper presents a [...] Read more.
Interest in the adoption of autonomous vehicles (AVs) continues to grow. It is essential to design new software architectures that meet stringent real-time, safety, and scalability requirements while integrating heterogeneous hardware and software solutions from different vendors and developers. This paper presents a lightweight, modular, and scalable architecture grounded in Service-Oriented Architecture (SOA) principles and implemented in ROS 2 (Robot Operating System 2). The proposed design leverages ROS 2’s Data Distribution System-based Quality-of-Service model to provide reliable communication, structured lifecycle management, and fault containment across distributed compute nodes. The architecture is organized into Perception, Planning, and Control layers with decoupled sensor access paths to satisfy heterogeneous frequency and hardware constraints. The decision-making core follows an event-driven policy that prioritizes fresh updates without enforcing global synchronization, applying zero-order hold where inputs are not refreshed. The architecture was validated on a 1:10-scale autonomous vehicle operating on a city-like track. The test environment covered canonical urban scenarios (lane-keeping, obstacle avoidance, traffic-sign recognition, intersections, overtaking, parking, and pedestrian interaction), with absolute positioning provided by an indoor GPS (Global Positioning System) localization setup. This work shows that the end-to-end Perception–Planning pipeline consistently met worst-case deadlines, yielding deterministic behaviour even under stress. The proposed architecture can be deemed compliant with real-time application standards for our use case on the 1:10 test vehicle, providing a robust foundation for deployment and further refinement. Full article
(This article belongs to the Special Issue Sensors and Sensor Fusion for Decision Making for Autonomous Driving)
Show Figures

Figure 1

22 pages, 899 KB  
Article
Rapid MRTA in Large UAV Swarms Based on Topological Graph Construction in Obstacle Environments
by Jinlong Liu, Zexu Zhang, Shan Wen, Jingzong Liu and Kai Zhang
Drones 2026, 10(1), 48; https://doi.org/10.3390/drones10010048 - 9 Jan 2026
Viewed by 148
Abstract
In large-scale Unmanned Aerial Vehicle (UAV) and task environments—particularly those involving obstacles—dimensional explosion remains a significant challenge in Multi-Robot Task Allocation (MRTA). To this end, a novel heuristic MRTA framework based on Topological Graph Construction (TGC) is proposed. First, the physical map is [...] Read more.
In large-scale Unmanned Aerial Vehicle (UAV) and task environments—particularly those involving obstacles—dimensional explosion remains a significant challenge in Multi-Robot Task Allocation (MRTA). To this end, a novel heuristic MRTA framework based on Topological Graph Construction (TGC) is proposed. First, the physical map is transformed into a pixel map, from which a Generalized Voronoi Graph (GVG) is generated by extracting clearance points, which is then used to construct the topological graph of the obstacle environment. Next, the affiliations of UAVs and tasks within the topological graph are determined to partition different topological regions, and the task value of each topological node is calculated, followed by the first-phase Task Allocation (TA) on these topological nodes. Finally, UAVs within the same topological region with their allocated tasks perform a local second-phase TA and generate the final TA result. The simulation experiments analyze the influence of different pixel resolutions on the performance of the proposed method. Subsequently, robustness experiments under localization noise, path cost noise, and communication delays demonstrate that the total benefit achieved by the proposed method remains relatively stable, while the computational time is moderately affected. Moreover, comparative experiments and statistical analyses were conducted against k-means clustering-based MRTA methods in different UAV, task, and obstacle scale environments. The results show that the proposed method improves computational speed while maintaining solution quality, with the PI-based method achieving speedups of over 60 times and the CBBA-based method over 10 times compared with the baseline method. Full article
Show Figures

