Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (732)

Search Parameters:
Keywords = commercial yeast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1886 KB  
Article
Volatilomic and Sensorial Profiles of Cabernet Sauvignon Wines Fermented with Different Commercial Yeasts
by Alejandra Chávez-Márquez, Alfonso A. Gardea, Humberto González-Rios, Maria del Refugio Robles-Burgueño and Luz Vázquez-Moreno
Fermentation 2025, 11(8), 485; https://doi.org/10.3390/fermentation11080485 - 21 Aug 2025
Viewed by 399
Abstract
Volatilomic and sensory analyses of wine are excellent tools for enologists and winemakers when selecting commercial yeast based on the production of metabolites related to desirable wine characteristics. Integrating this holistic approach could lead to the terroir description, characterization, and quality control improvement [...] Read more.
Volatilomic and sensory analyses of wine are excellent tools for enologists and winemakers when selecting commercial yeast based on the production of metabolites related to desirable wine characteristics. Integrating this holistic approach could lead to the terroir description, characterization, and quality control improvement of the vinification process. Volatilomic and sensory profiles of Cabernet Sauvignon Mexican wines fermented with three commercial yeasts (WLP740, ICVD254, and ICVD80) were obtained using HS-SPME-GC-qTOF/MS and CATA evaluation. A total of 100 volatile compounds were identified, with unique entities per strain. WLP740 wines were rated as high quality, presenting fruity and minty aromas with fewer off-aromas, while ICVD254 wines showed higher levels of compounds associated with off-notes and were rated as low quality. ICVD80 wines were of medium quality, with fruity esters and higher alcohols descriptors. Volatilomic profiles highlighted the role of specific compounds in differentiating strains and sensory attributes, while yeast selection significantly impacts wine aroma and quality. The authors acknowledge the need for further analyses, including an increased sample size, yeast species, diverse vineyards, and vinification processes, which will result in a solid and robust methodology. Full article
(This article belongs to the Special Issue Science and Technology of Winemaking)
Show Figures

Figure 1

18 pages, 3684 KB  
Article
Enhancement of Mycelial Growth and Antifungal Activity by Combining Fermentation Optimization and Genetic Engineering in Streptomyces pratensis S10
by Lifang Hu, Yan Sun, Ruimin Jia, Xiaomin Dong, Xihui Shen and Yang Wang
Microorganisms 2025, 13(8), 1943; https://doi.org/10.3390/microorganisms13081943 - 20 Aug 2025
Viewed by 181
Abstract
The biocontrol strain Streptomyces pratensis S10 was isolated from tomato leaf mold. The fermentation broth of strain S10 can effectively control Fusarium head blight (FHB), caused by Fusarium graminearum. Enhancing antifungal activity is essential in advancing its commercialization. In this study, we [...] Read more.
The biocontrol strain Streptomyces pratensis S10 was isolated from tomato leaf mold. The fermentation broth of strain S10 can effectively control Fusarium head blight (FHB), caused by Fusarium graminearum. Enhancing antifungal activity is essential in advancing its commercialization. In this study, we aimed to improve the antifungal activity of S10 by integrating fermentation optimization and genetic engineering. Single-factor experiments revealed that seven parameters, namely corn flour, yeast extract, NaNO3, CaCO3, K2HPO4, KCl, ZnSO4·7H2O, and MnCl2·4H2O, were identified as significant components. A Plackett–Burman design (PDB) indicated that corn flour, yeast extract, and ZnSO4·7H2O were the most critical variables affecting its inhibitory activity and mycelial biomass. The fermentation medium was further determined based on the steepest climbing experiment and a Box–Behnken design (BBD), and the mycelial dry weight of S. pratensis S10 was improved from 2.13 g/L in Gauze’s synthetic No. 1 medium to 8.12 g/L in the optimized medium, closely aligning with the predicted value of 7.98 g/L. Under the optimized medium, the antifungal rate of F. graminearum increased from 67.36 to 82.2%. The spore suspension of strain S10 cultured in the optimized medium substantially improved its biocontrol efficacy against FHB. Moreover, disruption of the key gene tetR led to increased antifungal activity of strain S10 against F. graminearum. Importantly, the antifungal activity of ΔtetR was greatly increased under the optimized fermentation medium. This study suggests that the gene tetR negatively regulates bioactive compound biosynthesis, and the optimized medium provides favorable conditions for the growth of S10. These observations establish an extended basis for the large-scale bioactive metabolite secretion of S. pratensis S10, providing a strong foundation for sustainable FHB management in agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