Figure 1

19 pages, 2708 KB  
Article
A TPU-Based 3D Printed Robotic Hand: Design and Its Impact on Human–Robot Interaction
by Younglim Choi, Minho Lee, Seongmin Yea, Seunghwan Kim and Hyunseok Kim
Electronics 2026, 15(2), 262; https://doi.org/10.3390/electronics15020262 - 7 Jan 2026
Viewed by 198
Abstract
This study outlines the design and evaluation of a biomimetic robotic hand tailored for Human–Robot Interaction (HRI), focusing on improvements in tactile fidelity driven by material choice. Thermoplastic polyurethane (TPU) was selected over polylactic acid (PLA) based on its reported elastomeric characteristics and [...] Read more.
This study outlines the design and evaluation of a biomimetic robotic hand tailored for Human–Robot Interaction (HRI), focusing on improvements in tactile fidelity driven by material choice. Thermoplastic polyurethane (TPU) was selected over polylactic acid (PLA) based on its reported elastomeric characteristics and mechanical compliance described in prior literature. Rather than directly matching human skin properties, TPU was perceived as providing a softer and more comfortable tactile interaction compared to rigid PLA. The robotic hand was anatomically reconstructed from an open-source model and integrated with AX-12A and MG90S actuators to simplify wiring and enhance motion precision. A custom PCB, built around an ATmega2560 microcontroller, enables real-time communication with ROS-based upper-level control systems. Angular displacement analysis of repeated gesture motions confirmed the high repeatability and consistency of the system. A repeated-measures user study involving 47 participants was conducted to compare the PLA- and TPU-based prototypes during interactive tasks such as handshakes and gesture commands. The TPU hand received significantly higher ratings in tactile realism, grip satisfaction, and perceived responsiveness (p < 0.05). Qualitative feedback further supported its superior emotional acceptance and comfort. These findings indicate that incorporating TPU in robotic hand design not only enhances mechanical performance but also plays a vital role in promoting emotionally engaging and natural human–robot interactions, making it a promising approach for affective HRI applications. Full article
Show Figures

Figure 1

13 pages, 638 KB  
Systematic Review
Application of Artificial Intelligence Tools for Social and Psychological Enhancement of Students with Autism Spectrum Disorder: A Systematic Review
by Angeliki Tsapanou, Anastasia Bouka, Angeliki Papadopoulou, Christina Vamvatsikou, Dionisia Mikrouli, Eirini Theofila, Kassandra Dionysopoulou, Konstantina Kortseli, Panagiota Lytaki, Theoni Myrto Spyridonidi and Panagiotis Plotas
Brain Sci. 2026, 16(1), 56; https://doi.org/10.3390/brainsci16010056 - 30 Dec 2025
Viewed by 333
Abstract
Background: Children with autism spectrum disorder (ASD) commonly experience persistent difficulties in social communication, emotional regulation, and social engagement. In recent years, artificial intelligence (AI)-based technologies, particularly socially assistive robots and intelligent sensing systems, have been explored as complementary tools to support psychosocial [...] Read more.
Background: Children with autism spectrum disorder (ASD) commonly experience persistent difficulties in social communication, emotional regulation, and social engagement. In recent years, artificial intelligence (AI)-based technologies, particularly socially assistive robots and intelligent sensing systems, have been explored as complementary tools to support psychosocial interventions in this population. Objective: This systematic review aimed to critically evaluate recent evidence on the effectiveness of AI-based interventions in improving social, emotional, and cognitive functioning in children with ASD. Methods: A systematic literature search was conducted in PubMed following PRISMA guidelines, targeting English-language studies published between 2020 and 2025. Eligible studies involved children with ASD and implemented AI-driven tools within therapeutic or educational settings. Eight studies met inclusion criteria and were analyzed using the PICO framework. Results: The reviewed interventions included humanoid and non-humanoid robots, gaze-tracking systems, and theory of mind-oriented applications. Across studies, AI-based interventions were associated with improvements in joint attention, social communication and reciprocity, emotion recognition and regulation, theory of mind, and task engagement. Outcomes were assessed using standardized behavioral measures, observational coding, parent or therapist reports, and physiological or sensor-based indices. However, the studies were characterized by small and heterogeneous samples, short intervention durations, and variability in outcome measures. Conclusions: Current evidence suggests that AI-based systems may serve as valuable adjuncts to conventional interventions for children with ASD, particularly for supporting structured social and emotional skill development. Nonetheless, methodological limitations and limited long-term data underscore the need for larger, multi-site trials with standardized protocols to better establish efficacy, generalizability, and ethical integration into clinical practice. Full article
Show Figures

Figure 1

36 pages, 1402 KB  
Review
A Comprehensive Review of Bio-Inspired Approaches to Coordination, Communication, and System Architecture in Underwater Swarm Robotics
by Shyalan Ramesh, Scott Mann and Alex Stumpf
J. Mar. Sci. Eng. 2026, 14(1), 59; https://doi.org/10.3390/jmse14010059 - 29 Dec 2025
Viewed by 416
Abstract
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural [...] Read more.
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural systems, such as fish schools and insect colonies, bio-inspired swarm approaches enable distributed decision-making, adaptability, and resilience under challenging marine conditions. Yet research in this field remains fragmented, with limited integration across algorithmic, communication, and hardware design perspectives. This review synthesises bio-inspired coordination mechanisms, communication strategies, and system design considerations for underwater swarm robotics. It examines key marine-specific algorithms, including the Artificial Fish Swarm Algorithm, Whale Optimisation Algorithm, Coral Reef Optimisation, and Marine Predators Algorithm, highlighting their applications in formation control, task allocation, and environmental interaction. The review also analyses communication constraints unique to the underwater domain and emerging acoustic, optical, and hybrid solutions that support cooperative operation. Additionally, it examines hardware and system design advances that enhance system efficiency and scalability. A multi-dimensional classification framework evaluates existing approaches across communication dependency, environmental adaptability, energy efficiency, and swarm scalability. Through this integrated analysis, the review unifies bio-inspired coordination algorithms, communication modalities, and system design approaches. It also identifies converging trends, key challenges, and future research directions for real-world deployment of underwater swarm systems. Full article
(This article belongs to the Special Issue Wide Application of Marine Robotic Systems)
Show Figures