27 pages, 1732 KB  
Review
Modern Palatant Strategies in Dry and Wet Pet Food: Formulation Technologies, Patent Innovations, and Market Evolution
by Phatthranit Klinmalai, Pitiya Kamonpatana, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai and Nathdanai Harnkarnsujarit
Foods 2025, 14(16), 2824; https://doi.org/10.3390/foods14162824 - 14 Aug 2025
Viewed by 509
Abstract
Palatability is a critical determinant of pet food performance, directly influencing voluntary intake, nutrient utilization, and therapeutic efficacy. In this systematic review, we examine peer-reviewed research publications, patent filings, and commercial product data pertaining to palatant technologies in dry and wet pet food [...] Read more.
Palatability is a critical determinant of pet food performance, directly influencing voluntary intake, nutrient utilization, and therapeutic efficacy. In this systematic review, we examine peer-reviewed research publications, patent filings, and commercial product data pertaining to palatant technologies in dry and wet pet food from 2014 to 2024. Major palatant classes—including fats, proteins, yeast extracts, and novel plant-derived or insect-based hydrolysates—are evaluated for their physicochemical properties, flavor-release mechanisms, and stability during processing. We analyze formulation techniques such as microencapsulation, Maillard-reaction enhancement, and multilayer coating systems, focusing on their impact on aromatic compound retention and palatability consistency. Patent landscape assessment identifies over 15 key innovations in delivery systems, life-stage-specific palatant modulation, and dual-phase release architectures. Dual-phase release architectures are defined as systems that deliver active compounds in two sequential phases, such as immediate and sustained release. Sensory evaluation methodologies—ranging from multivariate preference mapping to descriptive analysis—are critically appraised to correlate human-panel metrics with canine and feline feeding behavior. We also discuss strategic integration of palatants at different processing stages (pre-conditioning, extrusion, and post-extrusion) and the challenges of balancing taste masking with nutritional requirements, particularly in formulations containing alternative proteins for sustainability. Despite rapid market growth in functional palatant-infused products, peer-reviewed literature remains relatively limited, suggesting opportunities for further research on species-specific flavor drivers, synbiotic flavor–nutrient interactions, and novel delivery platforms. This comprehensive overview of palatant science, patent innovations, and market evolution provides evidence-based guidance for researchers, formulators, and veterinarians seeking to optimize organoleptic properties and consumer acceptance of next-generation pet foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

13 pages, 1476 KB  
Article
Molecular Detection and Antibiogram of Bacteria and Fungi in Table Eggs Under Different Storage Durations with Organoleptic Properties
by Md Shahab Uddin, Md Ahosanul Haque Shahid, Saiduzzaman, Marzia Rahman and K. H. M. Nazmul Hussain Nazir
Bacteria 2025, 4(3), 40; https://doi.org/10.3390/bacteria4030040 - 4 Aug 2025
Viewed by 311
Abstract
This study was undertaken to identify foodborne bacteria and fungi from different parts of eggs depending on their storage duration, organoleptic properties, total viable count, and antibiotic resistance profile. Thirty-two samples were randomly collected from commercial layer farms in Mymensingh. Following the protocol [...] Read more.
This study was undertaken to identify foodborne bacteria and fungi from different parts of eggs depending on their storage duration, organoleptic properties, total viable count, and antibiotic resistance profile. Thirty-two samples were randomly collected from commercial layer farms in Mymensingh. Following the protocol of sample preparation, outer-surface and inner-content samples were streaked onto various selective media. Isolation and identification were carried out by observing Gram staining and biochemical properties. Molecular detection was confirmed through a PCR assay using specific primers for Salmonella spp., E. coli, Staphylococcus spp., and fungus (Simplicillium spp. and Saccharomyces spp.). To determine the antibiotic resistance profile, the disk diffusion method was followed against nine antibiotic disks. The isolation rate of E. coli, Salmonella spp., and Staphylococcus spp. was 53.13%, 40.63%, and 40.63%, respectively, in the outer eggshell and 15.63%, 25%, and 15.63%, respectively, in the inner content of the eggs. Regarding the fungus content (yeast and mold), 100% was obtained in the outer eggshell, whereas there was an absence of fungus in the inner content. It was observed that all the isolates of E. coli, Salmonella spp., and Staphylococcus spp. were highly sensitive to either Ciprofloxacin or Levofloxacin and extremely resistant to Amoxicillin or Azithromycin drug disks or both. The data also shows that storage duration had a proportional relationship with TVC and an inversely proportional relationship with organoleptic properties. This study indicates that eggs harbor multidrug-resistant foodborne bacteria, which might constitute a public health hazard if these antibiotic-resistant bacteria are transferred to humans. Full article
Show Figures