Figure 1

18 pages, 3437 KB  
Article
Development of an Autonomous Robot for Precision Floor Marking
by Fatimah Alahmed, Muhammad Hawwa and Uthman Baroudi
Robotics 2026, 15(1), 7; https://doi.org/10.3390/robotics15010007 - 29 Dec 2025
Viewed by 333
Abstract
The construction and facilities management sectors are increasingly adopting automation technologies to improve productivity and reduce manual labor. In parallel, decorative and informational floor-marking is widely used in indoor environments such as schools, exhibition halls, and public spaces to support organization, wayfinding, and [...] Read more.
The construction and facilities management sectors are increasingly adopting automation technologies to improve productivity and reduce manual labor. In parallel, decorative and informational floor-marking is widely used in indoor environments such as schools, exhibition halls, and public spaces to support organization, wayfinding, and visual communication. While robotic systems have been developed for floor and layout marking, many existing solutions rely on specialized infrastructure or offer limited flexibility in the range of patterns that can be produced. This paper presents the development of a prototype of a mobile, wheeled robot capable of autonomously executing diverse designs on surfaces such as fields and floors. The robot’s potential applications include use on indoor floors and exhibition halls. It marks the ground using a plotting pen while navigating and avoiding obstacles within its environment. Additionally, the robot can produce a range of drawings, including letters and signage, and its capabilities can be extended to create decorative patterns as well as marks for floor-based games. This robot was constructed entirely from cost-effective, commercially available components. Experimental evaluation demonstrates repeatable motion and drawing performance, with measured standard deviations of approximately 1.6 mm in forward motion and 3 mm in lateral motion during representative grid-based traversal. These results indicate that the proposed approach achieves a level of accuracy and consistency sufficient for decorative floor-marking and similar applications, without reliance on external localization infrastructure. Full article
(This article belongs to the Topic New Trends in Robotics: Automation and Autonomous Systems)
Show Figures

Figure 1

13 pages, 1196 KB  
Article
Socially Assistive Robot Hyodol for Depressive Symptoms of Community-Dwelling Older Adults in Medically Underserved Areas: A Preliminary Study
by Han Wool Jung, Yujin Kim, Hyojung Kim, Min-kyeong Kim, Hyejung Lee, Jin Young Park, Woo Jung Kim and Jaesub Park
J. Clin. Med. 2026, 15(1), 217; https://doi.org/10.3390/jcm15010217 - 27 Dec 2025
Viewed by 285
Abstract
Background/Objectives: Socially assistive robots effectively support elderly care when they incorporate personalization, person-centered principles, rich interactions, and careful role setting with psychosocial alignment. Hyodol, a socially assistive robot designed for elderly people, embodies a grandchild’s persona, emulating the grandparent–grandchild relationship. Based [...] Read more.
Background/Objectives: Socially assistive robots effectively support elderly care when they incorporate personalization, person-centered principles, rich interactions, and careful role setting with psychosocial alignment. Hyodol, a socially assistive robot designed for elderly people, embodies a grandchild’s persona, emulating the grandparent–grandchild relationship. Based on the behavioral activation principles and a human-centered approach, this robot continuously supports users’ emotional well-being, health management, and daily routines. Methods: The current study evaluated Hyodol’s impact on depressive symptoms and other quality of life factors among older adults living in medically underserved areas. A total of 278 participants were assessed for depressive symptoms, loneliness, medication adherence, and user acceptance. Results: After six months of use, participants showed significant reductions in overall depressive symptoms, with a 45% decrease in the proportion of individuals at high risk of depression. Significant improvements were also observed in loneliness and medication adherence. Participants reported high levels of user acceptance and satisfaction, exceeding 70% of the total score. Participants who engaged more frequently in free chat with Hyodol showed greater improvements in depressive symptoms. Conclusions: These results highlight Hyodol’s potential as a promising tool for enhancing mental healthcare and overall well-being in this population. This at-home mental-healthcare framework can complement primary care and, if its effects are confirmed in controlled trials, could contribute to reducing healthcare burden and preventing the onset and escalation of depressive symptoms. Full article
(This article belongs to the Special Issue Innovations in the Treatment for Depression and Anxiety)
Show Figures