Figure 1

15 pages, 1407 KB  
Article
Expression of Recombinant Hirudin in Bacteria and Yeast: A Comparative Approach
by Zhongjie Wang, Dominique Böttcher, Uwe T. Bornscheuer and Christian Müller
Methods Protoc. 2025, 8(4), 89; https://doi.org/10.3390/mps8040089 - 3 Aug 2025
Viewed by 386
Abstract
The expression of recombinant proteins in heterologous hosts is a common strategy to obtain larger quantities of the “protein of interest” (POI) for scientific, therapeutic or commercial purposes. However, the experimental success of such an approach critically depends on the choice of an [...] Read more.
The expression of recombinant proteins in heterologous hosts is a common strategy to obtain larger quantities of the “protein of interest” (POI) for scientific, therapeutic or commercial purposes. However, the experimental success of such an approach critically depends on the choice of an appropriate host system to obtain biologically active forms of the POI. The correct folding of the molecule, mediated by disulfide bond formation, is one of the most critical steps in that process. Here we describe the recombinant expression of hirudin, a leech-derived anticoagulant and thrombin inhibitor, in the yeast Komagataella phaffii (formerly known and mentioned throughout this publication as Pichia pastoris) and in two different strains of Escherichia coli, one of them being especially designed for improved disulfide bond formation through expression of a protein disulfide isomerase. Cultivation of the heterologous hosts and expression of hirudin were performed at different temperatures, ranging from 22 to 42 °C for the bacterial strains and from 20 to 30 °C for the yeast strain, respectively. The thrombin-inhibitory potencies of all hirudin preparations were determined using the thrombin time coagulation assay. To our surprise, the hirudin preparations of P. pastoris were considerably less potent as thrombin inhibitors than the respective preparations of both E. coli strains, indicating that a eukaryotic background is not per se a better choice for the expression of a biologically active eukaryotic protein. The hirudin preparations of both E. coli strains exhibited comparable high thrombin-inhibitory potencies when the strains were cultivated at their respective optimal temperatures, whereas lower or higher cultivation temperatures reduced the inhibitory potencies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 3171 KB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 392
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

16 pages, 1739 KB  
Article
Impact of the Thermovinification Practice Combined with the Use of Autochthonous Yeasts on the Fermentation Kinetics of Red Wines
by Islaine Santos Silva, Ana Paula André Barros, Marcos dos Santos Lima, Bruna Carla Agustini, Carolina Oliveira de Souza and Aline Camarão Telles Biasoto
Fermentation 2025, 11(8), 436; https://doi.org/10.3390/fermentation11080436 - 29 Jul 2025
Viewed by 410
Abstract
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research [...] Read more.
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research investigated how combining thermovinification with autochthonous yeast strains influences the fermentation dynamics of Syrah wine. Six treatments were conducted, combining the use of commercial and two autochthonous yeasts with traditional vinification (7-day maceration) and thermovinification (65 °C for 2 h) processes. Sugars and alcohols were quantified during alcoholic fermentation by high-performance liquid chromatography with refractive index detection. Cell viability and kinetic parameters, such as ethanol formation rate and sugar consumption, were also evaluated. The Syrah wine’s composition was characterized by classical wine analyses (OIV procedures). The results showed that cell viability was unaffected by thermovinification. Thermovinification associated with autochthonous yeasts improved the efficiency of alcoholic fermentation. Thermovinified wines also yielded a higher alcohol content (13.9%). Future studies should investigate how thermovinification associated with autochthonous yeasts affects the metabolomic and flavoromic properties of Syrah wine and product acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

20 pages, 4658 KB  
Article
Valorizing Carasau Bread Residue Through Sourdough Fermentation: From Bread Waste to Bread Taste
by Simonetta Fois, Valentina Tolu, Vanna Sanna, Antonio Loddo, Manuela Sanna, Piero Pasqualino Piu, Daniela Piras, Tonina Roggio and Pasquale Catzeddu
Microorganisms 2025, 13(8), 1745; https://doi.org/10.3390/microorganisms13081745 - 25 Jul 2025
Viewed by 293
Abstract
Surplus bread accounts for a significant proportion of food waste in many countries. The focus of this study was twofold: firstly, to investigate the use of carasau bread residue as a sourdough substrate, and secondly, to reuse this sourdough into a new carasau [...] Read more.
Surplus bread accounts for a significant proportion of food waste in many countries. The focus of this study was twofold: firstly, to investigate the use of carasau bread residue as a sourdough substrate, and secondly, to reuse this sourdough into a new carasau baking process. Selected lactic acid bacteria (Lactiplantibacillus plantarum) and yeast strains (Saccharomyces cerevisiae and Wickerhamomyces anomalus) were used to inoculate three substrates: bread residue (S1), bread residue supplemented with durum wheat middlings (S2), and semolina (S3). Sourdoughs were refreshed for five days by backslopping, and microbiological and physicochemical analyses were performed. Results indicated that incorporating wheat middlings into bread residue enhanced microbial performance, as evidence by a decrease in pH from 6.0 to around 4.5 compared to using bread residue alone as a substrate. Carasau bread produced with the sourdough derived from bread residue and wheat middlings exhibited comparable physicochemical properties to commercial baker’s yeast carasau bread, but had better sensory properties, scoring a mean acceptability of 7.0 versus 6.0 for baker’s yeast bread. These results show that bread residue supplemented with wheat middlings can serve as a sourdough substrate, allowing its reuse in the baking process to produce high-quality carasau bread and promote the circular economy. Full article
Show Figures

Graphical abstract

29 pages, 2022 KB  
Article
The Natural Fermentation of Greek Tsounati Olives: Microbiome Analysis
by Marina Georgalaki, Ilario Ferrocino, Davide Buzzanca, Rania Anastasiou, Georgia Zoumpopoulou, Despoina Giabasakou, Danai Ziova, Alexandra Kokkali, George Paraskevakos and Effie Tsakalidou
Foods 2025, 14(15), 2568; https://doi.org/10.3390/foods14152568 - 22 Jul 2025
Viewed by 548
Abstract
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of [...] Read more.
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of Tsounati variety olives from the Monemvasia region of Peloponnese, Greece, that were naturally fermented for three months. The bacterial and fungal microbiota of both olives and brines were fingerprinted throughout the fermentation through classical microbiological analysis combined with molecular techniques. Among the 148 isolated bacteria, 85 were lactic acid bacteria (LAB), and 63 belonged to the Enterobacteriaceae family, while the 178 fungal isolates comprised 136 yeasts and 42 non-yeast or yeast-like fungi. Metataxonomic analysis confirmed the dominance of the bacterial genera Lactiplantibacillus, Leuconostoc, along with the Enterobacteriaceae family, and it revealed the presence of Coleofasciculaceae cyanobacteria mostly in olives. The dominant fungal genera were yeasts, namely Saccharomyces, Nakazawaea, and Cyberlindnera. Using the Folin–Ciocalteu assay, the average total polyphenol content of Tsounati fermented olive samples was 761.80 ± 128.87 mg gallic acid equivalents kg−1 after 90 days of fermentation. The concentrations of the triterpenic, maslinic, and oleanolic acids, as determined by HPLC, remained stable throughout fermentation, with average values of 4764 and 1807 mg kg−1, respectively. Finally, sensory analysis revealed the rich aromatic character of Tsounati variety, highlighting its potential to be used for Greek-style table olive production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 4761 KB  
Article
Metabolic Alterations in Crassostrea Gigas After Feeding Selenium-Enriched Yeast Based on Transcriptomic Analysis
by Yancheng Zhao, Xiaojing Jiang, Liming Jiang, Yongjie Wang, Cuiju Cui, Xiumei Liu, Zan Li, Weijun Wang and Jianmin Yang
Biology 2025, 14(7), 898; https://doi.org/10.3390/biology14070898 - 21 Jul 2025
Viewed by 349
Abstract
This study explores the effects of selenium-enriched yeast supplementation on growth-related and immune-related gene expression in C. gigas, aiming to support feed optimization in oyster aquaculture. Selenium, an essential trace element, is vital for growth, immune function, and metabolism in animals. Selenium-enriched [...] Read more.
This study explores the effects of selenium-enriched yeast supplementation on growth-related and immune-related gene expression in C. gigas, aiming to support feed optimization in oyster aquaculture. Selenium, an essential trace element, is vital for growth, immune function, and metabolism in animals. Selenium-enriched yeast, an organic form, offers superior bioavailability, enabling efficient absorption and utilization. C. gigas, a commercially significant marine shellfish, is rich in protein and nutrients, but the effects of selenium on mollusks remain insufficiently explored. In this study, oysters were divided into three groups: a control group without selenium (THNP), a 2 ppm selenium group (THMP), and a 4 ppm selenium group (THHP). Transcriptome sequencing yielded 388,679,026 clean reads. GO and KEGG enrichment analyses identified key metabolic signaling pathways, and a PPI analysis was performed on the translation products of DEGs involved in the KEGG pathways. qRT-PCR validated the expression of principal DEGs. The combined results of enrichment and PPI analyses highlighted pathways such as glutathione metabolism and collagen signaling. Additionally, three hub genes—FASN, HRAS, and ABCG5—were identified as central to the selenium response. These findings enhance the understanding of selenium’s molecular impact on oysters and support its application in aquaculture. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