Figure 1

25 pages, 11080 KB  
Article
Decentralized Multi-Cobot Navigation Under Intermittent Communication
by Zuguang Liu and Md Suruz Miah
Robotics 2026, 15(1), 4; https://doi.org/10.3390/robotics15010004 - 26 Dec 2025
Viewed by 218
Abstract
As collaborative robots (cobots) become more prevalent in industry, there is growing need for autonomous cobots that can cooperatively navigate shared workspaces. Reliable navigation and safety become especially critical when intermittent communication failures occur, potentially due to environmental factors or network disruptions. This [...] Read more.
As collaborative robots (cobots) become more prevalent in industry, there is growing need for autonomous cobots that can cooperatively navigate shared workspaces. Reliable navigation and safety become especially critical when intermittent communication failures occur, potentially due to environmental factors or network disruptions. This paper contributes to the development of a navigation scheme for a team of autonomous networked cobots under intermittent communication. In particular, the paper proposes a decentralized control approach enabling cobots to cooperatively transport an object across an industrial environment despite intermittent communication. The navigation scheme is decentralized in the sense that each cobot computes its control actions locally using only information from neighboring cobots, without relying on a central coordinator, and applies actuator commands independently based on local sensor feedback and inter-robot communication. The work presented herein provides a comprehensive framework for autonomous multi-cobot cooperative object transportation tasks, including the design of the control, navigation, and communication systems. The communication network among the cobots is modeled using directed graphs, with the graph Laplacian matrix representing the connectivity among the cobots. The proposed method is first validated using a commercial robot simulator. Its performance is then evaluated on physical cobots operating in an indoor environment with various complexities. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

16 pages, 2527 KB  
Article
Research on the Energy-Efficient Non-Uniform Clustering LWSN Routing Protocol Based on Improved PSO for ARTFMR
by Yanni Shen and Jianjun Meng
World Electr. Veh. J. 2026, 17(1), 17; https://doi.org/10.3390/wevj17010017 - 26 Dec 2025
Viewed by 156
Abstract
To address the challenges of improving energy balance and extending the operational lifetime of wireless sensor networks for Automated Railway Track Fastener Maintenance Robots (ARTFMR) along railways, this paper proposes an enhanced LEACH protocol incorporating Particle Swarm Optimization (PSO). Initially, network nodes are [...] Read more.
To address the challenges of improving energy balance and extending the operational lifetime of wireless sensor networks for Automated Railway Track Fastener Maintenance Robots (ARTFMR) along railways, this paper proposes an enhanced LEACH protocol incorporating Particle Swarm Optimization (PSO). Initially, network nodes are deployed, and their energy consumption is calculated to formulate a non-uniform deployment model aimed at improving energy balance, followed by network clustering. Subsequently, a routing protocol is designed, where the cluster head election mechanism integrates two critical factors—dynamic residual energy and distance to the base station—to facilitate dynamic and distributed cluster head rotation. During the communication phase, a Time Division Multiple Access (TDMA) scheduling mechanism is employed in conjunction with an inter-cluster multi-hop routing scheme. Additionally, a joint data-volume and energy optimization strategy is implemented to dynamically adjust the transmission data volume based on the residual energy of each node. Finally, simulations were conducted using MATLAB, and the results indicate that the proposed energy-balanced non-uniform deployment optimization strategy improves network energy utilization, effectively extends network lifetime, and exhibits favorable scalability. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
Show Figures

Figure 1

14 pages, 1816 KB  
Article
Information-Driven Team Collaboration in RoboCup Rescue
by Abhijot Bedi, Shelley Zhang and Eugene Chabot
Information 2026, 17(1), 8; https://doi.org/10.3390/info17010008 - 22 Dec 2025
Viewed by 297
Abstract
Efficient collaboration in multi-robot systems (MRSs) is essential for handling complex tasks in dynamic environments under physical constraints. This study employs the RoboCup Rescue Simulation (RCRS) platform, which supports programmable rescue agents in disaster response scenarios, to investigate collaborative strategies for MRS. The [...] Read more.
Efficient collaboration in multi-robot systems (MRSs) is essential for handling complex tasks in dynamic environments under physical constraints. This study employs the RoboCup Rescue Simulation (RCRS) platform, which supports programmable rescue agents in disaster response scenarios, to investigate collaborative strategies for MRS. The proposed approach integrates a task modeling framework into RCRS to enable systematic task decomposition and coordinated request handling among platoon agents. A dedicated communication protocol further allows agents to share and exploit information dynamically in changing conditions. Experiments demonstrate simulation performance improvements ranging from 12% to 48% over default agents across complex map configurations. Results highlight the effectiveness of structured multi-agent system (MAS) collaboration mechanisms when adapted to practical physical constraints, indicating strong potential for enhancing cooperative performance in real-world multi-robot applications. Full article
Show Figures