20 pages, 1065 KB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Viewed by 1700
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

20 pages, 847 KB  
Article
Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles
by Antonella Costantini, Maurizio Petrozziello, Christos Tsolakis, Andriani Asproudi, Enrico Vaudano, Laura Pulcini, Federica Bonello, Katya Carbone and Maria Carla Cravero
Foods 2025, 14(13), 2357; https://doi.org/10.3390/foods14132357 - 2 Jul 2025
Viewed by 433
Abstract
The influence of different Saccharomyces cerevisiae (Sc) strains and hop varieties on the physical, chemical and sensory properties of beer was investigated. ISE77, an oenological Sc strain screened for the IRC7 gene and β-lyase activity, and a commercial yeast, as a [...] Read more.
The influence of different Saccharomyces cerevisiae (Sc) strains and hop varieties on the physical, chemical and sensory properties of beer was investigated. ISE77, an oenological Sc strain screened for the IRC7 gene and β-lyase activity, and a commercial yeast, as a control, were experimented with two hops (dry hopping), Mosaic® (M) and Hallertau Mittelfrüh (HM). Both hop variety and yeast strain exerted a considerable influence on the organoleptic profile of the beer. Samples with M hops exhibited elevated levels of specific volatile compounds (e.g., limonene and linalool). ISE77 generated higher levels of esters, irrespective of the hop variety employed, imparting fruity and floral characteristics. Moreover, the beers fermented with ISE77 showed herbal and spicy notes. Regardless of the hop variety, samples brewed with the control yeast showed higher honey and caramel note levels. Beers fermented with ISE77 and HM exhibited remarkable similarities to those produced with ISE77 and M, particularly for some odour attributes (citrus, exotic fruits, and aromatic herbs). These attributes were more intense than in beers fermented with the control yeast and HM. This study demonstrated the potential of oenological Sc strains to achieve innovative brewing outcomes when combined with selected hops. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

23 pages, 4022 KB  
Article
Comprehensive Analysis of Bacterial Communities and Microbiological Quality of Frozen Edible Insects
by Sasiprapa Krongdang, Nipitpong Sawongta, Jintana Pheepakpraw, Achirawit Ngamsomchat, Sutee Wangtueai, Jittimon Wongsa, Thanya Parametthanuwat, Narin Charoenphun and Thararat Chitov
Foods 2025, 14(13), 2347; https://doi.org/10.3390/foods14132347 - 1 Jul 2025
Cited by 1 | Viewed by 569
Abstract
Edible insects are gaining traction worldwide; however, the existing data regarding their microbiological quality remain inadequate. This study investigated the bacterial communities and microbiological quality of five types of frozen edible insects commercially available in Thailand. Amplicon sequencing revealed Firmicutes (Bacillota) and Proteobacteria [...] Read more.
Edible insects are gaining traction worldwide; however, the existing data regarding their microbiological quality remain inadequate. This study investigated the bacterial communities and microbiological quality of five types of frozen edible insects commercially available in Thailand. Amplicon sequencing revealed Firmicutes (Bacillota) and Proteobacteria (Pseudomonadota) as the main phyla across all samples; Bacteroidota was predominant in house crickets, Actinobacteriota in silkworms, and Desulfobacterota was exclusively found in house and mole crickets. Culture-based assays showed total viable counts, lactic acid bacteria, yeasts–molds, and spore-formers ranging from 3.41–6.58, 2.52–7.41, 1.83–5.62, to 2.00–4.70 log CFU·g−1, respectively. In some samples, Enterobacteriaceae and Escherichia coli, key hygiene indicators, reached 5.05 and 2.70 log CFU·g−1, respectively. Among foodborne pathogens, presumptive Bacillus cereus was found to vary from <1.70 to 3.93 log CFU·g−1, while Clostridium perfringens and Staphylococcus aureus were under the quantitation limit, and Salmonella was absent. Overall, the results indicate significant variation in microbial diversity and quality among different insect types. The high levels of microbial hygiene indicators and foodborne pathogens in some samples raised food safety concerns and point to the need to develop or implement production guidelines and microbiological criteria for frozen edible insects to ensure food safety. Full article
Show Figures