Figure 1

15 pages, 1613 KB  
Article
Exploring the Cognitive Capabilities of Large Language Models in Autonomous and Swarm Navigation Systems
by Dawid Ewald, Filip Rogowski, Marek Suśniak, Patryk Bartkowiak and Patryk Blumensztajn
Electronics 2026, 15(1), 35; https://doi.org/10.3390/electronics15010035 - 22 Dec 2025
Viewed by 386
Abstract
The rapid evolution of autonomous vehicles necessitates increasingly sophisticated cognitive capabilities to handle complex, unstructured environments. This study explores the cognitive potential of Large Language Models (LLMs) in autonomous navigation and swarm control systems, addressing the limitations of traditional rule-based approaches. The research [...] Read more.
The rapid evolution of autonomous vehicles necessitates increasingly sophisticated cognitive capabilities to handle complex, unstructured environments. This study explores the cognitive potential of Large Language Models (LLMs) in autonomous navigation and swarm control systems, addressing the limitations of traditional rule-based approaches. The research investigates whether multimodal LLMs, specifically a customized version of LLaVA 7B (Large Language and Vision Assistant), can serve as a central decision-making unit for autonomous vehicles equipped with cameras and distance sensors. The developed prototype integrates a Raspberry Pi module for data acquisition and motor control with a main computational unit running the LLM via the Ollama platform. Communication between modules combines REST API for sensory data transfer and TCP sockets for real-time command exchange. Without fine-tuning, the system relies on advanced prompt engineering and context management to ensure consistent reasoning and structured JSON-based control outputs. Experimental results demonstrate that the model can interpret real-time visual and distance data to generate reliable driving commands and descriptive situational reasoning. These findings suggest that LLMs possess emerging cognitive abilities applicable to real-world robotic navigation and lay the groundwork for future swarm systems capable of cooperative exploration and decision-making in dynamic environments. These insights are particularly valuable for researchers in swarm robotics and developers of edge-AI systems seeking efficient, multimodal navigation solutions. Full article
(This article belongs to the Special Issue Data-Centric Artificial Intelligence: New Methods for Data Processing)
Show Figures

Figure 1

33 pages, 5856 KB  
Article
Design, Modeling, and Experimental Study of a Constant-Force Floating Compensator for a Grinding Robot
by Yapeng Xu, Keke Zhang, Kai Guo, Wuyi Ming, Jun Ma, Shoufang Wang and Yuanpeng Ye
Actuators 2026, 15(1), 4; https://doi.org/10.3390/act15010004 - 21 Dec 2025
Viewed by 249
Abstract
Robot grinding requires a constant interaction force between the tool and the workpiece, even under inclination changes. This paper proposes a compact single-axis pneumatic constant-force floating compensator (CFFC) to achieve constant force output. The proportional pressure valve and pressure sensor are used to [...] Read more.
Robot grinding requires a constant interaction force between the tool and the workpiece, even under inclination changes. This paper proposes a compact single-axis pneumatic constant-force floating compensator (CFFC) to achieve constant force output. The proportional pressure valve and pressure sensor are used to regulate the cylinder’s pressure. Pneumatic components and sensors are integrated into the narrow space between the cylinder and the slide rail. Embedded controller, power, and communication modules are developed and integrated into a control box and interact with the operator by a touch screen. The mathematical models of the compensator are established and the stability and response dynamics are analyzed through transfer functions. A dual-loop force controller based on active disturbance rejection control (ADRC) is designed to address bias load, inclination change, friction, and the sealing cover spring effect. The outer loop is compensated by displacement, tilt, and pressure sensors, and the unmodeled dynamics are estimated by an extended state observer (ESO) and a recursive least square (RLS). Finally, the CFFC is installed on a testing platform to simulate grinding conditions. The experimental results show that even under large floating stroke, inclination changes, and biased load, the CFFC can still quickly and stably output the desired grinding force. Full article
Show Figures

Figure 1

Back to TopTop