Graphical abstract

11 pages, 8421 KB  
Article
A Metalless and Fungicide-Free Material Against Candida: Glass-Loaded Hydrogels
by Gabrielle Caroline Peiter, Elane da Silva Salvador, Fabián Ccahuana Ayma, Kádima Nayara Teixeira, Silvia Jaerger, Rafael A. Bini, Cleverson Busso, Rodrigo José de Oliveira and Ricardo Schneider
Pharmaceutics 2025, 17(7), 836; https://doi.org/10.3390/pharmaceutics17070836 - 26 Jun 2025
Viewed by 448
Abstract
Background/Objectives: We report the antifungal potential of transition metal-free borophosphate glass-loaded hydrogels (BGHs) with different phosphorus/boron molar ratios (P/B = 2, 1, and 0.5) against Candida species. Candida yeasts pose a significant health risk as they can cause infections, systemic diseases, and even [...] Read more.
Background/Objectives: We report the antifungal potential of transition metal-free borophosphate glass-loaded hydrogels (BGHs) with different phosphorus/boron molar ratios (P/B = 2, 1, and 0.5) against Candida species. Candida yeasts pose a significant health risk as they can cause infections, systemic diseases, and even potentially fatal complications in immunocompromised individuals. Methods: The antifungal activity of BGH was evaluated against Candida albicans, Candida tropicalis, Candida krusei, and Candida glabrata using kinetic growth analysis, the agar well diffusion method, the minimum inhibitory concentration, the minimum fungicidal concentration, and scanning electron microscopy. Results: All BGH formulations effectively inhibited yeast growth at various concentrations, with results comparable to commercial miconazole gel (CMG). Hydrogels with P/B ratios of 0.5 and 1 produced larger inhibition zones than CMG, except against C. glabrata. However, BGHs with a P/B ratio of 0.5 at 3% and 5% (w/w) demonstrated relevant antifungal activity, especially against C. albicans and C. tropicalis. Conclusions: These findings highlight the promising antifungal potential of borophosphate glass-based hydrogels, particularly those with high boron content. Their efficacy against multiple Candida species suggests they could serve as an alternative to conventional antifungal agents. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

13 pages, 886 KB  
Article
Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects
by Camila G. de Oliveira, Angela Alves dos Santos, Eduardo J. P. Pritsch, Stéfany K. Bressan, Anderson Giehl, Odinei Fogolari, Altemir J. Mossi, Helen Treichel and Sérgio L. Alves
Microorganisms 2025, 13(7), 1492; https://doi.org/10.3390/microorganisms13071492 - 26 Jun 2025
Cited by 1 | Viewed by 453
Abstract
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This [...] Read more.
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This study aimed to evaluate the capacity of yeasts isolated from bees and beetles to produce indole-3-acetic acid (IAA), a plant-growth-promoting hormone, as well as their ability to tolerate or degrade glyphosate (in the commercial herbicide Zapp QI 620®) and 2,4-D (in the commercial Aminol 806®). Seven yeast strains were isolated from insects, identified via ITS sequencing, and assessed for IAA production in YPD medium. Growth assays were conducted under varying herbicide concentrations, and 2,4-D degradation was analyzed using high-performance liquid chromatography. All strains produced IAA, with Papiliotrema siamensis CHAP-239 exhibiting the highest yield (4.17 mg/L). Glyphosate completely inhibited growth in all strains, while 2,4-D showed dose-dependent effects, with four strains tolerating lower concentrations. Notably, Meyerozyma caribbica CHAP-248 degraded up to 46% of 2,4-D at 6.045 g/L. These findings highlight the ecological risks herbicides pose to beneficial yeasts and suggest the potential of certain strains for bioremediation in herbicide-contaminated environments. Overall, the study underscores the importance of preserving microbial biodiversity in the context of sustainable agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop